Knowledge (XXG)

Localized molecular orbitals

Source 📝

1193:)", Bader charges, or "fuzzy atom" charges. Rather surprisingly, despite the wide variation in the (total) partial charges reproduced by the different estimates, analysis of the resulting Pipek-Mezey orbitals has shown that the localized orbitals are rather insensitive to the partial charge estimation scheme used in the localization process. However, due to the ill-defined mathematical nature of Mulliken charges (and Löwdin charges, which have also been used in some works), as better alternatives are nowadays available it is advisable to use them in favor of the original version. 1209: 1238:
with the "bonds" of the molecule, as visualized by the practicing chemist, the most common approach is to instead consider the interaction between filled and unfilled localized molecular orbitals that correspond to σ bonds, π bonds, lone pairs, and their unoccupied counterparts. These orbitals and typically given the notation σ (sigma bonding), π (pi bonding),
1250:* for unoccupied nonbonding orbital is seldom used), π* (pi antibonding), and σ* (sigma antibonding). (Woodward and Hoffmann use ω for nonbonding orbitals in general, occupied or unoccupied.) When comparing localized molecular orbitals derived from the same atomic orbitals, these classes generally follow the order σ < π < 1237:
requires the analysis of interactions between donor and acceptor orbitals between two molecules or different regions within the same molecule, and molecular orbitals must be considered. Because proper (symmetry-adapted) molecular orbitals are fully delocalized and do not admit a ready correspondence
121:
For molecules with an open electron shell, in which some molecular orbitals are singly occupied, the electrons of alpha and beta spin must be localized separately. This applies to radical species such as nitric oxide and dioxygen. Again, in this case the localized and delocalized orbital descriptions
359:
The optimization of the objective function is usually performed using pairwise Jacobi rotations. However, this approach is prone to saddle point convergence (if it even converges), and thus other approaches have also been developed, from simple conjugate gradient methods with exact line searches, to
93:
For molecules with a closed electron shell, in which each molecular orbital is doubly occupied, the localized and delocalized orbital descriptions are in fact equivalent and represent the same physical state. It might seem, again using the example of water, that placing two electrons in the first
911:
The fourth moment method produces more localized virtual orbitals than Foster-Boys method, since it implies a larger penalty on the delocalized tails. For graphene (a delocalized system), the fourth moment method produces more localized occupied orbitals than Foster-Boys and Pipek-Mezey schemes.
58:
In the water molecule for example, ab initio calculations show bonding character primarily in two molecular orbitals, each with electron density equally distributed among the two O-H bonds. The localized orbital corresponding to one O-H bond is the sum of these two delocalized orbitals, and the
906: 743: 1265:
The localized molecular orbitals that organic chemists often depict can be thought of as qualitative renderings of orbitals generated by the computational methods described above. However, they do not map onto any single approach, nor are they used consistently. For instance, the
1196:
The most important quality of the Pipek-Mezey scheme is that it preserves σ-π separation in planar systems, which sets it apart from the Foster-Boys and Edmiston-Ruedenberg schemes that mix σ and π bonds. This property holds independent of the partial charge estimate used.
1176: 266: 1189:. Recently, Pipek-Mezey style schemes based on a variety of mathematically well-defined partial charge estimates have been discussed. Some notable choices are Voronoi charges, Becke charges, Hirshfeld or Stockholder charges, intrinsic atomic orbital charges (see 1212:
A list of localized molecular orbitals considered in organic chemistry, showing component atomic orbitals and all shapes of the MOs they constitute. In reality, AOs and MOs, as obtained from computations, are much "fatter" than depicted in these
138:
upon a set of canonical molecular orbitals (CMO). The transformation usually involves the optimization (either minimization or maximization) of the expectation value of a specific operator. The generic form of the localization potential is:
23:
which are concentrated in a limited spatial region of a molecule, such as a specific bond or lone pair on a specific atom. They can be used to relate molecular orbital calculations to simple bonding theories, and also to speed up
758: 595: 1053: 495: 1068: 118:(or linear combination of Slater determinants), and it can be shown that if two electrons are exchanged, such a function is unchanged by any unitary transformation of the doubly occupied orbitals. 960: 753:
The fourth moment (FM) procedure is analogous to Foster-Boys scheme, however the orbital fourth moment is used instead of the orbital second moment. The objective function to be minimized is
144: 1217:
Organic chemistry is often discussed in terms of localized molecular orbitals in a qualitative and informal sense. Historically, much of classical organic chemistry was built on the older
98:
electrons in the second bond is not the same as having four electrons free to move over both bonds. However, in quantum mechanics all electrons are identical and cannot be distinguished as
1585:
Kleier, Daniel; J. Chem. Phys. 61, 3905 (1974) (1974). "Localized molecular orbitals for polyatomic molecules. I. A comparison of the Edmiston-Ruedenberg and Boys localization methods".
405: 1274:
are generally treated as a filled σ(out) orbital and an unfilled pure p orbital, even though the lone pairs of water could be described analogously by filled σ(out) and p orbitals (
588: 1703:
Pipek, János; Mezey, Paul G. (1989). "A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions".
354: 298: 1200:
While the usual formulation of the Pipek-Mezey method invokes an iterative procedure to localize the orbitals, a non-iterative method has also been recently suggested.
325: 1620: 1889:
Alcoba, Diego R.; Lain, Luis; Torre, Alicia; Bochicchio, Roberto C. (15 April 2006). "An orbital localization criterion based on the theory of "fuzzy" atoms".
47:
lead to delocalized orbitals that, in general, extend over an entire molecule and have the symmetry of the molecule. Localized orbitals may then be found as
901:{\displaystyle \langle {\hat {L}}_{\text{FM}}\rangle =\sum _{i}\langle \phi _{i}|({\hat {x}}-\langle i|{\hat {x}}|\phi _{i}\rangle )^{4}|i\rangle } 738:{\displaystyle \langle {\hat {L}}_{\text{FB}}\rangle =\sum _{i}\langle \phi _{i}|({\hat {x}}-\langle i|{\hat {x}}|i\rangle )^{2}|\phi _{i}\rangle } 1284: 67: 1391: 44: 2029: 1230: 1063:
Pipek-Mezey localization takes a slightly different approach, maximizing the sum of orbital-dependent partial charges on the nuclei:
965: 410: 1942:
Høyvik, Ida-Marie; Jansik, Branislav; Jørgensen, Poul (3 April 2013). "Pipek–Mezey localization of occupied and virtual orbitals".
1171:{\displaystyle \langle {\hat {L}}\rangle _{\textrm {PM}}=\sum _{A}^{\textrm {atoms}}\sum _{i}^{\textrm {orbitals}}|q_{i}^{A}|^{2}} 2055: 1515:
Høyvik, Ida-Marie; Jansik, Branislav; Jørgensen, Poul (2012). "Trust Region Minimization of Orbital Localization Functions".
1749:
Lehtola, Susi; Jónsson, Hannes (8 January 2014). "Pipek–Mezey orbital localization using various partial charge estimates".
1287:). In other words, the type of localized orbital invoked depends on context and considerations of convenience and utility. 923: 1550:
Boys, S. F. (1960). "Construction of Molecular orbitals to be minimally variant for changes from one molecule to another".
261:{\displaystyle \langle {\hat {L}}\rangle =\sum _{i=1}^{n}\langle \phi _{i}\phi _{i}|{\hat {L}}|\phi _{i}\phi _{i}\rangle } 327:
is a molecular spatial orbital. Many methodologies have been developed during the past decades, differing in the form of
1186: 1182: 33: 1480:
Leonard, Joseph M.; Luken, William L. (1982). "Quadratically Convergent Calculation of Localized Molecular Orbitals".
1270:
of water are usually treated as two equivalent sp hybrid orbitals, while the corresponding "nonbonding" orbitals of
2060: 2050: 1787:
Knizia, G. (2013). "Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts".
111: 375: 1234: 1190: 135: 52: 29: 1312:
Hirst, D. M.; Linington, Mary E. (1970). "Localized orbitals for the oxygen and nitric oxide molecules".
25: 1614: 1222: 1985:
Heßelmann, Andreas (10 May 2016). "Local Molecular Orbitals from a Projection onto Localized Centers".
500: 1806: 1712: 1666: 1594: 1559: 1419: 1851:
Cioslowski, J. (1991). "Partitioning of the orbital overlap matrix and the localization criteria".
1383: 1218: 60: 1967: 1924: 1868: 1830: 1796: 1497: 1329: 131: 115: 48: 330: 274: 1445:
Lehtola, Susi; Jónsson, Hannes (2013). "Unitary Optimization of Localized Molecular Orbitals".
303: 2025: 2002: 1959: 1916: 1822: 1766: 1682: 1532: 1462: 1387: 920:
Edmiston-Ruedenberg localization maximizes the electronic self-repulsion energy by maximizing
82: 70:. The Boys and Edmiston-Ruedenberg localization methods mix these orbitals to give equivalent 37: 20: 1994: 1951: 1906: 1898: 1860: 1814: 1758: 1720: 1674: 1602: 1567: 1524: 1489: 1454: 1427: 1375: 1356: 1321: 369: 1376: 1810: 1716: 1670: 1598: 1563: 1423: 1410:
Edmiston, Clyde; Ruedenberg, Klaus (1963). "Localized Atomic and Molecular Orbitals".
2044: 1360: 1872: 1834: 1633:
Introduction to Computational Chemistry by Frank Jensen 1999, page 228 equation 9.27
1501: 1333: 590:. In one dimension, the Foster-Boys (FB) objective function can also be written as 1971: 1928: 107: 1651: 1347:
Duke, Brian J. (1987). "Linnett's double quartet theory and localised orbitals".
1229:, this simple model of bonding is supplemented by semi-quantitative results from 372:) localization method minimizes the spatial extent of the orbitals by minimizing 1226: 1571: 1431: 1998: 28:
electronic structure calculations by taking advantage of the local nature of
1278: 1267: 78: 71: 2006: 1963: 1920: 1826: 1770: 1686: 1536: 1466: 1208: 1911: 1864: 1493: 1325: 1302:
Levine I.N., “Quantum Chemistry” (4th ed., Prentice-Hall 1991) sec.15.8
1271: 1955: 1902: 1818: 1762: 1678: 1606: 1528: 1458: 1724: 66:
For multiple bonds and lone pairs, different localization procedures
59:
localized orbital for the other O-H bond is their difference; as per
497:. This turns out to be equivalent to the easier task of maximizing 1801: 81:
in water, while the Pipek-Mezey method preserves their respective
1652:"Orbital localization using fourth central moment minimization" 1048:{\displaystyle {\hat {L}}=|{\vec {r}}_{1}-{\vec {r}}_{2}|^{-1}} 1650:
Høyvik, Ida-Marie; Jansik, Branislav; Jørgensen, Poul (2012).
1246:(unoccupied nonbonding orbital, "empty p orbital"; the symbol 490:{\displaystyle {\hat {L}}=|{\vec {r}}_{1}-{\vec {r}}_{2}|^{2}} 89:
Equivalence of localized and delocalized orbital descriptions
1262:*) < π* < σ* when ranked by increasing energy. 955:{\displaystyle \langle {\hat {L}}_{\text{ER}}\rangle } 122:
are equivalent and represent the same physical state.
1382:. Chichester, England: John Wiley and Sons. pp.  1071: 968: 926: 761: 598: 503: 413: 378: 333: 306: 277: 147: 51:
of the delocalized orbitals, given by an appropriate
1225:models of bonding. To account for phenomena like 1170: 1047: 954: 900: 737: 582: 489: 399: 348: 319: 292: 260: 1846: 1844: 1744: 1742: 1740: 1738: 1736: 1734: 1645: 1643: 1641: 1639: 1593:(10). Journal of Chemical Physics: 3905–3919. 1405: 1403: 1884: 1882: 1782: 1780: 8: 1698: 1696: 1242:(occupied nonbonding orbital, "lone pair"), 1088: 1072: 949: 927: 895: 874: 836: 800: 784: 762: 732: 704: 673: 637: 621: 599: 567: 522: 394: 379: 255: 190: 163: 148: 1619:: CS1 maint: numeric names: authors list ( 1987:Journal of Chemical Theory and Computation 1789:Journal of Chemical Theory and Computation 1751:Journal of Chemical Theory and Computation 1517:Journal of Chemical Theory and Computation 1447:Journal of Chemical Theory and Computation 1276:for further discussion, see the article on 400:{\displaystyle \langle {\hat {L}}\rangle } 1910: 1800: 1162: 1157: 1150: 1145: 1136: 1129: 1128: 1123: 1112: 1111: 1106: 1092: 1091: 1076: 1075: 1070: 1036: 1031: 1024: 1013: 1012: 1002: 991: 990: 984: 970: 969: 967: 943: 932: 931: 925: 887: 881: 868: 859: 848: 847: 842: 822: 821: 813: 807: 794: 778: 767: 766: 760: 726: 717: 711: 696: 685: 684: 679: 659: 658: 650: 644: 631: 615: 604: 603: 597: 574: 561: 552: 541: 540: 535: 529: 513: 508: 502: 481: 476: 469: 458: 457: 447: 436: 435: 429: 415: 414: 412: 383: 382: 377: 360:Newton-Raphson and trust-region methods. 335: 334: 332: 311: 305: 279: 278: 276: 249: 239: 230: 219: 218: 213: 207: 197: 184: 173: 152: 151: 146: 1349:Journal of Molecular Structure: THEOCHEM 1207: 2024:. Oxford, UK: Oxford University Press. 1378:Introduction to Computational Chemistry 1295: 1612: 1285:sigma-pi and equivalent-orbital models 110:must have a form which satisfies the 32:. Localized orbitals in systems with 7: 45:ab initio quantum chemistry methods 1944:Journal of Computational Chemistry 1891:Journal of Computational Chemistry 14: 1853:Journal of Mathematical Chemistry 1233:. However, the understanding of 583:{\displaystyle \sum _{i}^{n}^{2}} 300:is the localization operator and 1181:Pipek and Mezey originally used 1705:The Journal of Chemical Physics 1587:The Journal of Chemical Physics 1231:Hückel molecular orbital theory 368:The Foster-Boys (also known as 1158: 1137: 1081: 1032: 1018: 996: 985: 975: 937: 888: 878: 860: 853: 843: 827: 818: 814: 772: 718: 708: 697: 690: 680: 664: 655: 651: 609: 571: 553: 546: 536: 519: 477: 463: 441: 430: 420: 388: 340: 284: 231: 224: 214: 157: 1: 1361:10.1016/0166-1280(87)80072-6 34:periodic boundary conditions 17:Localized molecular orbitals 1659:Journal of Chemical Physics 1282:and the discussion above on 2077: 1187:mathematically ill defined 349:{\displaystyle {\hat {L}}} 293:{\displaystyle {\hat {L}}} 1572:10.1103/RevModPhys.32.300 1552:Reviews of Modern Physics 1432:10.1103/RevModPhys.35.457 1412:Reviews of Modern Physics 320:{\displaystyle \phi _{i}} 112:Pauli exclusion principle 2022:Stereoelectronic Effects 1999:10.1021/acs.jctc.6b00321 1235:stereoelectronic effects 2056:Computational chemistry 1482:Theoretica Chimica Acta 1314:Theoretica Chimica Acta 1191:intrinsic bond orbitals 68:give different orbitals 1374:Jensen, Frank (2007). 1214: 1172: 1135: 1118: 1049: 956: 902: 739: 584: 518: 491: 401: 350: 321: 294: 262: 189: 136:unitary transformation 134:(LMO) are obtained by 53:unitary transformation 2020:Kirby, A. J. (2002). 1223:orbital hybridization 1211: 1173: 1119: 1102: 1050: 957: 903: 740: 585: 504: 492: 402: 351: 322: 295: 263: 169: 1204:In organic chemistry 1069: 966: 924: 759: 596: 501: 411: 376: 331: 304: 275: 145: 30:electron correlation 1811:2013arXiv1306.6884K 1717:1989JChPh..90.4916P 1671:2012JChPh.137v4114H 1599:1974JChPh..61.3905K 1564:1960RvMP...32..296B 1424:1963RvMP...35..457E 1155: 916:Edmiston-Ruedenberg 126:Computation methods 61:Valence bond theory 49:linear combinations 1865:10.1007/BF01166933 1494:10.1007/BF00581477 1326:10.1007/BF01045967 1215: 1168: 1141: 1045: 952: 898: 799: 735: 636: 580: 487: 397: 346: 317: 290: 258: 132:molecular orbitals 116:Slater determinant 21:molecular orbitals 2061:Molecular physics 2051:Quantum chemistry 1956:10.1002/jcc.23281 1950:(17): 1456–1462. 1903:10.1002/jcc.20373 1819:10.1021/ct400687b 1795:(11): 4834–4843. 1763:10.1021/ct401016x 1679:10.1063/1.4769866 1607:10.1063/1.1681683 1529:10.1021/ct300473g 1459:10.1021/ct400793q 1453:(12): 5365–5372. 1393:978-0-470-01187-4 1132: 1115: 1095: 1084: 1021: 999: 978: 946: 940: 856: 830: 790: 781: 775: 693: 667: 627: 618: 612: 549: 466: 444: 423: 391: 343: 287: 227: 160: 38:Wannier functions 26:post-Hartree–Fock 2068: 2036: 2035: 2017: 2011: 2010: 1993:(6): 2720–2741. 1982: 1976: 1975: 1939: 1933: 1932: 1914: 1886: 1877: 1876: 1848: 1839: 1838: 1804: 1784: 1775: 1774: 1746: 1729: 1728: 1725:10.1063/1.456588 1700: 1691: 1690: 1656: 1647: 1634: 1631: 1625: 1624: 1618: 1610: 1582: 1576: 1575: 1547: 1541: 1540: 1523:(9): 3137–3146. 1512: 1506: 1505: 1477: 1471: 1470: 1442: 1436: 1435: 1407: 1398: 1397: 1381: 1371: 1365: 1364: 1355:(3–4): 319–330. 1344: 1338: 1337: 1309: 1303: 1300: 1183:Mulliken charges 1177: 1175: 1174: 1169: 1167: 1166: 1161: 1154: 1149: 1140: 1134: 1133: 1130: 1127: 1117: 1116: 1113: 1110: 1098: 1097: 1096: 1093: 1086: 1085: 1077: 1054: 1052: 1051: 1046: 1044: 1043: 1035: 1029: 1028: 1023: 1022: 1014: 1007: 1006: 1001: 1000: 992: 988: 980: 979: 971: 961: 959: 958: 953: 948: 947: 944: 942: 941: 933: 907: 905: 904: 899: 891: 886: 885: 873: 872: 863: 858: 857: 849: 846: 832: 831: 823: 817: 812: 811: 798: 783: 782: 779: 777: 776: 768: 744: 742: 741: 736: 731: 730: 721: 716: 715: 700: 695: 694: 686: 683: 669: 668: 660: 654: 649: 648: 635: 620: 619: 616: 614: 613: 605: 589: 587: 586: 581: 579: 578: 566: 565: 556: 551: 550: 542: 539: 534: 533: 517: 512: 496: 494: 493: 488: 486: 485: 480: 474: 473: 468: 467: 459: 452: 451: 446: 445: 437: 433: 425: 424: 416: 406: 404: 403: 398: 393: 392: 384: 355: 353: 352: 347: 345: 344: 336: 326: 324: 323: 318: 316: 315: 299: 297: 296: 291: 289: 288: 280: 267: 265: 264: 259: 254: 253: 244: 243: 234: 229: 228: 220: 217: 212: 211: 202: 201: 188: 183: 162: 161: 153: 83:σ and π symmetry 74:in ethylene and 2076: 2075: 2071: 2070: 2069: 2067: 2066: 2065: 2041: 2040: 2039: 2032: 2019: 2018: 2014: 1984: 1983: 1979: 1941: 1940: 1936: 1888: 1887: 1880: 1850: 1849: 1842: 1786: 1785: 1778: 1748: 1747: 1732: 1702: 1701: 1694: 1654: 1649: 1648: 1637: 1632: 1628: 1611: 1584: 1583: 1579: 1549: 1548: 1544: 1514: 1513: 1509: 1479: 1478: 1474: 1444: 1443: 1439: 1409: 1408: 1401: 1394: 1373: 1372: 1368: 1346: 1345: 1341: 1311: 1310: 1306: 1301: 1297: 1293: 1206: 1156: 1087: 1067: 1066: 1061: 1030: 1011: 989: 964: 963: 930: 922: 921: 918: 877: 864: 803: 765: 757: 756: 751: 722: 707: 640: 602: 594: 593: 570: 557: 525: 499: 498: 475: 456: 434: 409: 408: 374: 373: 366: 329: 328: 307: 302: 301: 273: 272: 245: 235: 203: 193: 143: 142: 128: 91: 12: 11: 5: 2074: 2072: 2064: 2063: 2058: 2053: 2043: 2042: 2038: 2037: 2031:978-0198558934 2030: 2012: 1977: 1934: 1897:(5): 596–608. 1878: 1859:(1): 169–178. 1840: 1776: 1757:(2): 642–649. 1730: 1692: 1665:(22): 244114. 1635: 1626: 1577: 1558:(2): 296–299. 1542: 1507: 1488:(2): 107–132. 1472: 1437: 1418:(3): 457–465. 1399: 1392: 1366: 1339: 1304: 1294: 1292: 1289: 1205: 1202: 1165: 1160: 1153: 1148: 1144: 1139: 1126: 1122: 1109: 1105: 1101: 1090: 1083: 1080: 1074: 1060: 1057: 1042: 1039: 1034: 1027: 1020: 1017: 1010: 1005: 998: 995: 987: 983: 977: 974: 951: 939: 936: 929: 917: 914: 897: 894: 890: 884: 880: 876: 871: 867: 862: 855: 852: 845: 841: 838: 835: 829: 826: 820: 816: 810: 806: 802: 797: 793: 789: 786: 774: 771: 764: 750: 747: 734: 729: 725: 720: 714: 710: 706: 703: 699: 692: 689: 682: 678: 675: 672: 666: 663: 657: 653: 647: 643: 639: 634: 630: 626: 623: 611: 608: 601: 577: 573: 569: 564: 560: 555: 548: 545: 538: 532: 528: 524: 521: 516: 511: 507: 484: 479: 472: 465: 462: 455: 450: 443: 440: 432: 428: 422: 419: 396: 390: 387: 381: 365: 362: 342: 339: 314: 310: 286: 283: 257: 252: 248: 242: 238: 233: 226: 223: 216: 210: 206: 200: 196: 192: 187: 182: 179: 176: 172: 168: 165: 159: 156: 150: 127: 124: 90: 87: 13: 10: 9: 6: 4: 3: 2: 2073: 2062: 2059: 2057: 2054: 2052: 2049: 2048: 2046: 2033: 2027: 2023: 2016: 2013: 2008: 2004: 2000: 1996: 1992: 1988: 1981: 1978: 1973: 1969: 1965: 1961: 1957: 1953: 1949: 1945: 1938: 1935: 1930: 1926: 1922: 1918: 1913: 1908: 1904: 1900: 1896: 1892: 1885: 1883: 1879: 1874: 1870: 1866: 1862: 1858: 1854: 1847: 1845: 1841: 1836: 1832: 1828: 1824: 1820: 1816: 1812: 1808: 1803: 1798: 1794: 1790: 1783: 1781: 1777: 1772: 1768: 1764: 1760: 1756: 1752: 1745: 1743: 1741: 1739: 1737: 1735: 1731: 1726: 1722: 1718: 1714: 1710: 1706: 1699: 1697: 1693: 1688: 1684: 1680: 1676: 1672: 1668: 1664: 1660: 1653: 1646: 1644: 1642: 1640: 1636: 1630: 1627: 1622: 1616: 1608: 1604: 1600: 1596: 1592: 1588: 1581: 1578: 1573: 1569: 1565: 1561: 1557: 1553: 1546: 1543: 1538: 1534: 1530: 1526: 1522: 1518: 1511: 1508: 1503: 1499: 1495: 1491: 1487: 1483: 1476: 1473: 1468: 1464: 1460: 1456: 1452: 1448: 1441: 1438: 1433: 1429: 1425: 1421: 1417: 1413: 1406: 1404: 1400: 1395: 1389: 1385: 1380: 1379: 1370: 1367: 1362: 1358: 1354: 1350: 1343: 1340: 1335: 1331: 1327: 1323: 1319: 1315: 1308: 1305: 1299: 1296: 1290: 1288: 1286: 1283: 1280: 1277: 1273: 1269: 1263: 1261: 1257: 1253: 1249: 1245: 1241: 1236: 1232: 1228: 1224: 1220: 1210: 1203: 1201: 1198: 1194: 1192: 1188: 1184: 1179: 1163: 1151: 1146: 1142: 1124: 1120: 1107: 1103: 1099: 1078: 1064: 1058: 1056: 1040: 1037: 1025: 1015: 1008: 1003: 993: 981: 972: 934: 915: 913: 909: 892: 882: 869: 865: 850: 839: 833: 824: 808: 804: 795: 791: 787: 769: 754: 749:Fourth moment 748: 746: 727: 723: 712: 701: 687: 676: 670: 661: 645: 641: 632: 628: 624: 606: 591: 575: 562: 558: 543: 530: 526: 514: 509: 505: 482: 470: 460: 453: 448: 438: 426: 417: 385: 371: 363: 361: 357: 337: 312: 308: 281: 269: 250: 246: 240: 236: 221: 208: 204: 198: 194: 185: 180: 177: 174: 170: 166: 154: 140: 137: 133: 125: 123: 119: 117: 113: 109: 105: 101: 97: 94:bond and two 88: 86: 84: 80: 77: 73: 69: 64: 62: 56: 54: 50: 46: 41: 39: 36:are known as 35: 31: 27: 22: 18: 2021: 2015: 1990: 1986: 1980: 1947: 1943: 1937: 1894: 1890: 1856: 1852: 1792: 1788: 1754: 1750: 1708: 1704: 1662: 1658: 1629: 1615:cite journal 1590: 1586: 1580: 1555: 1551: 1545: 1520: 1516: 1510: 1485: 1481: 1475: 1450: 1446: 1440: 1415: 1411: 1377: 1369: 1352: 1348: 1342: 1320:(1): 55–62. 1317: 1313: 1307: 1298: 1281: 1275: 1264: 1259: 1255: 1251: 1247: 1243: 1239: 1219:valence bond 1216: 1199: 1195: 1185:, which are 1180: 1065: 1062: 919: 910: 755: 752: 592: 367: 358: 270: 141: 129: 120: 108:wavefunction 106:. The total 103: 99: 95: 92: 75: 65: 57: 42: 16: 15: 1912:11336/74084 1711:(9): 4916. 1227:aromaticity 1059:Pipek-Mezey 364:Foster-Boys 2045:Categories 1291:References 1268:lone pairs 130:Localized 114:such as a 79:lone pairs 76:rabbit ear 72:bent bonds 1802:1306.6884 1279:lone pair 1213:cartoons. 1121:∑ 1104:∑ 1089:⟩ 1082:^ 1073:⟨ 1038:− 1019:→ 1009:− 997:→ 976:^ 950:⟩ 938:^ 928:⟨ 896:⟩ 875:⟩ 866:ϕ 854:^ 837:⟨ 834:− 828:^ 805:ϕ 801:⟨ 792:∑ 785:⟩ 773:^ 763:⟨ 733:⟩ 724:ϕ 705:⟩ 691:^ 674:⟨ 671:− 665:^ 642:ϕ 638:⟨ 629:∑ 622:⟩ 610:^ 600:⟨ 568:⟩ 559:ϕ 547:→ 527:ϕ 523:⟨ 506:∑ 464:→ 454:− 442:→ 421:^ 395:⟩ 389:^ 380:⟨ 341:^ 309:ϕ 285:^ 256:⟩ 247:ϕ 237:ϕ 225:^ 205:ϕ 195:ϕ 191:⟨ 171:∑ 164:⟩ 158:^ 149:⟨ 43:Standard 2007:27164445 1964:23553349 1921:16470667 1873:96731740 1835:17717923 1827:26583402 1771:26580041 1687:23248994 1537:26605725 1502:97499582 1467:26592274 1334:95235964 1272:carbenes 1131:orbitals 962:, where 407:, where 1972:2219961 1929:3659974 1807:Bibcode 1713:Bibcode 1667:Bibcode 1595:Bibcode 1560:Bibcode 1420:Bibcode 2028:  2005:  1970:  1962:  1927:  1919:  1871:  1833:  1825:  1769:  1685:  1535:  1500:  1465:  1390:  1386:–308. 1332:  271:where 1968:S2CID 1925:S2CID 1869:S2CID 1831:S2CID 1797:arXiv 1655:(PDF) 1498:S2CID 1330:S2CID 1254:< 1114:atoms 104:other 96:other 2026:ISBN 2003:PMID 1960:PMID 1917:PMID 1823:PMID 1767:PMID 1683:PMID 1621:link 1533:PMID 1463:PMID 1388:ISBN 370:Boys 100:same 19:are 1995:doi 1952:doi 1907:hdl 1899:doi 1861:doi 1815:doi 1759:doi 1721:doi 1675:doi 1663:137 1603:doi 1568:doi 1525:doi 1490:doi 1455:doi 1428:doi 1384:304 1357:doi 1353:152 1322:doi 1178:. 908:. 102:or 2047:: 2001:. 1991:12 1989:. 1966:. 1958:. 1948:34 1946:. 1923:. 1915:. 1905:. 1895:27 1893:. 1881:^ 1867:. 1855:. 1843:^ 1829:. 1821:. 1813:. 1805:. 1791:. 1779:^ 1765:. 1755:10 1753:. 1733:^ 1719:. 1709:90 1707:. 1695:^ 1681:. 1673:. 1661:. 1657:. 1638:^ 1617:}} 1613:{{ 1601:. 1591:61 1589:. 1566:. 1556:32 1554:. 1531:. 1519:. 1496:. 1486:62 1484:. 1461:. 1449:. 1426:. 1416:35 1414:. 1402:^ 1351:. 1328:. 1318:16 1316:. 1221:/ 1094:PM 1055:. 945:ER 780:FM 745:. 617:FB 356:. 268:, 85:. 63:. 55:. 40:. 2034:. 2009:. 1997:: 1974:. 1954:: 1931:. 1909:: 1901:: 1875:. 1863:: 1857:8 1837:. 1817:: 1809:: 1799:: 1793:9 1773:. 1761:: 1727:. 1723:: 1715:: 1689:. 1677:: 1669:: 1623:) 1609:. 1605:: 1597:: 1574:. 1570:: 1562:: 1539:. 1527:: 1521:8 1504:. 1492:: 1469:. 1457:: 1451:9 1434:. 1430:: 1422:: 1396:. 1363:. 1359:: 1336:. 1324:: 1260:n 1258:( 1256:p 1252:n 1248:n 1244:p 1240:n 1164:2 1159:| 1152:A 1147:i 1143:q 1138:| 1125:i 1108:A 1100:= 1079:L 1041:1 1033:| 1026:2 1016:r 1004:1 994:r 986:| 982:= 973:L 935:L 893:i 889:| 883:4 879:) 870:i 861:| 851:x 844:| 840:i 825:x 819:( 815:| 809:i 796:i 788:= 770:L 728:i 719:| 713:2 709:) 702:i 698:| 688:x 681:| 677:i 662:x 656:( 652:| 646:i 633:i 625:= 607:L 576:2 572:] 563:i 554:| 544:r 537:| 531:i 520:[ 515:n 510:i 483:2 478:| 471:2 461:r 449:1 439:r 431:| 427:= 418:L 386:L 338:L 313:i 282:L 251:i 241:i 232:| 222:L 215:| 209:i 199:i 186:n 181:1 178:= 175:i 167:= 155:L

Index

molecular orbitals
post-Hartree–Fock
electron correlation
periodic boundary conditions
Wannier functions
ab initio quantum chemistry methods
linear combinations
unitary transformation
Valence bond theory
give different orbitals
bent bonds
lone pairs
σ and π symmetry
wavefunction
Pauli exclusion principle
Slater determinant
molecular orbitals
unitary transformation
Boys
Mulliken charges
mathematically ill defined
intrinsic bond orbitals

valence bond
orbital hybridization
aromaticity
Hückel molecular orbital theory
stereoelectronic effects
lone pairs
carbenes

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.