Knowledge

Liquid marbles

Source 📝

17: 181:(PVDF) is applied onto the coated water droplet. The doubly-coated water droplet is then cast into the hexane/water mixture and eventually settled at the hexane/water interface to form the interfacial water marble. During this process, the PVDF coating quickly diffused into hexane to balance the hydrophobic interaction between hexane and the water droplet, while the nanomaterials quickly self-assembled into a nanostructured protective layer on the droplet surface through the 138: 107:
coating on their surface to prevent the contact between water and the solid ground (Figure 1). Liquid marbles provide a new approach to transport liquid mass on the solid surface, which sufficiently transform the inconvenient glass containers into flexible, user-specified hydrophobic coating composed
133:
into the reservoir, the combination or summary of these self-similar coalescence processes is called coalescence cascade. The underlying mechanism of coalescence cascade has been studied in detail but there has been mere attempt to control and make use of it. Until recently, Liu et al. has filled
196:. The interfacial water marbles can also realize a series of stimuli-responsive motions by integrating the functional materials into the surface coating layer. Due to their uniqueness in both form and behavior, the interfacial water marbles are speculated to have remarkable applications in 121: 161:(Figure 2). To realize interfacial water marbles at hexane/water interface, the individual particle size of the surface coating layer should be as small as possible, so that the contact line between the particles and the water reservoir can be minimized; special wettability with mixed 116:
have been extensively investigated. However, liquid marbles only reflect the water behavior at the solid-air interface, while there is no report on the water behavior at the liquid-liquid interface, as a result of the so-called coalescence cascade phenomenon.
128:
When a water droplet is in contact with a water reservoir, it will quickly pinch off from the reservoir and form a smaller daughter droplet, while this daughter droplet will continue to go through a similar contact-pinch off-splitting process until completed
742:
Li, Xiaoguang(李晓光 ); Wang, Yiqi(王义琪 ); Huang, Junchao(黄俊超 ); Yang, Yao(杨瑶 ); Wang, Renxian(王仁贤 ); Geng, Xingguo(耿兴国 ); Zang, Duyang(臧渡洋 ) (2017-12-25). "Monolayer nanoparticle-covered liquid marbles derived from a sol-gel coating".
1288:
Liu, Yang; Zhang, Xinyu; Poyraz, Selcuk; Zhang, Chao; Xin, John (15 March 2018). "One-step synthesis of multifunctional zinc-iron-oxide hybrid carbon nanowires by chemical fusion for supercapacitors and interfacial water marbles".
1058:
Sarvi, Fatemeh; Jain, Kanika; Arbatan, Tina; Verma, Paul J.; Hourigan, Kerry; Thompson, Mark C.; Shen, Wei; Chan, Peggy P.Y. (7 January 2015). "Cardiogenesis of embryonic stem cells with liquid marble micro-bioreactor".
442:
Bormashenko, Edward; Bormashenko, Yelena; Grynyov, Roman; Aharoni, Hadas; Whyman, Gene; Binks, Bernard P (2015). "Self-Propulsion of Liquid Marbles: Leidenfrost-like Levitation Driven by Marangoni Flow".
828:
Ooi, Chin Hong; Bormashenko, Edward; Nguyen, Anh V.; Evans, Geoffrey M.; Dao, Dzung V.; Nguyen, Nam-Trung (2016-06-21). "Evaporation of Ethanol–Water Binary Mixture Sessile Liquid Marbles".
966:
Zhao, Yan; Fang, Jian; Wang, Hongxia; Wang, Xungai; Lin, Tong (9 February 2010). "Magnetic liquid marbles: manipulation of liquid droplets using highly hydrophobic Fe3O4 nanoparticles".
67:
convert honeydew droplets into marbles. A variety of non-organic and organic liquids may be converted into liquid marbles. Liquid marbles demonstrate elastic properties and do not
538:
Draper, Thomas C.; Fullarton, Claire; Phillips, Neil; Costello, Ben P.J. de Lacy; Adamatzky, Andrew (2017). "Liquid marble interaction gate for collision-based computing".
652: 79:. Liquid marbles remain stable on solid and liquid surfaces. Statics and dynamics of rolling and bouncing of liquid marbles were reported. Liquid marbles coated with 134:
this void by proposing a new method to control coalescence cascade by using nanostructured coating at the liquid-liquid interface, —the interfacial liquid marbles.
169:
is also preferred for the interfacial water marble formation. The interfacial water marble can be fabricated by firstly coating a water droplet with
87:
particles have been reported. Liquid marbles are not hermetically coated by solid particles but connected to the gaseous phase. Kinetics of the
683: 71:
when bounced or pressed lightly. Liquid marbles demonstrate a potential as micro-reactors, micro-containers for growing micro-organisms and
16: 591:
Wong, Cl.Y. H. M. Adda-Bedia M., Vella, D. (2017). "Non-wetting drops at liquid interfaces: from liquid marbles to Leidenfrost drops".
786:
Fullarton, Claire; Draper, Thomas C.; Phillips, Neil; Mayne, Richard; Costello, Ben P. J. de Lacy; Adamatzky, Andrew (2018-02-06).
63:, etc.); representing a platform for a diversity of chemical and biological applications. Liquid marbles are also found naturally; 881:
Dandan, Merve; Erbil, H. Yildirim (2009-07-21). "Evaporation Rate of Graphite Liquid Marbles: Comparison with Water Droplets".
99:
Liquid marbles were first reported by P. Aussillous and D. Quere in 2001, who described a new method to construct portable
924:
Karokine, Nikita; Anyfantakis, Manos; Morel, Mathieu; Rudiuk, Sergii; Bickel, Thomas; Baigl, Damien (5 September 2016).
192:
cascade and exist nearly permanently at the hexane/water interface, providing that the hexane phase is not depleted by
925: 1340: 503:
Bormashenko, Edward (2016). "Liquid Marbles, Elastic Nonstick Droplets: From Minireactors to Self-Propulsion".
108:
of powders of hydrophobic materials. Since then, the applications of liquid marbles in no-loss mass transport,
76: 178: 145:
Similar to liquid marbles at the solid-air interface, the interfacial liquid marbles are constructed on the
1335: 1188:
Klyuzhin, Ivan S.; Lenna, Federico; Roeder, Brandon; Wexler, Adam; Pollack, Gerald H (11 November 2010).
646: 189: 130: 68: 1250: 1152: 1115: 975: 752: 708: 610: 557: 462: 354: 304: 253: 787: 1084: 999: 634: 600: 573: 547: 478: 452: 320: 277: 213: 44: 788:"Evaporation, Lifetime, and Robustness Studies of Liquid Marbles for Collision-Based Computing" 120: 1219: 1076: 1040: 991: 948: 906: 898: 863: 855: 810: 768: 724: 679: 626: 520: 421: 372: 269: 56: 1330: 1306: 1298: 1268: 1258: 1237:
Geri, Michela; Keshavarz, Bavand; McKinley, Gareth H.; Bush, John W. M. (25 December 2017).
1209: 1201: 1168: 1160: 1123: 1068: 1030: 983: 940: 890: 845: 837: 802: 760: 716: 671: 618: 565: 512: 470: 411: 403: 362: 312: 261: 182: 154: 137: 1254: 1156: 1119: 979: 756: 712: 614: 561: 466: 358: 308: 257: 1214: 1189: 416: 391: 218: 174: 166: 162: 72: 1324: 1003: 324: 197: 170: 109: 100: 1088: 638: 577: 482: 297:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
281: 201: 193: 113: 84: 80: 60: 52: 1143:
Thoroddsen, S. T.; Takehara, K. (June 2000). "The coalescence cascade of a drop".
841: 806: 569: 516: 104: 88: 40: 720: 675: 902: 859: 772: 474: 141:
Figure 2. An interfacial water marble sitting on the hexane-water interface.
1302: 1223: 1080: 1072: 1044: 1035: 1018: 995: 987: 952: 944: 910: 867: 814: 728: 630: 524: 425: 407: 376: 316: 273: 926:"Light-driven transport of a liquid marble with and against surface flows" 666:
de Gennes, Pierre-Gilles; Brochard-Wyart, Françoise; Quéré, David (2004).
295:
Quéré, David; Aussillous, Pascale (2006). "Properties of liquid marbles".
1273: 1263: 1238: 850: 343:"Liquid marbles: Topical context within soft matter and recent progress" 1310: 1173: 622: 367: 342: 158: 28: 1205: 894: 764: 1164: 1128: 1103: 265: 146: 48: 32: 1017:
Arbatan, Tina; Li, Lizi; Tian, Junfei; Shen, Wei (11 January 2012).
699:
Supakar, T. (2017). "Impact dynamics of particle-coated droplets".
605: 552: 457: 153:
interface using water droplets with a surface coating composed of
150: 136: 119: 64: 36: 15: 1019:"Liquid marbles as micro-bioreactors for rapid blood typing" 244:
Aussillous, Pascale; Quéré, David (2001). "Liquid marbles".
1102:
Blanchette, François; Bigioni, Terry P. (1 April 2006).
173:
with special wettability, e.g. hybrid carbon nanowires,
396:
Proceedings of the Royal Society B: Biological Sciences
390:
Pike, N; Richard, D; Foster, W; Mahadevan, L (2002).
124:
Figure 1. A liquid marble sitting on the glass slide.
75:, micro-fluidics devices, and have even been used in 1104:"Partial coalescence of drops at liquid interfaces" 188:The interfacial water marble can completely resist 20:20 μL liquid marble coated with the Teflon powder 498: 496: 494: 492: 437: 435: 668:Capillarity and Wetting Phenomena | SpringerLink 239: 237: 235: 1190:"Persisting water droplets on water surfaces" 8: 651:: CS1 maint: multiple names: authors list ( 336: 334: 177:. Afterwards a secondary coating layer of 1272: 1262: 1213: 1172: 1127: 1034: 849: 604: 551: 456: 415: 366: 91:of liquid marbles has been investigated. 933:Angewandte Chemie International Edition 231: 644: 7: 103:in the atmospheric environment with 1239:"Thermal delay of drop coalescence" 445:The Journal of Physical Chemistry C 14: 27:are non-stick droplets (normally 341:McHale, G; Newton, M. I (2015). 1194:Journal of Physical Chemistry B 392:"How aphids lose their marbles" 1: 1061:Advanced Healthcare Materials 1023:Advanced Healthcare Materials 842:10.1021/acs.langmuir.6b01272 807:10.1021/acs.langmuir.7b04196 570:10.1016/j.mattod.2017.09.004 517:10.1021/acs.langmuir.6b03231 1357: 1243:Journal of Fluid Mechanics 721:10.1103/physreve.95.013106 676:10.1007/978-0-387-21656-0 95:Interfacial water marbles 475:10.1021/acs.jpcc.5b01307 77:unconventional computing 745:Applied Physics Letters 179:polyvinylidene fluoride 157:materials with special 1303:10.1002/cnma.201800075 1073:10.1002/adhm.201400138 1036:10.1002/adhm.201100016 988:10.1002/adma.200902512 945:10.1002/anie.201603639 408:10.1098/rspb.2002.1999 317:10.1098/rspa.2005.1581 142: 125: 21: 140: 123: 19: 1264:10.1017/jfm.2017.686 204:and mass-transport. 1255:2017JFM...833R...3G 1200:(44): 14020–14027. 1157:2000PhFl...12.1265T 1120:2006NatPh...2..254B 980:2010AdM....22..707Z 939:(37): 11183–11187. 757:2017ApPhL.111z1604L 713:2017PhRvE..95a3106S 615:2017SMat...13.5250W 562:2017arXiv170804807D 467:2015arXiv150204292B 359:2015SMat...11.2530M 309:2006RSPSA.462..973A 258:2001Natur.411..924A 45:colloidal particles 968:Advanced Materials 623:10.1039/C7SM00990A 368:10.1039/C5SM00084J 221:(culinary process) 214:Pickering emulsion 143: 126: 22: 1206:10.1021/jp106899k 1145:Physics of Fluids 895:10.1021/la900729d 889:(14): 8362–8367. 836:(24): 6097–6104. 765:10.1063/1.5010725 701:Physical Review E 685:978-1-4419-1833-8 599:(31): 5250–5260. 57:lycopodium powder 1348: 1315: 1314: 1285: 1279: 1278: 1276: 1266: 1234: 1228: 1227: 1217: 1185: 1179: 1178: 1176: 1165:10.1063/1.870380 1151:(6): 1265–1267. 1140: 1134: 1133: 1131: 1129:10.1038/nphys268 1099: 1093: 1092: 1055: 1049: 1048: 1038: 1014: 1008: 1007: 963: 957: 956: 930: 921: 915: 914: 878: 872: 871: 853: 825: 819: 818: 801:(7): 2573–2580. 792: 783: 777: 776: 739: 733: 732: 696: 690: 689: 663: 657: 656: 650: 642: 608: 588: 582: 581: 555: 535: 529: 528: 500: 487: 486: 460: 439: 430: 429: 419: 402:(1497): 1211–5. 387: 381: 380: 370: 338: 329: 328: 292: 286: 285: 266:10.1038/35082026 241: 183:Marangoni effect 1356: 1355: 1351: 1350: 1349: 1347: 1346: 1345: 1341:Surface science 1321: 1320: 1319: 1318: 1287: 1286: 1282: 1236: 1235: 1231: 1187: 1186: 1182: 1142: 1141: 1137: 1101: 1100: 1096: 1057: 1056: 1052: 1016: 1015: 1011: 965: 964: 960: 928: 923: 922: 918: 880: 879: 875: 827: 826: 822: 790: 785: 784: 780: 741: 740: 736: 698: 697: 693: 686: 665: 664: 660: 643: 590: 589: 585: 546:(10): 561–568. 540:Materials Today 537: 536: 532: 502: 501: 490: 441: 440: 433: 389: 388: 384: 353:(13): 2530–46. 340: 339: 332: 294: 293: 289: 252:(6840): 924–7. 243: 242: 233: 228: 210: 97: 37:nano-metrically 12: 11: 5: 1354: 1352: 1344: 1343: 1338: 1333: 1323: 1322: 1317: 1316: 1297:(6): 546–556. 1280: 1229: 1180: 1135: 1114:(4): 254–257. 1108:Nature Physics 1094: 1050: 1009: 974:(6): 707–710. 958: 916: 873: 820: 778: 751:(26): 261604. 734: 691: 684: 658: 583: 530: 511:(3): 663–669. 488: 431: 382: 330: 287: 230: 229: 227: 224: 223: 222: 219:Spherification 216: 209: 206: 175:graphene oxide 167:hydrophilicity 163:hydrophobicity 101:water droplets 96: 93: 25:Liquid marbles 13: 10: 9: 6: 4: 3: 2: 1353: 1342: 1339: 1337: 1336:Microfluidics 1334: 1332: 1329: 1328: 1326: 1312: 1308: 1304: 1300: 1296: 1292: 1284: 1281: 1275: 1274:1721.1/112194 1270: 1265: 1260: 1256: 1252: 1248: 1244: 1240: 1233: 1230: 1225: 1221: 1216: 1211: 1207: 1203: 1199: 1195: 1191: 1184: 1181: 1175: 1170: 1166: 1162: 1158: 1154: 1150: 1146: 1139: 1136: 1130: 1125: 1121: 1117: 1113: 1109: 1105: 1098: 1095: 1090: 1086: 1082: 1078: 1074: 1070: 1066: 1062: 1054: 1051: 1046: 1042: 1037: 1032: 1028: 1024: 1020: 1013: 1010: 1005: 1001: 997: 993: 989: 985: 981: 977: 973: 969: 962: 959: 954: 950: 946: 942: 938: 934: 927: 920: 917: 912: 908: 904: 900: 896: 892: 888: 884: 877: 874: 869: 865: 861: 857: 852: 847: 843: 839: 835: 831: 824: 821: 816: 812: 808: 804: 800: 796: 789: 782: 779: 774: 770: 766: 762: 758: 754: 750: 746: 738: 735: 730: 726: 722: 718: 714: 710: 707:(1): 013106. 706: 702: 695: 692: 687: 681: 677: 673: 669: 662: 659: 654: 648: 640: 636: 632: 628: 624: 620: 616: 612: 607: 602: 598: 594: 587: 584: 579: 575: 571: 567: 563: 559: 554: 549: 545: 541: 534: 531: 526: 522: 518: 514: 510: 506: 499: 497: 495: 493: 489: 484: 480: 476: 472: 468: 464: 459: 454: 450: 446: 438: 436: 432: 427: 423: 418: 413: 409: 405: 401: 397: 393: 386: 383: 378: 374: 369: 364: 360: 356: 352: 348: 344: 337: 335: 331: 326: 322: 318: 314: 310: 306: 303:(2067): 973. 302: 298: 291: 288: 283: 279: 275: 271: 267: 263: 259: 255: 251: 247: 240: 238: 236: 232: 225: 220: 217: 215: 212: 211: 207: 205: 203: 202:microreactors 199: 198:microfluidics 195: 191: 186: 184: 180: 176: 172: 171:nanomaterials 168: 164: 160: 156: 152: 148: 139: 135: 132: 122: 118: 115: 114:microreactors 111: 110:microfluidics 106: 102: 94: 92: 90: 86: 85:mono-disperse 82: 81:poly-disperse 78: 74: 70: 66: 62: 58: 54: 50: 46: 42: 38: 34: 31:) wrapped by 30: 26: 18: 1294: 1290: 1283: 1246: 1242: 1232: 1197: 1193: 1183: 1148: 1144: 1138: 1111: 1107: 1097: 1067:(1): 77–86. 1064: 1060: 1053: 1029:(1): 80–83. 1026: 1022: 1012: 971: 967: 961: 936: 932: 919: 886: 882: 876: 851:10072/142813 833: 829: 823: 798: 794: 781: 748: 744: 737: 704: 700: 694: 667: 661: 647:cite journal 596: 592: 586: 543: 539: 533: 508: 504: 451:(18): 9910. 448: 444: 399: 395: 385: 350: 346: 300: 296: 290: 249: 245: 194:vaporization 187: 144: 127: 98: 61:carbon black 53:polyethylene 24: 23: 1311:10397/78424 1291:ChemNanoMat 1174:2142/112637 593:Soft Matter 347:Soft Matter 190:coalescence 159:wettability 131:coalescence 105:hydrophobic 89:evaporation 41:hydrophobic 1325:Categories 606:1706.03959 553:1708.04807 458:1502.04292 226:References 1004:205234566 903:0743-7463 860:0743-7463 773:0003-6951 325:136039083 155:nanoscale 1224:20961076 1089:27631842 1081:24818841 1045:23184689 996:20217774 953:27381297 911:19499944 883:Langmuir 868:27230102 830:Langmuir 815:29359941 795:Langmuir 729:28208334 639:32825677 631:28644495 578:25550718 525:28114756 505:Langmuir 483:95427957 426:12065036 377:25723648 274:11418851 208:See also 69:coalesce 1331:Liquids 1251:Bibcode 1215:3208511 1153:Bibcode 1116:Bibcode 976:Bibcode 753:Bibcode 709:Bibcode 611:Bibcode 558:Bibcode 463:Bibcode 417:1691028 355:Bibcode 305:Bibcode 282:4405537 254:Bibcode 39:scaled 29:aqueous 1249:: R3. 1222:  1212:  1087:  1079:  1043:  1002:  994:  951:  909:  901:  866:  858:  813:  771:  727:  682:  637:  629:  576:  523:  481:  424:  414:  375:  323:  280:  272:  246:Nature 147:hexane 65:aphids 49:Teflon 33:micro- 1085:S2CID 1000:S2CID 929:(PDF) 791:(PDF) 635:S2CID 601:arXiv 574:S2CID 548:arXiv 479:S2CID 453:arXiv 321:S2CID 278:S2CID 151:water 73:cells 1220:PMID 1077:PMID 1041:PMID 992:PMID 949:PMID 907:PMID 899:ISSN 864:PMID 856:ISSN 811:PMID 769:ISSN 725:PMID 680:ISBN 653:link 627:PMID 521:PMID 422:PMID 373:PMID 270:PMID 165:and 112:and 83:and 1307:hdl 1299:doi 1269:hdl 1259:doi 1247:833 1210:PMC 1202:doi 1198:114 1169:hdl 1161:doi 1124:doi 1069:doi 1031:doi 984:doi 941:doi 891:doi 846:hdl 838:doi 803:doi 761:doi 749:111 717:doi 672:doi 619:doi 566:doi 513:doi 471:doi 449:119 412:PMC 404:doi 400:269 363:doi 313:doi 301:462 262:doi 250:411 35:or 1327:: 1305:. 1293:. 1267:. 1257:. 1245:. 1241:. 1218:. 1208:. 1196:. 1192:. 1167:. 1159:. 1149:12 1147:. 1122:. 1110:. 1106:. 1083:. 1075:. 1063:. 1039:. 1025:. 1021:. 998:. 990:. 982:. 972:22 970:. 947:. 937:55 935:. 931:. 905:. 897:. 887:25 885:. 862:. 854:. 844:. 834:32 832:. 809:. 799:34 797:. 793:. 767:. 759:. 747:. 723:. 715:. 705:95 703:. 678:. 670:. 649:}} 645:{{ 633:. 625:. 617:. 609:. 597:13 595:. 572:. 564:. 556:. 544:20 542:. 519:. 509:33 507:. 491:^ 477:. 469:. 461:. 447:. 434:^ 420:. 410:. 398:. 394:. 371:. 361:. 351:11 349:. 345:. 333:^ 319:. 311:. 299:. 276:. 268:. 260:. 248:. 234:^ 200:, 185:. 59:, 55:, 51:, 43:, 1313:. 1309:: 1301:: 1295:4 1277:. 1271:: 1261:: 1253:: 1226:. 1204:: 1177:. 1171:: 1163:: 1155:: 1132:. 1126:: 1118:: 1112:2 1091:. 1071:: 1065:4 1047:. 1033:: 1027:1 1006:. 986:: 978:: 955:. 943:: 913:. 893:: 870:. 848:: 840:: 817:. 805:: 775:. 763:: 755:: 731:. 719:: 711:: 688:. 674:: 655:) 641:. 621:: 613:: 603:: 580:. 568:: 560:: 550:: 527:. 515:: 485:. 473:: 465:: 455:: 428:. 406:: 379:. 365:: 357:: 327:. 315:: 307:: 284:. 264:: 256:: 149:/ 47:(

Index


aqueous
micro-
nano-metrically
hydrophobic
colloidal particles
Teflon
polyethylene
lycopodium powder
carbon black
aphids
coalesce
cells
unconventional computing
poly-disperse
mono-disperse
evaporation
water droplets
hydrophobic
microfluidics
microreactors

coalescence

hexane
water
nanoscale
wettability
hydrophobicity
hydrophilicity

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.