Knowledge (XXG)

Symmetric space

Source 📝

2578:, which is the maximum dimension of a subspace of the tangent space (to any point) on which the curvature is identically zero. The rank is always at least one, with equality if the sectional curvature is positive or negative. If the curvature is positive, the space is of compact type, and if negative, it is of noncompact type. The spaces of Euclidean type have rank equal to their dimension and are isometric to a Euclidean space of that dimension. Therefore, it remains to classify the irreducible, simply connected Riemannian symmetric spaces of compact and non-compact type. In both cases there are two classes. 9268: 55: 10437: 10087: 2523:
if it is not the product of two or more Riemannian symmetric spaces. It can then be shown that any simply connected Riemannian symmetric space is a Riemannian product of irreducible ones. Therefore, we may further restrict ourselves to classifying the irreducible, simply connected Riemannian
9091: 1043:
Locally Riemannian symmetric spaces that are not Riemannian symmetric may be constructed as quotients of Riemannian symmetric spaces by discrete groups of isometries with no fixed points, and as open subsets of (locally) Riemannian symmetric spaces.
10308: 9885: 10521:
on the tangent space at the identity coset. Thus the Hermitian symmetric spaces are easily read off of the classification. In both the compact and the non-compact cases it turns out that there are four infinite series, namely AIII, BDI with
9411: 1593: 10181: 6102:
The classification of Riemannian symmetric spaces does not extend readily to the general case for the simple reason that there is no general splitting of a symmetric space into a product of irreducibles. Here a symmetric space
10574:. Thus the quaternion-Kähler symmetric spaces are easily read off from the classification. In both the compact and the non-compact cases it turns out that there is exactly one for each complex simple Lie group, namely AI with 9748:, as corresponds to the transpose for the orthogonal groups and the Hermitian conjugate for the unitary groups. It is a linear functional, and it is self-adjoint, and so one concludes that there is an orthonormal basis 10502:. Some examples are complex vector spaces and complex projective spaces, both with their usual Riemannian metric, and the complex unit balls with suitable metrics so that they become complete and Riemannian symmetric. 2337: 6093:
is a symmetric space). Such manifolds can also be described as those affine manifolds whose geodesic symmetries are all globally defined affine diffeomorphisms, generalizing the Riemannian and pseudo-Riemannian case.
6280:
is semisimple. This is the analogue of the Riemannian dichotomy between Euclidean spaces and those of compact or noncompact type, and it motivated M. Berger to classify semisimple symmetric spaces (i.e., those with
9263:{\displaystyle \langle X,Y\rangle _{\mathfrak {g}}={\begin{cases}\langle X,Y\rangle _{p}\quad &X,Y\in T_{p}M\cong {\mathfrak {m}}\\-B(X,Y)\quad &X,Y\in {\mathfrak {h}}\\0&{\mbox{otherwise}}\end{cases}}} 6156: 3262: 1460: 2063: 9486: 5267: 697:
In geometric terms, a complete, simply connected Riemannian manifold is a symmetric space if and only if its curvature tensor is invariant under parallel transport. More generally, a Riemannian manifold
4897: 4506: 4024: 3472: 2170:. Conversely, symmetric spaces with compact isotropy group are Riemannian symmetric spaces, although not necessarily in a unique way. To obtain a Riemannian symmetric space structure we need to fix a 5596: 4316: 5986: 5506: 5460: 5323: 5166: 5120: 4953: 4680: 4563: 4416: 4370: 1267: 9552: 9310: 2729:
Specializing to the Riemannian symmetric spaces of class A and compact type, Cartan found that there are the following seven infinite series and twelve exceptional Riemannian symmetric spaces
4983: 9648: 10707:, in Representation Theory and Automorphic Forms: Instructional Conference, International Centre for Mathematical Sciences, March 1996, Edinburgh, Scotland, American Mathematical Society, 9683: 5406: 5066: 9874: 4799: 4218: 933: 973:
if its geodesic symmetries are in fact isometric. This is equivalent to the vanishing of the covariant derivative of the curvature tensor. A locally symmetric space is said to be a
2721:
In both class A and class B there is thus a correspondence between symmetric spaces of compact type and non-compact type. This is known as duality for Riemannian symmetric spaces.
10529:, DIII and CI, and two exceptional spaces, namely EIII and EVII. The non-compact Hermitian symmetric spaces can be realized as bounded symmetric domains in complex vector spaces. 5744: 3968: 3416: 3201: 2149: 9792: 6679: 6621: 6586: 6523: 6433: 3620: 3005: 10432:{\displaystyle \langle \cdot ,\cdot \rangle ={\frac {1}{\lambda _{1}}}\left.B\right|_{{\mathfrak {m}}_{1}}+\cdots +{\frac {1}{\lambda _{d}}}\left.B\right|_{{\mathfrak {m}}_{d}}} 5856: 4131: 3799: 3576: 3369: 3041: 2846: 2810: 10082:{\displaystyle \langle Y_{i}^{\#},Y_{j}\rangle =\lambda _{i}\langle Y_{i},Y_{j}\rangle =B(Y_{i},Y_{j})=\langle Y_{j}^{\#},Y_{i}\rangle =\lambda _{j}\langle Y_{j},Y_{i}\rangle } 9445: 5786: 5668: 5636: 4712: 3832: 3758: 3653: 3153: 9742: 3920: 2960: 2151:
see the definition and following proposition on page 209, chapter IV, section 3 in Helgason's Differential Geometry, Lie Groups, and Symmetric Spaces for further information.
10300: 10114: 9816: 9707: 9585: 9518: 6547: 6457: 6402: 6374: 6327: 6303: 6278: 6235: 6211: 6183: 1871: 1847: 1819: 1792: 1768: 1740: 1716: 1692: 1668: 1644: 1620: 1409: 1381: 1349: 1313: 2422:, and then performs these two constructions in sequence, then the Riemannian symmetric space yielded is isometric to the original one. This shows that the "algebraic data" ( 5914: 5889: 2902: 874: 3092: 2105: 4087: 3532: 3325: 472: 10276: 5820: 5702: 5540: 5357: 5200: 5017: 4841: 4746: 4626: 4597: 4450: 4260: 4165: 9340: 3868: 3689: 2698:
is its maximal compact subgroup. Each such example has a corresponding example of compact type, by considering a maximal compact subgroup of the complexification of
1119: 750: 9345: 4051: 3289: 3119: 2929: 1471: 797:
Riemannian symmetric spaces arise in a wide variety of situations in both mathematics and physics. Their central role in the theory of holonomy was discovered by
520: 10247: 10122: 3496: 10480:
of a Riemannian manifold at a point acts irreducibly on the tangent space, then either the manifold is a locally Riemannian symmetric space, or it is in one of
3889: 6709:
The following table indexes the real symmetric spaces by complex symmetric spaces and real forms, for each classical and exceptional complex simple Lie group.
3724: 525: 756:, since any geodesic can be extended indefinitely via symmetries about the endpoints). Both descriptions can also naturally be extended to the setting of 9045:
An account of weakly symmetric spaces and their classification by Akhiezer and Vinberg, based on the classification of periodic automorphisms of complex
515: 510: 10446:
the spectrum of the hydrogen atom, with the eigenvalues of the Killing form corresponding to different values of the angular momentum of an orbital (
330: 2690:
The examples of class A are completely described by the classification of noncompact simply connected real simple Lie groups. For non-compact type,
1746:, but there are many reductive homogeneous spaces which are not symmetric spaces. The key feature of symmetric spaces is the third condition that 594: 477: 5934:
construction. The irreducible compact Riemannian symmetric spaces are, up to finite covers, either a compact simple Lie group, a Grassmannian, a
6638:
The classification therefore reduces to the classification of commuting pairs of antilinear involutions of a complex Lie algebra. The composite
10498:
A Riemannian symmetric space that is additionally equipped with a parallel complex structure compatible with the Riemannian metric is called a
2592:
is either the product of a compact simple Lie group with itself (compact type), or a complexification of such a Lie group (non-compact type).
11035: 10849: 10712: 8964:
Selberg's definition can also be phrased equivalently in terms of a generalization of geodesic symmetry. It is required that for every point
990: 10928: 6117: 3207: 1421: 625: 10548: 10538: 2491:
of a Riemannian symmetric space is again Riemannian symmetric, and the covering map is described by dividing the connected isometry group
2706:. More directly, the examples of compact type are classified by involutive automorphisms of compact simply connected simple Lie groups 2249: 1079:
of genus greater than 1 (with its usual metric of constant curvature −1) is a locally symmetric space but not a symmetric space.
2504: 1998: 10938: 10890: 10867: 10784: 10762: 11004:(1956), "Harmonic analysis and discontinuous groups in weakly symmetric riemannian spaces, with applications to Dirichlet series", 9450: 6305:
semisimple) and determine which of these are irreducible. The latter question is more subtle than in the Riemannian case: even if
5206: 487: 10633: 33: 4847: 4456: 3974: 3422: 5546: 4266: 11053: 5945: 5465: 5419: 5282: 5125: 5079: 4912: 4639: 4522: 4375: 4329: 2745:, together with a geometric interpretation, if readily available. The labelling of these spaces is the one given by Cartan. 1203: 801:. They are important objects of study in representation theory and harmonic analysis as well as in differential geometry. 482: 462: 9520:
can be further factored into eigenspaces classified by the Killing form. This is accomplished by defining an adjoint map
1291:
fixes the identity element, and hence, by differentiating at the identity, it induces an automorphism of the Lie algebra
11058: 9523: 427: 335: 9276: 11068: 4958: 1958:. This action is faithful (e.g., by a theorem of Kostant, any isometry in the identity component is determined by its 1743: 1121:, which is symmetric. The lens spaces are quotients of the 3-sphere by a discrete isometry that has no fixed points. 9593: 10900: 5939: 9656: 6186: 5363: 5277: 5023: 4907: 1412: 757: 651: 467: 9824: 4752: 4171: 10571: 10499: 10493: 2451: 7711:
to be the identity involution (indicated by a dash). In the above tables this is implicitly covered by the case
879: 10613: 10607: 6352:. Any semisimple symmetric space is a product of symmetric spaces of this form with symmetric spaces such that 6082: 6009: 5931: 2069: 1165: 783: 618: 102: 10547:) isomorphic to the imaginary quaternions at each point, and compatible with the Riemannian metric, is called 5935: 5754: 4517: 10881:
Groups and Geometric Analysis: Integral Geometry, Invariant Differential Operators, and Spherical Functions
9046: 8946: 8860: 5708: 3932: 3380: 3165: 2110: 422: 385: 353: 340: 9751: 6653: 6595: 6560: 6497: 6407: 3587: 2972: 6238: 5826: 4101: 3769: 3546: 3339: 3011: 2816: 2780: 2650: 687: 683: 454: 122: 10442:
In certain practical applications, this factorization can be interpreted as the spectrum of operators,
9420: 5759: 5641: 5609: 4685: 3805: 3731: 3626: 3126: 2495:
of the covering by a subgroup of its center. Therefore, we may suppose without loss of generality that
9712: 3896: 2936: 1598:
The first condition is automatic for any homogeneous space: it just says the infinitesimal stabilizer
10638: 10281: 10095: 9797: 9688: 9557: 9499: 6528: 6438: 6383: 6355: 6308: 6284: 6259: 6216: 6192: 6164: 6037: 1852: 1828: 1800: 1773: 1749: 1721: 1697: 1673: 1649: 1625: 1601: 1390: 1362: 1330: 1294: 1125: 1002: 82: 72: 9127: 11063: 6650:
determines a real form. From this it is easy to construct tables of symmetric spaces for any given
2628: 2557: 667: 655: 647: 611: 599: 440: 270: 10457:
Classification of symmetric spaces proceeds based on whether or not the Killing form is definite.
5897: 5872: 2852: 1068:, each with their standard Riemannian metrics. More examples are provided by compact, semi-simple 844: 10990: 7707:
For exceptional simple Lie groups, the Riemannian case is included explicitly below, by allowing
6086: 6051:
Symmetric and locally symmetric spaces in general can be regarded as affine symmetric spaces. If
6025: 3047: 2083: 663: 371: 361: 2637:
The compact simply connected Lie groups are the universal covers of the classical Lie groups SO(
6376:
is simple. It remains to describe the latter case. For this, one needs to classify involutions
4057: 3502: 3295: 11031: 10934: 10886: 10863: 10845: 10780: 10758: 10708: 10648: 6698: 6070: 1021: 753: 691: 550: 435: 398: 288: 10543:
A Riemannian symmetric space that is additionally equipped with a parallel subbundle of End(T
10255: 9406:{\displaystyle B(X,Y)=\operatorname {trace} (\operatorname {ad} X\circ \operatorname {ad} Y)} 5797: 5679: 5517: 5334: 5177: 4994: 4818: 4723: 4603: 4574: 4427: 4237: 4142: 10982: 10915: 10827: 10805: 10733: 10692: 10621: 10451: 9315: 5930:) uniformly classifies the Riemannian symmetric spaces, both compact and non-compact, via a 3838: 3659: 2596: 1588:{\displaystyle \subset {\mathfrak {h}},\;\subset {\mathfrak {m}},\;\subset {\mathfrak {h}}.} 1089: 1065: 1061: 1006: 725: 570: 250: 242: 234: 226: 218: 197: 187: 177: 167: 151: 132: 92: 10901:"A uniform description of compact symmetric spaces as Grassmannians using the magic square" 10454:
that can classify the different representations under which different orbitals transform.)
10176:{\displaystyle {\mathfrak {m}}={\mathfrak {m}}_{1}\oplus \cdots \oplus {\mathfrak {m}}_{d}} 5996:. A similar construction produces the irreducible non-compact Riemannian symmetric spaces. 2527:
The next step is to show that any irreducible, simply connected Riemannian symmetric space
10667:
Jurgen Jost, (2002) "Riemannian Geometry and Geometric Analysis", Third edition, Springer
10567: 6090: 6033: 6029: 2543: 2488: 1076: 1053: 555: 308: 293: 64: 4030: 3268: 3098: 2908: 17: 10302:
semisimple, so that the Killing form is non-degenerate, the metric likewise factorizes:
10192: 6040:(with zero, positive and negative curvature respectively). De Sitter space of dimension 6004:
An important class of symmetric spaces generalizing the Riemannian symmetric spaces are
3478: 10966: 10879: 10793: 10751: 10680: 10643: 10481: 10477: 10471: 8938: 6245: 6074: 3874: 2710:(up to conjugation). Such involutions extend to involutions of the complexification of 2483:) be the algebraic data associated to it. To classify the possible isometry classes of 2457: 1926: 1010: 998: 679: 575: 560: 393: 298: 6689:. This extends the compact/non-compact duality from the Riemannian case, where either 6459:
is a complex simple Lie algebra, and the corresponding symmetric spaces have the form
3695: 1032:). In fact, already the identity component of the isometry group acts transitively on 11047: 10721: 9070: 944: 798: 790:
This definition includes more than the Riemannian definition, and reduces to it when
283: 112: 11001: 10970: 10772: 10746: 10517:
contains a central circle. A quarter turn by this circle acts as multiplication by
9414: 9082: 8942: 8866: 6044:
may be identified with the 1-sheeted hyperboloid in a Minkowski space of dimension
6012:(nondegenerate instead of positive definite on each tangent space). In particular, 4091: 3536: 3329: 2073: 955:
need not be isometric, nor can it be extended, in general, from a neighbourhood of
580: 565: 366: 348: 278: 10705:
Harmonic analysis on semisimple symmetric spaces: A survey of some general results
1821:
with a direct sum decomposition satisfying these three conditions, the linear map
10617: 639: 406: 322: 46: 6089:. Conversely a manifold with such a connection is locally symmetric (i.e., its 977:
if in addition its geodesic symmetries can be extended to isometries on all of
10919: 6550: 5892: 1959: 1083: 1069: 675: 545: 411: 303: 10818:
Cartan, Élie (1927), "Sur une classe remarquable d'espaces de Riemann, II",
1894: 1141: 772: 42: 9417:. The minus sign appears because the Killing form is negative-definite on 2595:
The examples in class B are completely described by the classification of
6244:
However, the irreducible symmetric spaces can be classified. As shown by
5867: 671: 659: 10738: 763:
From the point of view of Lie theory, a symmetric space is the quotient
10994: 10944:
Chapter XI contains a good introduction to Riemannian symmetric spaces.
10832: 10810: 10696: 1877:
Riemannian symmetric spaces satisfy the Lie-theoretic characterization
502: 682:
to give a complete classification. Symmetric spaces commonly occur in
6340:
As in the Riemannian case there are semisimple symmetric spaces with
6151:{\displaystyle {\mathfrak {g}}={\mathfrak {h}}\oplus {\mathfrak {m}}} 3257:{\displaystyle \mathrm {S} (\mathrm {U} (p)\times \mathrm {U} (q))\,} 1455:{\displaystyle {\mathfrak {g}}={\mathfrak {h}}\oplus {\mathfrak {m}}} 1057: 1013:
locally Riemannian symmetric space is actually Riemannian symmetric.
10986: 1164:
of a typical point is an open subgroup of the fixed point set of an
54: 10703:
van den Ban, E. P.; Flensted-Jensen, M.; Schlichtkrull, H. (1997),
6681:, and furthermore, there is an obvious duality given by exchanging 1323:, whose square is the identity. It follows that the eigenvalues of 2456:
The algebraic description of Riemannian symmetric spaces enabled
2332:{\displaystyle s_{p}:M\to M,\quad h'K\mapsto h\sigma (h^{-1}h')K} 2627:
is its maximal compact subgroup. In both cases, the rank is the
10562:
is quaternion-Kähler if and only if isotropy representation of
2570:
has nonpositive (but not identically zero) sectional curvature.
2058:{\displaystyle \sigma :G\to G,h\mapsto s_{p}\circ h\circ s_{p}} 10796:(1926), "Sur une classe remarquable d'espaces de Riemann, I", 6237:
is not semisimple (or even reductive) in general, it can have
1086:
is locally symmetric but not symmetric, with the exception of
9481:{\displaystyle \langle \cdot ,\cdot \rangle _{\mathfrak {g}}} 6701:, i.e., its fixed point set is a maximal compact subalgebra. 6475:: these are the analogues of the Riemannian symmetric spaces 6020:
dimensional pseudo-Riemannian symmetric spaces of signature (
782:
that is (a connected component of) the invariant group of an
9061:
Some properties and forms of symmetric spaces can be noted.
8941:.) Selberg proved that weakly symmetric spaces give rise to 5262:{\displaystyle \mathrm {Spin} (16)/\{\pm \mathrm {vol} \}\,} 2519:
A simply connected Riemannian symmetric space is said to be
1905:
is Riemannian homogeneous). Therefore, if we fix some point
10844:, CBMS Regional Conference, American Mathematical Society, 10683:(1999), "Weakly symmetric spaces and spherical varieties", 10403: 10349: 9256: 8869:
extended Cartan's definition of symmetric space to that of
29:(pseudo-)Riemannian manifold whose geodesics are reversible 2186:: such an inner product always exists by averaging, since 9879:
These are orthogonal with respect to the metric, in that
6065:
is a symmetric space, then Nomizu showed that there is a
4892:{\displaystyle \mathrm {SO} (12)\cdot \mathrm {SU} (2)\,} 4501:{\displaystyle \mathrm {SO} (10)\cdot \mathrm {SO} (2)\,} 4019:{\displaystyle \mathrm {Sp} (p)\times \mathrm {Sp} (q)\,} 3467:{\displaystyle \mathrm {SO} (p)\times \mathrm {SO} (q)\,} 2542:
has vanishing curvature, and is therefore isometric to a
706:) is said to be symmetric if and only if, for each point 666:
about every point. This can be studied with the tools of
10777:
Essays in the History of Lie Groups and Algebraic Groups
5591:{\displaystyle \mathrm {Sp} (3)\cdot \mathrm {SU} (2)\,} 4311:{\displaystyle \mathrm {SU} (6)\cdot \mathrm {SU} (2)\,} 1885:
is a Riemannian symmetric space, the identity component
6248:, there is a dichotomy: an irreducible symmetric space 5981:{\displaystyle (\mathbf {A} \otimes \mathbf {B} )^{n},} 5501:{\displaystyle (\mathbb {H} \otimes \mathbb {O} )P^{2}} 5455:{\displaystyle (\mathbb {O} \otimes \mathbb {O} )P^{2}} 5318:{\displaystyle (\mathbb {O} \otimes \mathbb {O} )P^{2}} 5161:{\displaystyle (\mathbb {C} \otimes \mathbb {O} )P^{2}} 5115:{\displaystyle (\mathbb {H} \otimes \mathbb {O} )P^{2}} 4948:{\displaystyle (\mathbb {H} \otimes \mathbb {O} )P^{2}} 4675:{\displaystyle (\mathbb {C} \otimes \mathbb {O} )P^{2}} 4558:{\displaystyle (\mathbb {C} \otimes \mathbb {O} )P^{2}} 4411:{\displaystyle (\mathbb {C} \otimes \mathbb {H} )P^{2}} 4365:{\displaystyle (\mathbb {C} \otimes \mathbb {O} )P^{2}} 2714:, and these in turn classify non-compact real forms of 10959:
Symmetric spaces II: Compact Spaces and Classification
10860:
Differential geometry, Lie groups and symmetric spaces
10092:
since the Killing form is symmetric. This factorizes
9744:
is the Killing form. This map is sometimes called the
9247: 10311: 10284: 10258: 10195: 10125: 10098: 9888: 9827: 9800: 9754: 9715: 9691: 9659: 9596: 9560: 9526: 9502: 9453: 9423: 9348: 9318: 9279: 9094: 6656: 6598: 6563: 6531: 6500: 6441: 6410: 6386: 6358: 6311: 6287: 6262: 6219: 6195: 6167: 6120: 5948: 5900: 5875: 5829: 5800: 5762: 5711: 5682: 5644: 5612: 5549: 5520: 5468: 5422: 5366: 5337: 5285: 5209: 5180: 5128: 5082: 5026: 4997: 4961: 4915: 4850: 4821: 4755: 4726: 4688: 4642: 4606: 4577: 4525: 4459: 4430: 4378: 4332: 4269: 4240: 4174: 4145: 4104: 4060: 4033: 3977: 3935: 3899: 3877: 3841: 3808: 3772: 3734: 3698: 3662: 3629: 3590: 3549: 3505: 3481: 3425: 3383: 3342: 3298: 3271: 3210: 3168: 3129: 3101: 3050: 3014: 2975: 2939: 2911: 2855: 2819: 2783: 2460:
to obtain a complete classification of them in 1926.
2252: 2113: 2086: 2001: 1855: 1831: 1803: 1776: 1752: 1724: 1700: 1676: 1652: 1628: 1604: 1474: 1424: 1393: 1365: 1333: 1297: 1206: 1092: 882: 847: 728: 10971:"Invariant affine connections on homogeneous spaces" 8881:
with a transitive connected Lie group of isometries
2107:
and its identity component (hence an open subgroup)
1262:{\displaystyle G^{\sigma }=\{g\in G:\sigma (g)=g\}.} 10726:
Annales Scientifiques de l'École Normale Supérieure
2623:is a simply connected complex simple Lie group and 837:and reverses geodesics through that point, i.e. if 10878: 10750: 10624:can be interpreted as reductive symmetric spaces. 10431: 10294: 10270: 10241: 10175: 10108: 10081: 9868: 9810: 9786: 9736: 9701: 9677: 9642: 9579: 9547:{\displaystyle {\mathfrak {m}}\to {\mathfrak {m}}} 9546: 9512: 9480: 9439: 9405: 9334: 9304: 9262: 6673: 6615: 6580: 6549:may be viewed as the fixed point set of a complex 6541: 6517: 6451: 6427: 6396: 6368: 6321: 6297: 6272: 6229: 6205: 6177: 6150: 6008:, in which the Riemannian metric is replaced by a 5980: 5908: 5883: 5850: 5814: 5780: 5738: 5696: 5662: 5630: 5590: 5534: 5500: 5454: 5400: 5351: 5317: 5261: 5194: 5160: 5114: 5060: 5011: 4977: 4947: 4891: 4835: 4793: 4740: 4706: 4674: 4620: 4591: 4557: 4500: 4444: 4410: 4364: 4310: 4254: 4212: 4159: 4125: 4081: 4045: 4018: 3962: 3914: 3883: 3862: 3826: 3793: 3752: 3718: 3683: 3647: 3614: 3570: 3526: 3490: 3466: 3410: 3363: 3319: 3283: 3256: 3195: 3147: 3113: 3086: 3035: 2999: 2954: 2923: 2896: 2840: 2804: 2331: 2143: 2099: 2057: 1865: 1841: 1813: 1786: 1762: 1734: 1710: 1686: 1662: 1638: 1614: 1587: 1454: 1403: 1375: 1343: 1307: 1261: 1124:An example of a non-Riemannian symmetric space is 1113: 1052:Basic examples of Riemannian symmetric spaces are 927: 868: 744: 10873:The standard book on Riemannian symmetric spaces. 10582: = 2 (these are isomorphic), BDI with 9305:{\displaystyle \langle \cdot ,\cdot \rangle _{p}} 2174:-invariant inner product on the tangent space to 10768:Contains a compact introduction and many tables. 4978:{\displaystyle \mathbb {H} \otimes \mathbb {O} } 4061: 3506: 3299: 2619:is the diagonal subgroup. For non-compact type, 2603:is a compact simply connected simple Lie group, 2418:If one starts with a Riemannian symmetric space 1280:(including, of course, the identity component). 1072:equipped with a bi-invariant Riemannian metric. 752:as minus the identity (every symmetric space is 473:Representation theory of semisimple Lie algebras 10930:Foundations of Differential Geometry, Volume II 10899:Huang, Yongdong; Leung, Naichung Conan (2010). 10724:(1957), "Les espaces symétriques noncompacts", 9643:{\displaystyle \langle X,Y^{\#}\rangle =B(X,Y)} 10927:Kobayashi, Shoshichi; Nomizu, Katsumi (1996), 10598: = 1, EII, EVI, EIX, FI and G. 6592:extends to a complex antilinear involution of 10820:Bulletin de la Société Mathématique de France 10798:Bulletin de la Société Mathématique de France 9678:{\displaystyle \langle \cdot ,\cdot \rangle } 5401:{\displaystyle E_{7}\cdot \mathrm {SU} (2)\,} 5061:{\displaystyle E_{6}\cdot \mathrm {SO} (2)\,} 2962:that leave the complex determinant invariant 2446:Classification of Riemannian symmetric spaces 1327:are ±1. The +1 eigenspace is the Lie algebra 619: 8: 10324: 10312: 10076: 10050: 10034: 10003: 9962: 9936: 9920: 9889: 9869:{\displaystyle Y_{i}^{\#}=\lambda _{i}Y_{i}} 9672: 9660: 9616: 9597: 9467: 9454: 9293: 9280: 9143: 9130: 9108: 9095: 8877:. These are defined as Riemannian manifolds 6646:determines a complex symmetric space, while 5255: 5238: 4794:{\displaystyle \mathrm {SU} (8)/\{\pm I\}\,} 4787: 4778: 4213:{\displaystyle \mathrm {Sp} (4)/\{\pm I\}\,} 4206: 4197: 2221:is Riemannian symmetric, consider any point 1253: 1220: 10842:Analysis on Non-Riemannian Symmetric Spaces 6627:and hence also a complex linear involution 6241:representations which are not irreducible. 2556:has nonnegative (but not identically zero) 2080:is contained between the fixed point group 1975:, hence compact. Moreover, if we denote by 670:, leading to consequences in the theory of 10566:contains an Sp(1) summand acting like the 6256:is either flat (i.e., an affine space) or 6024: − 1,1), are important in 5927: 3728:Space of orthogonal complex structures on 1966:is a subgroup of the orthogonal group of T 1548: 1511: 935:It follows that the derivative of the map 928:{\displaystyle f(\gamma (t))=\gamma (-t).} 626: 612: 511:Particle physics and representation theory 156: 53: 38: 10831: 10809: 10737: 10421: 10415: 10414: 10412: 10393: 10384: 10367: 10361: 10360: 10358: 10339: 10330: 10310: 10286: 10285: 10283: 10257: 10224: 10218: 10217: 10207: 10201: 10200: 10194: 10167: 10161: 10160: 10144: 10138: 10137: 10127: 10126: 10124: 10100: 10099: 10097: 10070: 10057: 10044: 10028: 10015: 10010: 9991: 9978: 9956: 9943: 9930: 9914: 9901: 9896: 9887: 9860: 9850: 9837: 9832: 9826: 9802: 9801: 9799: 9778: 9759: 9753: 9714: 9693: 9692: 9690: 9658: 9610: 9595: 9571: 9559: 9538: 9537: 9528: 9527: 9525: 9504: 9503: 9501: 9471: 9470: 9452: 9425: 9424: 9422: 9347: 9323: 9317: 9296: 9278: 9246: 9231: 9230: 9184: 9183: 9171: 9146: 9122: 9112: 9111: 9093: 6665: 6659: 6658: 6655: 6607: 6601: 6600: 6597: 6572: 6566: 6565: 6562: 6533: 6532: 6530: 6509: 6503: 6502: 6499: 6443: 6442: 6440: 6419: 6413: 6412: 6409: 6388: 6387: 6385: 6360: 6359: 6357: 6313: 6312: 6310: 6289: 6288: 6286: 6264: 6263: 6261: 6221: 6220: 6218: 6197: 6196: 6194: 6169: 6168: 6166: 6142: 6141: 6132: 6131: 6122: 6121: 6119: 5969: 5960: 5952: 5947: 5902: 5901: 5899: 5877: 5876: 5874: 5847: 5830: 5828: 5811: 5805: 5799: 5772: 5764: 5763: 5761: 5735: 5712: 5710: 5693: 5687: 5681: 5654: 5646: 5645: 5643: 5622: 5614: 5613: 5611: 5587: 5570: 5550: 5548: 5531: 5525: 5519: 5492: 5481: 5480: 5473: 5472: 5467: 5446: 5435: 5434: 5427: 5426: 5421: 5397: 5380: 5371: 5365: 5348: 5342: 5336: 5309: 5298: 5297: 5290: 5289: 5284: 5258: 5244: 5233: 5210: 5208: 5191: 5185: 5179: 5152: 5141: 5140: 5133: 5132: 5127: 5106: 5095: 5094: 5087: 5086: 5081: 5057: 5040: 5031: 5025: 5008: 5002: 4996: 4971: 4970: 4963: 4962: 4960: 4939: 4928: 4927: 4920: 4919: 4914: 4888: 4871: 4851: 4849: 4832: 4826: 4820: 4790: 4773: 4756: 4754: 4737: 4731: 4725: 4698: 4694: 4691: 4690: 4687: 4666: 4655: 4654: 4647: 4646: 4641: 4617: 4611: 4605: 4588: 4582: 4576: 4549: 4538: 4537: 4530: 4529: 4524: 4497: 4480: 4460: 4458: 4441: 4435: 4429: 4402: 4391: 4390: 4383: 4382: 4377: 4356: 4345: 4344: 4337: 4336: 4331: 4307: 4290: 4270: 4268: 4251: 4245: 4239: 4209: 4192: 4175: 4173: 4156: 4150: 4144: 4111: 4107: 4106: 4103: 4059: 4032: 4015: 3998: 3978: 3976: 3959: 3936: 3934: 3906: 3902: 3901: 3898: 3876: 3840: 3823: 3809: 3807: 3790: 3773: 3771: 3741: 3737: 3736: 3733: 3705: 3697: 3661: 3644: 3630: 3628: 3611: 3591: 3589: 3556: 3552: 3551: 3548: 3504: 3480: 3463: 3446: 3426: 3424: 3407: 3384: 3382: 3349: 3345: 3344: 3341: 3297: 3270: 3253: 3236: 3219: 3211: 3209: 3192: 3169: 3167: 3136: 3132: 3131: 3128: 3100: 3049: 3032: 3015: 3013: 2996: 2976: 2974: 2946: 2942: 2941: 2938: 2910: 2886: 2854: 2837: 2820: 2818: 2801: 2784: 2782: 2306: 2257: 2251: 2137: 2131: 2121: 2112: 2091: 2085: 2049: 2030: 2000: 1857: 1856: 1854: 1833: 1832: 1830: 1805: 1804: 1802: 1778: 1777: 1775: 1754: 1753: 1751: 1726: 1725: 1723: 1702: 1701: 1699: 1678: 1677: 1675: 1654: 1653: 1651: 1630: 1629: 1627: 1606: 1605: 1603: 1576: 1575: 1563: 1562: 1553: 1552: 1539: 1538: 1526: 1525: 1516: 1515: 1502: 1501: 1489: 1488: 1479: 1478: 1473: 1446: 1445: 1436: 1435: 1426: 1425: 1423: 1395: 1394: 1392: 1367: 1366: 1364: 1359:), and the −1 eigenspace will be denoted 1335: 1334: 1332: 1299: 1298: 1296: 1211: 1205: 1197:is an open subgroup of the invariant set 1091: 881: 846: 733: 727: 8673: 8349: 7976: 7812: 7720: 7431: 7152: 6711: 2747: 2531:is of one of the following three types: 1276:is open, it is a union of components of 991:Cartan–Ambrose–Hicks theorem 11028:Harmonic Analysis on Commutative Spaces 10660: 2463:For a given Riemannian symmetric space 2438:) completely describe the structure of 813:be a connected Riemannian manifold and 478:Representations of classical Lie groups 210: 159: 41: 9077:can be lifted to a scalar product on 8937:was later shown to be unnecessary by 3155:compatible with the Hermitian metric 7: 9312:is the Riemannian metric defined on 9050: 8334: / SO(9,1)×SO(1,1) 8143: / SO(5,5)×SO(1,1) 5739:{\displaystyle \mathrm {Spin} (9)\,} 3963:{\displaystyle \mathrm {Sp} (p+q)\,} 3411:{\displaystyle \mathrm {SO} (p+q)\,} 3196:{\displaystyle \mathrm {SU} (p+q)\,} 3123:Space of quaternionic structures on 2144:{\displaystyle (G^{\sigma })_{o}\,,} 1024:(meaning that the isometry group of 951:. On a general Riemannian manifold, 331:Lie group–Lie algebra correspondence 10416: 10362: 10287: 10219: 10202: 10162: 10139: 10128: 10101: 9803: 9787:{\displaystyle Y_{1},\ldots ,Y_{n}} 9694: 9539: 9529: 9505: 9472: 9426: 9232: 9185: 9113: 6674:{\displaystyle {\mathfrak {g}}^{c}} 6660: 6616:{\displaystyle {\mathfrak {g}}^{c}} 6602: 6581:{\displaystyle {\mathfrak {g}}^{c}} 6567: 6534: 6518:{\displaystyle {\mathfrak {g}}^{c}} 6504: 6444: 6428:{\displaystyle {\mathfrak {g}}^{c}} 6414: 6389: 6361: 6314: 6290: 6265: 6222: 6198: 6170: 6143: 6133: 6123: 3615:{\displaystyle \mathrm {SO} (2n)\,} 3000:{\displaystyle \mathrm {SU} (2n)\,} 2499:is simply connected. (This implies 1941:. By differentiating the action at 1858: 1834: 1806: 1779: 1755: 1727: 1703: 1679: 1655: 1631: 1607: 1577: 1564: 1554: 1540: 1527: 1517: 1503: 1490: 1480: 1447: 1437: 1427: 1396: 1368: 1336: 1300: 10950:Symmetric spaces I: General Theory 10933:, Wiley Classics Library edition, 10533:Quaternion-Kähler symmetric spaces 10016: 9902: 9838: 9611: 9572: 8855:Weakly symmetric Riemannian spaces 8633: / SO(10,2)×SL(2, 8555: / SO(8,4)×SU(2) 8535: / SO(12)× Sp(1) 8425: / SO(12)× Sp(1) 8275: / SO(8,2)×SO(2) 8258: / SU(4,2)×SU(2) 8209: / SO(6,4)×SO(2) 8192: / SU(4,2)×SU(2) 7962: / Sp(2,1)×Sp(1) 7925: / Sp(2,1)×Sp(1) 6028:, the most notable examples being 6006:pseudo-Riemannian symmetric spaces 5851:{\displaystyle \mathrm {SO} (4)\,} 5834: 5831: 5722: 5719: 5716: 5713: 5574: 5571: 5554: 5551: 5384: 5381: 5251: 5248: 5245: 5220: 5217: 5214: 5211: 5044: 5041: 4875: 4872: 4855: 4852: 4760: 4757: 4484: 4481: 4464: 4461: 4294: 4291: 4274: 4271: 4179: 4176: 4126:{\displaystyle \mathbb {H} ^{p+q}} 4002: 3999: 3982: 3979: 3940: 3937: 3922:compatible with the inner product 3810: 3794:{\displaystyle \mathrm {Sp} (n)\,} 3777: 3774: 3631: 3595: 3592: 3571:{\displaystyle \mathbb {R} ^{p+q}} 3450: 3447: 3430: 3427: 3388: 3385: 3364:{\displaystyle \mathbb {C} ^{p+q}} 3237: 3220: 3212: 3173: 3170: 3036:{\displaystyle \mathrm {Sp} (n)\,} 3019: 3016: 2980: 2977: 2841:{\displaystyle \mathrm {SO} (n)\,} 2824: 2821: 2805:{\displaystyle \mathrm {SU} (n)\,} 2788: 2785: 2737:. They are here given in terms of 2505:long exact sequence of a fibration 2407:is a geodesic symmetry and, since 1797:Conversely, given any Lie algebra 1646:. The second condition means that 1355:(since this is the Lie algebra of 943:is minus the identity map on the 25: 11030:, American Mathematical Society, 10779:, American Mathematical Society, 10549:quaternion-Kähler symmetric space 10539:Quaternion-Kähler symmetric space 10476:If the identity component of the 9440:{\displaystyle {\mathfrak {h}}~;} 8871:weakly symmetric Riemannian space 8485: / SO(6,6)×SL(2, 8264: / SU(5,1)×SL(2, 8244: / SO(10)×SO(2) 8198: / SU(3,3)×SL(2, 8069: / SO(10)×SO(2) 6073:(i.e. an affine connection whose 5781:{\displaystyle \mathbb {O} P^{2}} 5663:{\displaystyle \mathbb {H} P^{2}} 5631:{\displaystyle \mathbb {O} P^{2}} 4707:{\displaystyle \mathbb {OP} ^{2}} 3827:{\displaystyle \mathrm {U} (n)\,} 3753:{\displaystyle \mathbb {R} ^{2n}} 3648:{\displaystyle \mathrm {U} (n)\,} 3148:{\displaystyle \mathbb {C} ^{2n}} 2415:is a Riemannian symmetric space. 1984:: M → M the geodesic symmetry of 1945:we obtain an isometric action of 1917:is diffeomorphic to the quotient 1873:, is an involutive automorphism. 1016:Every Riemannian symmetric space 10840:Flensted-Jensen, Mogens (1986), 10634:Orthogonal symmetric Lie algebra 9737:{\displaystyle B(\cdot ,\cdot )} 8168: / SU(6)×SU(2) 8062: / SU(6)×SU(2) 7902: / Sp(3)×Sp(1) 7874: / Sp(3)×Sp(1) 7790: / SU(2)×SU(2) 7771: / SU(2)×SU(2) 6487:a complex simple Lie group, and 5961: 5953: 5606:Space of symmetric subspaces of 5416:Space of symmetric subspaces of 5076:Space of symmetric subspaces of 4636:Space of symmetric subspaces of 4326:Space of symmetric subspaces of 3915:{\displaystyle \mathbb {H} ^{n}} 2955:{\displaystyle \mathbb {C} ^{n}} 2574:A more refined invariant is the 2389:equal to minus the identity on T 1742:. Thus any symmetric space is a 997:is locally Riemannian symmetric 722:and acting on the tangent space 34:Symmetric space (disambiguation) 10554:An irreducible symmetric space 10505:An irreducible symmetric space 10295:{\displaystyle {\mathfrak {g}}} 10109:{\displaystyle {\mathfrak {m}}} 9811:{\displaystyle {\mathfrak {m}}} 9702:{\displaystyle {\mathfrak {m}}} 9580:{\displaystyle Y\mapsto Y^{\#}} 9513:{\displaystyle {\mathfrak {m}}} 9215: 9152: 6542:{\displaystyle {\mathfrak {g}}} 6525:is simple. The real subalgebra 6452:{\displaystyle {\mathfrak {g}}} 6397:{\displaystyle {\mathfrak {g}}} 6380:of a (real) simple Lie algebra 6369:{\displaystyle {\mathfrak {g}}} 6322:{\displaystyle {\mathfrak {g}}} 6298:{\displaystyle {\mathfrak {g}}} 6273:{\displaystyle {\mathfrak {g}}} 6230:{\displaystyle {\mathfrak {h}}} 6206:{\displaystyle {\mathfrak {h}}} 6178:{\displaystyle {\mathfrak {m}}} 3893:Space of complex structures on 2278: 2190:is compact, and by acting with 1866:{\displaystyle {\mathfrak {m}}} 1842:{\displaystyle {\mathfrak {h}}} 1814:{\displaystyle {\mathfrak {g}}} 1787:{\displaystyle {\mathfrak {h}}} 1763:{\displaystyle {\mathfrak {m}}} 1735:{\displaystyle {\mathfrak {g}}} 1711:{\displaystyle {\mathfrak {h}}} 1687:{\displaystyle {\mathfrak {h}}} 1663:{\displaystyle {\mathfrak {m}}} 1639:{\displaystyle {\mathfrak {g}}} 1615:{\displaystyle {\mathfrak {h}}} 1404:{\displaystyle {\mathfrak {g}}} 1376:{\displaystyle {\mathfrak {m}}} 1344:{\displaystyle {\mathfrak {h}}} 1308:{\displaystyle {\mathfrak {g}}} 10461:Applications and special cases 10230: 10196: 9997: 9971: 9731: 9719: 9637: 9625: 9564: 9534: 9400: 9376: 9364: 9352: 9212: 9200: 5966: 5949: 5940:double Lagrangian Grassmannian 5926:A more modern classification ( 5844: 5838: 5732: 5726: 5584: 5578: 5564: 5558: 5485: 5469: 5439: 5423: 5394: 5388: 5302: 5286: 5230: 5224: 5145: 5129: 5099: 5083: 5054: 5048: 4932: 4916: 4885: 4879: 4865: 4859: 4770: 4764: 4659: 4643: 4542: 4526: 4494: 4488: 4474: 4468: 4395: 4379: 4349: 4333: 4304: 4298: 4284: 4278: 4189: 4183: 4076: 4064: 4012: 4006: 3992: 3986: 3956: 3944: 3857: 3845: 3820: 3814: 3787: 3781: 3713: 3699: 3678: 3666: 3641: 3635: 3608: 3599: 3521: 3509: 3460: 3454: 3440: 3434: 3404: 3392: 3314: 3302: 3250: 3247: 3241: 3230: 3224: 3216: 3189: 3177: 3081: 3066: 3063: 3051: 3029: 3023: 2993: 2984: 2883: 2871: 2868: 2856: 2834: 2828: 2798: 2792: 2585:is a (real) simple Lie group; 2363:is an isometry with (clearly) 2323: 2299: 2290: 2269: 2166:with a compact isotropy group 2128: 2114: 2023: 2011: 1569: 1549: 1532: 1512: 1495: 1475: 1244: 1238: 1108: 1096: 919: 910: 901: 898: 892: 886: 857: 851: 714:, there exists an isometry of 526:Galilean group representations 521:Poincaré group representations 1: 10466:Symmetric spaces and holonomy 8929:. (Selberg's assumption that 6161:is said to be irreducible if 5988:for normed division algebras 2511:is connected by assumption.) 2198:-invariant Riemannian metric 2076:such that the isotropy group 1005:, and furthermore that every 516:Lorentz group representations 483:Theorem of the highest weight 11019:Spaces of constant curvature 10513:is Hermitian if and only if 9685:is the Riemannian metric on 8945:, so that in particular the 8873:, or in current terminology 8817: / SO(12,4) or E 6491:a maximal compact subgroup. 5909:{\displaystyle \mathbb {H} } 5891:which are isomorphic to the 5884:{\displaystyle \mathbb {O} } 5866:Space of subalgebras of the 2933:Space of real structures on 2897:{\displaystyle (n-1)(n+2)/2} 971:locally Riemannian symmetric 869:{\displaystyle \gamma (0)=p} 11021:(5th ed.), McGraw–Hill 10877:Helgason, Sigurdur (1984), 10858:Helgason, Sigurdur (1978), 10669:(See section 5.3, page 256) 9085:. This is done by defining 9073:on the Riemannian manifold 8760: / SO(8,8) or E 6014:Lorentzian symmetric spaces 3087:{\displaystyle (n-1)(2n+1)} 2849: 2100:{\displaystyle G^{\sigma }} 1825:, equal to the identity on 1744:reductive homogeneous space 1020:is complete and Riemannian 758:pseudo-Riemannian manifolds 674:; or algebraically through 11085: 10605: 10536: 10491: 10488:Hermitian symmetric spaces 10469: 8858: 6337:might not be irreducible. 6187:irreducible representation 5278:Rosenfeld projective plane 4908:Rosenfeld projective plane 4098:-dimensional subspaces of 3543:-dimensional subspaces of 3336:-dimensional subspaces of 2449: 2380:and (by differentiating) d 2354:. Then one can check that 1849:and minus the identity on 975:(globally) symmetric space 652:pseudo-Riemannian manifold 468:Lie algebra representation 31: 10920:10.1007/s00208-010-0549-8 10590: = 4, CII with 10572:quaternionic vector space 10500:Hermitian symmetric space 10494:Hermitian symmetric space 10450:the Killing form being a 9081:by combining it with the 9065:Lifting the metric tensor 4082:{\displaystyle \min(p,q)} 3527:{\displaystyle \min(p,q)} 3320:{\displaystyle \min(p,q)} 2770:Geometric interpretation 2452:List of simple Lie groups 1889:of the isometry group of 1694:-invariant complement to 18:Locally symmetric variety 11026:Wolf, Joseph A. (2007), 11017:Wolf, Joseph A. (1999), 10614:Bott periodicity theorem 10608:Bott periodicity theorem 10602:Bott periodicity theorem 8961:) is multiplicity free. 8933:should be an element of 6069:-invariant torsion-free 6010:pseudo-Riemannian metric 6000:General symmetric spaces 5932:Freudenthal magic square 1001:its curvature tensor is 463:Lie group representation 11006:J. Indian Math. Society 10271:{\displaystyle i\neq j} 9047:semisimple Lie algebras 9042:is a symmetric space. 8980:, there is an isometry 8626: / SU(6,2) 8548: / SU(6,2) 8542: / SU(4,4) 8458: / SU(4,4) 8316: / Sp(3,1) 8251: / Sp(2,2) 8175: / Sp(3,1) 8101: / Sp(2,2) 7971: / SO(8,1) 7934: / SO(5,4) 5936:Lagrangian Grassmannian 5815:{\displaystyle G_{2}\,} 5755:Cayley projective plane 5697:{\displaystyle F_{4}\,} 5535:{\displaystyle F_{4}\,} 5352:{\displaystyle E_{8}\,} 5195:{\displaystyle E_{8}\,} 5012:{\displaystyle E_{7}\,} 4836:{\displaystyle E_{7}\,} 4741:{\displaystyle E_{7}\,} 4621:{\displaystyle F_{4}\,} 4592:{\displaystyle E_{6}\,} 4518:Cayley projective plane 4445:{\displaystyle E_{6}\,} 4255:{\displaystyle E_{6}\,} 4160:{\displaystyle E_{6}\,} 1897:acting transitively on 1622:is a Lie subalgebra of 1152:is a homogeneous space 488:Borel–Weil–Bott theorem 10747:Besse, Arthur Lancelot 10433: 10296: 10272: 10243: 10177: 10110: 10083: 9870: 9812: 9788: 9738: 9703: 9679: 9644: 9581: 9548: 9514: 9482: 9441: 9407: 9336: 9335:{\displaystyle T_{p}M} 9306: 9264: 8947:unitary representation 8875:weakly symmetric space 8861:Weakly symmetric space 8753: / SO(16) 8727: / SO(16) 6675: 6617: 6582: 6543: 6519: 6453: 6429: 6398: 6370: 6323: 6299: 6274: 6231: 6207: 6179: 6152: 6098:Classification results 5982: 5928:Huang & Leung 2010 5910: 5885: 5852: 5816: 5782: 5740: 5698: 5664: 5632: 5592: 5536: 5502: 5456: 5402: 5353: 5319: 5263: 5196: 5162: 5116: 5062: 5013: 4979: 4949: 4893: 4837: 4795: 4742: 4708: 4676: 4622: 4593: 4559: 4502: 4446: 4412: 4366: 4312: 4256: 4214: 4161: 4127: 4083: 4047: 4020: 3964: 3916: 3885: 3864: 3863:{\displaystyle n(n+1)} 3828: 3795: 3754: 3720: 3685: 3684:{\displaystyle n(n-1)} 3649: 3616: 3572: 3528: 3492: 3468: 3412: 3365: 3321: 3285: 3258: 3197: 3149: 3115: 3088: 3037: 3001: 2956: 2925: 2898: 2842: 2806: 2651:exceptional Lie groups 2487:, first note that the 2333: 2182:at the identity coset 2145: 2101: 2059: 1867: 1843: 1815: 1788: 1764: 1736: 1712: 1688: 1664: 1640: 1616: 1589: 1456: 1405: 1387:is an automorphism of 1377: 1345: 1309: 1283:As an automorphism of 1263: 1179:is an automorphism of 1115: 1114:{\displaystyle L(2,1)} 929: 870: 833:if it fixes the point 746: 745:{\displaystyle T_{p}M} 650:(or more generally, a 386:Semisimple Lie algebra 341:Adjoint representation 11054:Differential geometry 10957:Loos, Ottmar (1969), 10948:Loos, Ottmar (1969), 10908:Mathematische Annalen 10434: 10297: 10273: 10244: 10178: 10111: 10084: 9871: 9813: 9789: 9746:generalized transpose 9739: 9704: 9680: 9645: 9582: 9549: 9515: 9483: 9442: 9408: 9337: 9307: 9265: 8905:there is an isometry 8690: / SO(16, 8451: / SU(8) 8418: / SU(8) 8377: / SO(12, 8094: / Sp(4) 8055: / Sp(4) 8019: / SO(10, 7953: / SO(9) 7883: / SO(9) 6676: 6618: 6583: 6544: 6520: 6454: 6430: 6399: 6371: 6324: 6300: 6275: 6232: 6208: 6180: 6153: 5983: 5911: 5886: 5853: 5817: 5783: 5741: 5699: 5665: 5633: 5593: 5537: 5503: 5457: 5403: 5354: 5320: 5264: 5197: 5163: 5117: 5063: 5014: 4980: 4950: 4894: 4838: 4796: 4743: 4709: 4677: 4623: 4594: 4560: 4503: 4447: 4413: 4367: 4313: 4257: 4215: 4162: 4128: 4084: 4048: 4021: 3965: 3917: 3886: 3865: 3829: 3796: 3755: 3721: 3686: 3650: 3617: 3573: 3529: 3493: 3469: 3413: 3366: 3322: 3286: 3259: 3198: 3150: 3116: 3089: 3038: 3002: 2957: 2926: 2899: 2843: 2807: 2725:Classification result 2515:Classification scheme 2346:is the involution of 2334: 2158:is a symmetric space 2146: 2102: 2060: 1962:at any point) and so 1868: 1844: 1816: 1789: 1765: 1737: 1713: 1689: 1665: 1641: 1617: 1590: 1457: 1406: 1378: 1346: 1310: 1264: 1160:where the stabilizer 1116: 1028:acts transitively on 930: 871: 825:of a neighborhood of 747: 688:representation theory 684:differential geometry 455:Representation theory 10639:Relative root system 10309: 10282: 10256: 10193: 10123: 10096: 9886: 9825: 9798: 9752: 9713: 9689: 9657: 9594: 9558: 9524: 9500: 9451: 9421: 9346: 9316: 9277: 9092: 8821: / Sk(8, 8764: / Sk(8, 8643: / Sk(6, 8616: / SL(4, 8561: / Sk(6, 8495: / Sk(6, 8474: / SL(4, 8464: / SL(8, 8366: / SL(8, 8323: / SL(3, 8215: / Sk(5, 8181: / Sp(8, 8132: / SL(3, 8118: / SL(6, 8107: / Sp(8, 8004: / SL(6, 7993: / Sp(8, 7911: / Sp(6, 7848: / SO(9, 7831: / Sp(6, 7799: / SL(2, 7741: / SL(2, 7076: / S(GL( 7028:) / Sp(2 6827: / S(GL( 6746: / S(GL( 6654: 6596: 6561: 6529: 6498: 6439: 6435:is not simple, then 6408: 6384: 6356: 6309: 6285: 6260: 6217: 6193: 6165: 6118: 6038:anti-de Sitter space 5946: 5898: 5873: 5827: 5798: 5760: 5709: 5680: 5642: 5610: 5547: 5518: 5466: 5420: 5364: 5335: 5283: 5207: 5178: 5126: 5080: 5024: 4995: 4959: 4913: 4848: 4819: 4753: 4724: 4686: 4640: 4604: 4575: 4523: 4457: 4428: 4376: 4330: 4267: 4238: 4172: 4143: 4102: 4058: 4031: 3975: 3933: 3897: 3875: 3839: 3806: 3770: 3732: 3696: 3660: 3627: 3588: 3547: 3503: 3479: 3423: 3381: 3340: 3296: 3269: 3208: 3166: 3127: 3099: 3048: 3012: 2973: 2937: 2909: 2853: 2817: 2781: 2694:is such a group and 2599:. For compact type, 2503:is connected by the 2250: 2111: 2084: 1999: 1853: 1829: 1801: 1774: 1750: 1722: 1698: 1674: 1650: 1626: 1602: 1472: 1422: 1391: 1363: 1331: 1295: 1204: 1132:Algebraic definition 1126:anti-de Sitter space 1090: 1003:covariantly constant 880: 845: 805:Geometric definition 726: 32:For other uses, see 11059:Riemannian geometry 10757:, Springer-Verlag, 10739:10.24033/asens.1054 10020: 9906: 9842: 9488:positive-definite. 8972:and tangent vector 7632: / Sp(2 7602:) / GL( 7570:) / Sp( 7452: / Sp(2 7326:) / GL( 7286:) / SO( 6988:) / GL( 6944: / S(U( 6930:) / Sk( 6494:Thus we may assume 4046:{\displaystyle 4pq} 3284:{\displaystyle 2pq} 3114:{\displaystyle n-1} 2924:{\displaystyle n-1} 2558:sectional curvature 841:is a geodesic with 821:. A diffeomorphism 668:Riemannian geometry 648:Riemannian manifold 600:Table of Lie groups 441:Compact Lie algebra 11069:Homogeneous spaces 10885:, Academic Press, 10862:, Academic Press, 10833:10.24033/bsmf.1113 10811:10.24033/bsmf.1105 10753:Einstein Manifolds 10697:10.1007/BF01236659 10594: = 1 or 10586: = 4 or 10578: = 2 or 10429: 10292: 10278:. For the case of 10268: 10242:{\displaystyle =0} 10239: 10173: 10106: 10079: 10006: 9892: 9866: 9828: 9808: 9784: 9734: 9699: 9675: 9640: 9577: 9544: 9510: 9496:The tangent space 9478: 9437: 9403: 9332: 9302: 9260: 9255: 9251: 9034:is independent of 9010:the derivative of 7693: / GL( 7654: / Sp( 7526: / Sp( 7485: / GL( 7418: / SL( 7382: / SO( 7360: / Sk( 7240: / SO( 7206: / GL( 7173: / SO( 7120: / Sp( 7106: / GL( 7062: / Sk( 7002: / Sp( 6912: / SO( 6867: / Sp( 6849: / GL( 6813: / SO( 6779: / Sp( 6732: / SO( 6671: 6613: 6578: 6539: 6515: 6471:is a real form of 6449: 6425: 6394: 6366: 6319: 6295: 6270: 6227: 6203: 6175: 6148: 6026:general relativity 5978: 5906: 5893:quaternion algebra 5881: 5848: 5812: 5778: 5736: 5694: 5660: 5628: 5588: 5532: 5498: 5452: 5398: 5349: 5315: 5259: 5192: 5158: 5112: 5058: 5009: 4975: 4945: 4889: 4833: 4791: 4738: 4704: 4672: 4618: 4589: 4555: 4498: 4442: 4408: 4362: 4308: 4252: 4210: 4157: 4123: 4079: 4043: 4016: 3960: 3912: 3881: 3860: 3824: 3791: 3750: 3716: 3681: 3645: 3612: 3568: 3524: 3491:{\displaystyle pq} 3488: 3464: 3408: 3361: 3317: 3281: 3254: 3193: 3145: 3111: 3084: 3033: 2997: 2952: 2921: 2894: 2838: 2802: 2524:symmetric spaces. 2329: 2141: 2097: 2055: 1863: 1839: 1811: 1784: 1760: 1732: 1708: 1684: 1660: 1636: 1612: 1585: 1452: 1401: 1373: 1341: 1319:, also denoted by 1305: 1259: 1111: 925: 866: 778:by a Lie subgroup 742: 664:inversion symmetry 372:Affine Lie algebra 362:Simple Lie algebra 103:Special orthogonal 11037:978-0-8218-4289-8 10851:978-0-8218-0711-8 10714:978-0-8218-0609-8 10679:Akhiezer, D. N.; 10649:Cartan involution 10399: 10345: 10116:into eigenspaces 9433: 9250: 8852: 8851: 8672: 8671: 8348: 8347: 7975: 7974: 7811: 7810: 7705: 7704: 7668: / U( 7618: = Sp(2 7584: / U( 7438: = Sp(2 7430: 7429: 7396: / U( 7300: / U( 7151: 7150: 6699:Cartan involution 6111:with Lie algebra 6071:affine connection 5919: 5918: 3884:{\displaystyle n} 3539:of oriented real 2597:simple Lie groups 1929:of the action of 1066:hyperbolic spaces 1062:projective spaces 831:geodesic symmetry 692:harmonic analysis 636: 635: 436:Split Lie algebra 399:Cartan subalgebra 261: 260: 152:Simple Lie groups 16:(Redirected from 11076: 11040: 11022: 11013: 10997: 10962: 10953: 10943: 10923: 10905: 10895: 10884: 10872: 10854: 10836: 10835: 10814: 10813: 10789: 10767: 10756: 10742: 10741: 10717: 10699: 10671: 10665: 10622:orthogonal group 10568:unit quaternions 10528: 10452:Casimir operator 10438: 10436: 10435: 10430: 10428: 10427: 10426: 10425: 10420: 10419: 10411: 10400: 10398: 10397: 10385: 10374: 10373: 10372: 10371: 10366: 10365: 10357: 10346: 10344: 10343: 10331: 10301: 10299: 10298: 10293: 10291: 10290: 10277: 10275: 10274: 10269: 10248: 10246: 10245: 10240: 10229: 10228: 10223: 10222: 10212: 10211: 10206: 10205: 10182: 10180: 10179: 10174: 10172: 10171: 10166: 10165: 10149: 10148: 10143: 10142: 10132: 10131: 10115: 10113: 10112: 10107: 10105: 10104: 10088: 10086: 10085: 10080: 10075: 10074: 10062: 10061: 10049: 10048: 10033: 10032: 10019: 10014: 9996: 9995: 9983: 9982: 9961: 9960: 9948: 9947: 9935: 9934: 9919: 9918: 9905: 9900: 9875: 9873: 9872: 9867: 9865: 9864: 9855: 9854: 9841: 9836: 9817: 9815: 9814: 9809: 9807: 9806: 9793: 9791: 9790: 9785: 9783: 9782: 9764: 9763: 9743: 9741: 9740: 9735: 9708: 9706: 9705: 9700: 9698: 9697: 9684: 9682: 9681: 9676: 9649: 9647: 9646: 9641: 9615: 9614: 9586: 9584: 9583: 9578: 9576: 9575: 9553: 9551: 9550: 9545: 9543: 9542: 9533: 9532: 9519: 9517: 9516: 9511: 9509: 9508: 9487: 9485: 9484: 9479: 9477: 9476: 9475: 9446: 9444: 9443: 9438: 9431: 9430: 9429: 9412: 9410: 9409: 9404: 9341: 9339: 9338: 9333: 9328: 9327: 9311: 9309: 9308: 9303: 9301: 9300: 9269: 9267: 9266: 9261: 9259: 9258: 9252: 9248: 9236: 9235: 9189: 9188: 9176: 9175: 9151: 9150: 9118: 9117: 9116: 8893:such that given 8885:and an isometry 8840: / E 8836:×SU(2) or E 8832: / E 8806: / E 8787: / E 8775: / E 8734: / E 8701: / E 8674: 8664: / E 8654: / E 8605: / E 8586: / E 8576: / E 8516: / E 8506: / E 8432: / E 8392: / E 8350: 8341: / F 8306: / F 8288: / F 8226: / F 8150: / F 8076: / F 8034: / F 7977: 7813: 7721: 7717: 7501: = Sp( 7432: 7342: = Sk( 7153: 6712: 6680: 6678: 6677: 6672: 6670: 6669: 6664: 6663: 6622: 6620: 6619: 6614: 6612: 6611: 6606: 6605: 6587: 6585: 6584: 6579: 6577: 6576: 6571: 6570: 6548: 6546: 6545: 6540: 6538: 6537: 6524: 6522: 6521: 6516: 6514: 6513: 6508: 6507: 6458: 6456: 6455: 6450: 6448: 6447: 6434: 6432: 6431: 6426: 6424: 6423: 6418: 6417: 6403: 6401: 6400: 6395: 6393: 6392: 6375: 6373: 6372: 6367: 6365: 6364: 6328: 6326: 6325: 6320: 6318: 6317: 6304: 6302: 6301: 6296: 6294: 6293: 6279: 6277: 6276: 6271: 6269: 6268: 6236: 6234: 6233: 6228: 6226: 6225: 6212: 6210: 6209: 6204: 6202: 6201: 6184: 6182: 6181: 6176: 6174: 6173: 6157: 6155: 6154: 6149: 6147: 6146: 6137: 6136: 6127: 6126: 6064: 6048: + 1. 5987: 5985: 5984: 5979: 5974: 5973: 5964: 5956: 5942:of subspaces of 5922:As Grassmannians 5915: 5913: 5912: 5907: 5905: 5890: 5888: 5887: 5882: 5880: 5868:octonion algebra 5857: 5855: 5854: 5849: 5837: 5821: 5819: 5818: 5813: 5810: 5809: 5787: 5785: 5784: 5779: 5777: 5776: 5767: 5745: 5743: 5742: 5737: 5725: 5703: 5701: 5700: 5695: 5692: 5691: 5669: 5667: 5666: 5661: 5659: 5658: 5649: 5637: 5635: 5634: 5629: 5627: 5626: 5617: 5597: 5595: 5594: 5589: 5577: 5557: 5541: 5539: 5538: 5533: 5530: 5529: 5507: 5505: 5504: 5499: 5497: 5496: 5484: 5476: 5461: 5459: 5458: 5453: 5451: 5450: 5438: 5430: 5407: 5405: 5404: 5399: 5387: 5376: 5375: 5358: 5356: 5355: 5350: 5347: 5346: 5324: 5322: 5321: 5316: 5314: 5313: 5301: 5293: 5268: 5266: 5265: 5260: 5254: 5237: 5223: 5201: 5199: 5198: 5193: 5190: 5189: 5167: 5165: 5164: 5159: 5157: 5156: 5144: 5136: 5121: 5119: 5118: 5113: 5111: 5110: 5098: 5090: 5067: 5065: 5064: 5059: 5047: 5036: 5035: 5018: 5016: 5015: 5010: 5007: 5006: 4984: 4982: 4981: 4976: 4974: 4966: 4954: 4952: 4951: 4946: 4944: 4943: 4931: 4923: 4898: 4896: 4895: 4890: 4878: 4858: 4842: 4840: 4839: 4834: 4831: 4830: 4800: 4798: 4797: 4792: 4777: 4763: 4747: 4745: 4744: 4739: 4736: 4735: 4713: 4711: 4710: 4705: 4703: 4702: 4697: 4681: 4679: 4678: 4673: 4671: 4670: 4658: 4650: 4627: 4625: 4624: 4619: 4616: 4615: 4598: 4596: 4595: 4590: 4587: 4586: 4564: 4562: 4561: 4556: 4554: 4553: 4541: 4533: 4507: 4505: 4504: 4499: 4487: 4467: 4451: 4449: 4448: 4443: 4440: 4439: 4417: 4415: 4414: 4409: 4407: 4406: 4394: 4386: 4371: 4369: 4368: 4363: 4361: 4360: 4348: 4340: 4317: 4315: 4314: 4309: 4297: 4277: 4261: 4259: 4258: 4253: 4250: 4249: 4219: 4217: 4216: 4211: 4196: 4182: 4166: 4164: 4163: 4158: 4155: 4154: 4132: 4130: 4129: 4124: 4122: 4121: 4110: 4094:of quaternionic 4088: 4086: 4085: 4080: 4052: 4050: 4049: 4044: 4025: 4023: 4022: 4017: 4005: 3985: 3969: 3967: 3966: 3961: 3943: 3921: 3919: 3918: 3913: 3911: 3910: 3905: 3890: 3888: 3887: 3882: 3869: 3867: 3866: 3861: 3833: 3831: 3830: 3825: 3813: 3800: 3798: 3797: 3792: 3780: 3759: 3757: 3756: 3751: 3749: 3748: 3740: 3725: 3723: 3722: 3719:{\displaystyle } 3717: 3709: 3690: 3688: 3687: 3682: 3654: 3652: 3651: 3646: 3634: 3621: 3619: 3618: 3613: 3598: 3577: 3575: 3574: 3569: 3567: 3566: 3555: 3533: 3531: 3530: 3525: 3497: 3495: 3494: 3489: 3473: 3471: 3470: 3465: 3453: 3433: 3417: 3415: 3414: 3409: 3391: 3370: 3368: 3367: 3362: 3360: 3359: 3348: 3326: 3324: 3323: 3318: 3290: 3288: 3287: 3282: 3263: 3261: 3260: 3255: 3240: 3223: 3215: 3202: 3200: 3199: 3194: 3176: 3154: 3152: 3151: 3146: 3144: 3143: 3135: 3120: 3118: 3117: 3112: 3093: 3091: 3090: 3085: 3042: 3040: 3039: 3034: 3022: 3006: 3004: 3003: 2998: 2983: 2961: 2959: 2958: 2953: 2951: 2950: 2945: 2930: 2928: 2927: 2922: 2903: 2901: 2900: 2895: 2890: 2847: 2845: 2844: 2839: 2827: 2811: 2809: 2808: 2803: 2791: 2748: 2564:Non-compact type 2338: 2336: 2335: 2330: 2322: 2314: 2313: 2286: 2262: 2261: 2230: 2150: 2148: 2147: 2142: 2136: 2135: 2126: 2125: 2106: 2104: 2103: 2098: 2096: 2095: 2064: 2062: 2061: 2056: 2054: 2053: 2035: 2034: 1872: 1870: 1869: 1864: 1862: 1861: 1848: 1846: 1845: 1840: 1838: 1837: 1820: 1818: 1817: 1812: 1810: 1809: 1793: 1791: 1790: 1785: 1783: 1782: 1769: 1767: 1766: 1761: 1759: 1758: 1741: 1739: 1738: 1733: 1731: 1730: 1717: 1715: 1714: 1709: 1707: 1706: 1693: 1691: 1690: 1685: 1683: 1682: 1669: 1667: 1666: 1661: 1659: 1658: 1645: 1643: 1642: 1637: 1635: 1634: 1621: 1619: 1618: 1613: 1611: 1610: 1594: 1592: 1591: 1586: 1581: 1580: 1568: 1567: 1558: 1557: 1544: 1543: 1531: 1530: 1521: 1520: 1507: 1506: 1494: 1493: 1484: 1483: 1461: 1459: 1458: 1453: 1451: 1450: 1441: 1440: 1431: 1430: 1410: 1408: 1407: 1402: 1400: 1399: 1382: 1380: 1379: 1374: 1372: 1371: 1350: 1348: 1347: 1342: 1340: 1339: 1314: 1312: 1311: 1306: 1304: 1303: 1268: 1266: 1265: 1260: 1216: 1215: 1120: 1118: 1117: 1112: 1007:simply connected 985:Basic properties 934: 932: 931: 926: 875: 873: 872: 867: 829:is said to be a 751: 749: 748: 743: 738: 737: 678:, which allowed 628: 621: 614: 571:Claude Chevalley 428:Complexification 271:Other Lie groups 157: 65:Classical groups 57: 39: 21: 11084: 11083: 11079: 11078: 11077: 11075: 11074: 11073: 11044: 11043: 11038: 11025: 11016: 11000: 10987:10.2307/2372398 10965: 10956: 10947: 10941: 10926: 10903: 10898: 10893: 10876: 10870: 10857: 10852: 10839: 10817: 10792: 10787: 10771: 10765: 10745: 10720: 10715: 10702: 10678: 10675: 10674: 10666: 10662: 10657: 10630: 10610: 10604: 10558: /  10541: 10535: 10523: 10509: /  10496: 10490: 10474: 10468: 10463: 10413: 10402: 10401: 10389: 10359: 10348: 10347: 10335: 10307: 10306: 10280: 10279: 10254: 10253: 10216: 10199: 10191: 10190: 10159: 10136: 10121: 10120: 10094: 10093: 10066: 10053: 10040: 10024: 9987: 9974: 9952: 9939: 9926: 9910: 9884: 9883: 9856: 9846: 9823: 9822: 9796: 9795: 9774: 9755: 9750: 9749: 9711: 9710: 9687: 9686: 9655: 9654: 9606: 9592: 9591: 9567: 9556: 9555: 9522: 9521: 9498: 9497: 9494: 9466: 9449: 9448: 9419: 9418: 9344: 9343: 9319: 9314: 9313: 9292: 9275: 9274: 9254: 9253: 9244: 9238: 9237: 9216: 9191: 9190: 9167: 9153: 9142: 9123: 9107: 9090: 9089: 9067: 9059: 8988:, depending on 8863: 8857: 8843: 8839: 8835: 8831: 8820: 8816: 8809: 8805: 8799: 8790: 8786: 8778: 8774: 8763: 8759: 8752: 8746: 8737: 8733: 8726: 8717: 8704: 8700: 8689: 8680: 8667: 8663: 8659: 8657: 8653: 8642: 8638: 8632: 8625: 8621: 8615: 8608: 8604: 8598: 8589: 8585: 8581: 8579: 8575: 8560: 8556: 8554: 8547: 8543: 8541: 8534: 8528: 8519: 8515: 8511: 8509: 8505: 8494: 8490: 8484: 8473: 8469: 8463: 8459: 8457: 8450: 8444: 8435: 8431: 8424: 8417: 8408: 8395: 8391: 8376: 8365: 8356: 8344: 8340: 8333: 8322: 8315: 8309: 8305: 8299: 8291: 8287: 8276: 8274: 8263: 8259: 8257: 8250: 8243: 8237: 8229: 8225: 8214: 8210: 8208: 8197: 8193: 8191: 8180: 8176: 8174: 8167: 8161: 8153: 8149: 8142: 8131: 8127: 8117: 8106: 8102: 8100: 8093: 8087: 8079: 8075: 8068: 8061: 8054: 8045: 8037: 8033: 8018: 8003: 7992: 7983: 7970: 7961: 7952: 7944: 7933: 7924: 7920: 7910: 7901: 7893: 7882: 7873: 7862: 7847: 7830: 7819: 7798: 7789: 7781: 7770: 7759: 7740: 7729: 7712: 7688: 7649: 7593: 7561: 7559: 7550: 7541: 7532: 7413: 7377: 7317: 7277: 7275: 7266: 7257: 7248: 7101: 7019: 6979: 6977: 6968: 6959: 6950: 6921: 6844: 6707: 6657: 6652: 6651: 6623:commuting with 6599: 6594: 6593: 6564: 6559: 6558: 6527: 6526: 6501: 6496: 6495: 6479: /  6463: /  6437: 6436: 6411: 6406: 6405: 6382: 6381: 6354: 6353: 6333: /  6307: 6306: 6283: 6282: 6258: 6257: 6252: /  6215: 6214: 6191: 6190: 6163: 6162: 6116: 6115: 6107: /  6100: 6091:universal cover 6060: /  6052: 6034:De Sitter space 6030:Minkowski space 6002: 5965: 5944: 5943: 5924: 5896: 5895: 5871: 5870: 5825: 5824: 5801: 5796: 5795: 5768: 5758: 5757: 5707: 5706: 5683: 5678: 5677: 5650: 5640: 5639: 5618: 5608: 5607: 5545: 5544: 5521: 5516: 5515: 5488: 5464: 5463: 5442: 5418: 5417: 5367: 5362: 5361: 5338: 5333: 5332: 5305: 5281: 5280: 5205: 5204: 5181: 5176: 5175: 5148: 5124: 5123: 5102: 5078: 5077: 5027: 5022: 5021: 4998: 4993: 4992: 4957: 4956: 4935: 4911: 4910: 4846: 4845: 4822: 4817: 4816: 4751: 4750: 4727: 4722: 4721: 4689: 4684: 4683: 4662: 4638: 4637: 4607: 4602: 4601: 4578: 4573: 4572: 4545: 4521: 4520: 4455: 4454: 4431: 4426: 4425: 4398: 4374: 4373: 4352: 4328: 4327: 4265: 4264: 4241: 4236: 4235: 4170: 4169: 4146: 4141: 4140: 4105: 4100: 4099: 4056: 4055: 4029: 4028: 3973: 3972: 3931: 3930: 3900: 3895: 3894: 3873: 3872: 3837: 3836: 3804: 3803: 3768: 3767: 3735: 3730: 3729: 3694: 3693: 3658: 3657: 3625: 3624: 3586: 3585: 3550: 3545: 3544: 3501: 3500: 3477: 3476: 3421: 3420: 3379: 3378: 3343: 3338: 3337: 3294: 3293: 3267: 3266: 3206: 3205: 3164: 3163: 3130: 3125: 3124: 3097: 3096: 3046: 3045: 3010: 3009: 2971: 2970: 2940: 2935: 2934: 2907: 2906: 2851: 2850: 2815: 2814: 2779: 2778: 2733: /  2727: 2686: 2679: 2672: 2665: 2658: 2649:) and the five 2544:Euclidean space 2517: 2489:universal cover 2454: 2448: 2411:was arbitrary, 2406: 2394: 2388: 2371: 2362: 2315: 2302: 2279: 2253: 2248: 2247: 2222: 2217: /  2206: /  2178: /  2162: /  2127: 2117: 2109: 2108: 2087: 2082: 2081: 2045: 2026: 1997: 1996: 1983: 1971: 1954: 1879: 1851: 1850: 1827: 1826: 1799: 1798: 1772: 1771: 1748: 1747: 1720: 1719: 1696: 1695: 1672: 1671: 1648: 1647: 1624: 1623: 1600: 1599: 1470: 1469: 1420: 1419: 1411:, this gives a 1389: 1388: 1361: 1360: 1329: 1328: 1293: 1292: 1207: 1202: 1201: 1192: 1156: /  1146:symmetric space 1140:be a connected 1134: 1088: 1087: 1077:Riemann surface 1054:Euclidean space 1050: 1040:is connected). 987: 878: 877: 843: 842: 807: 771:of a connected 767: /  729: 724: 723: 644:symmetric space 632: 587: 586: 585: 556:Wilhelm Killing 540: 532: 531: 530: 505: 494: 493: 492: 457: 447: 446: 445: 432: 416: 394:Dynkin diagrams 388: 378: 377: 376: 358: 336:Exponential map 325: 315: 314: 313: 294:Conformal group 273: 263: 262: 254: 246: 238: 230: 222: 203: 193: 183: 173: 154: 144: 143: 142: 123:Special unitary 67: 37: 30: 23: 22: 15: 12: 11: 5: 11082: 11080: 11072: 11071: 11066: 11061: 11056: 11046: 11045: 11042: 11041: 11036: 11023: 11014: 10998: 10975:Amer. J. Math. 10963: 10954: 10945: 10939: 10924: 10896: 10891: 10874: 10868: 10855: 10850: 10837: 10815: 10790: 10785: 10769: 10763: 10743: 10722:Berger, Marcel 10718: 10713: 10700: 10685:Transf. Groups 10681:Vinberg, E. B. 10673: 10672: 10659: 10658: 10656: 10653: 10652: 10651: 10646: 10644:Satake diagram 10641: 10636: 10629: 10626: 10620:of the stable 10606:Main article: 10603: 10600: 10537:Main article: 10534: 10531: 10492:Main article: 10489: 10486: 10478:holonomy group 10472:Holonomy group 10470:Main article: 10467: 10464: 10462: 10459: 10440: 10439: 10424: 10418: 10410: 10407: 10404: 10396: 10392: 10388: 10383: 10380: 10377: 10370: 10364: 10356: 10353: 10350: 10342: 10338: 10334: 10329: 10326: 10323: 10320: 10317: 10314: 10289: 10267: 10264: 10261: 10250: 10249: 10238: 10235: 10232: 10227: 10221: 10215: 10210: 10204: 10198: 10184: 10183: 10170: 10164: 10158: 10155: 10152: 10147: 10141: 10135: 10130: 10103: 10090: 10089: 10078: 10073: 10069: 10065: 10060: 10056: 10052: 10047: 10043: 10039: 10036: 10031: 10027: 10023: 10018: 10013: 10009: 10005: 10002: 9999: 9994: 9990: 9986: 9981: 9977: 9973: 9970: 9967: 9964: 9959: 9955: 9951: 9946: 9942: 9938: 9933: 9929: 9925: 9922: 9917: 9913: 9909: 9904: 9899: 9895: 9891: 9877: 9876: 9863: 9859: 9853: 9849: 9845: 9840: 9835: 9831: 9805: 9781: 9777: 9773: 9770: 9767: 9762: 9758: 9733: 9730: 9727: 9724: 9721: 9718: 9696: 9674: 9671: 9668: 9665: 9662: 9651: 9650: 9639: 9636: 9633: 9630: 9627: 9624: 9621: 9618: 9613: 9609: 9605: 9602: 9599: 9574: 9570: 9566: 9563: 9541: 9536: 9531: 9507: 9493: 9490: 9474: 9469: 9465: 9462: 9459: 9456: 9436: 9428: 9402: 9399: 9396: 9393: 9390: 9387: 9384: 9381: 9378: 9375: 9372: 9369: 9366: 9363: 9360: 9357: 9354: 9351: 9331: 9326: 9322: 9299: 9295: 9291: 9288: 9285: 9282: 9271: 9270: 9257: 9245: 9243: 9240: 9239: 9234: 9229: 9226: 9223: 9220: 9217: 9214: 9211: 9208: 9205: 9202: 9199: 9196: 9193: 9192: 9187: 9182: 9179: 9174: 9170: 9166: 9163: 9160: 9157: 9154: 9149: 9145: 9141: 9138: 9135: 9132: 9129: 9128: 9126: 9121: 9115: 9110: 9106: 9103: 9100: 9097: 9066: 9063: 9058: 9055: 9049:, is given in 9028: 9027: 9008: 8939:Ernest Vinberg 8859:Main article: 8856: 8853: 8850: 8849: 8841: 8837: 8833: 8829: 8826: 8818: 8814: 8811: 8807: 8803: 8800: 8797: 8793: 8792: 8788: 8784: 8776: 8772: 8769: 8761: 8757: 8754: 8750: 8747: 8744: 8740: 8739: 8735: 8731: 8728: 8724: 8721: 8718: 8715: 8711: 8710: 8702: 8698: 8695: 8687: 8684: 8681: 8678: 8670: 8669: 8668:×SO(1,1) 8665: 8661: 8655: 8651: 8648: 8640: 8630: 8627: 8623: 8613: 8610: 8606: 8602: 8599: 8596: 8592: 8591: 8587: 8583: 8577: 8573: 8570: 8558: 8552: 8549: 8545: 8539: 8536: 8532: 8529: 8526: 8522: 8521: 8517: 8513: 8510:×SO(1,1) 8507: 8503: 8500: 8492: 8482: 8479: 8471: 8461: 8455: 8452: 8448: 8445: 8442: 8438: 8437: 8433: 8429: 8426: 8422: 8419: 8415: 8412: 8409: 8406: 8402: 8401: 8393: 8389: 8386: 8374: 8371: 8363: 8360: 8357: 8354: 8346: 8345: 8342: 8338: 8335: 8331: 8328: 8320: 8317: 8313: 8310: 8307: 8303: 8300: 8297: 8293: 8292: 8289: 8285: 8282: 8272: 8269: 8261: 8255: 8252: 8248: 8245: 8241: 8238: 8235: 8231: 8230: 8227: 8223: 8220: 8212: 8206: 8203: 8195: 8189: 8186: 8178: 8172: 8169: 8165: 8162: 8159: 8155: 8154: 8151: 8147: 8144: 8140: 8137: 8129: 8115: 8112: 8104: 8098: 8095: 8091: 8088: 8085: 8081: 8080: 8077: 8073: 8070: 8066: 8063: 8059: 8056: 8052: 8049: 8046: 8043: 8039: 8038: 8035: 8031: 8028: 8016: 8013: 8001: 7998: 7990: 7987: 7984: 7981: 7973: 7972: 7968: 7963: 7959: 7954: 7950: 7945: 7942: 7936: 7935: 7931: 7926: 7922: 7908: 7903: 7899: 7894: 7891: 7885: 7884: 7880: 7875: 7871: 7866: 7863: 7860: 7854: 7853: 7845: 7840: 7828: 7823: 7820: 7817: 7809: 7808: 7796: 7791: 7787: 7782: 7779: 7773: 7772: 7768: 7763: 7760: 7757: 7751: 7750: 7738: 7733: 7730: 7727: 7703: 7702: 7663: 7627: 7612: 7611: 7579: 7555: 7546: 7537: 7530: 7521: 7495: 7494: 7480: 7447: 7428: 7427: 7391: 7355: 7336: 7335: 7295: 7271: 7262: 7253: 7244: 7235: 7220: 7219: 7201: 7168: 7149: 7148: 7115: 7071: 7057: 7038: 7037: 6997: 6973: 6964: 6955: 6948: 6939: 6907: 6881: 6880: 6862: 6822: 6808: 6793: 6792: 6774: 6741: 6727: 6706: 6703: 6668: 6662: 6610: 6604: 6575: 6569: 6536: 6512: 6506: 6446: 6422: 6416: 6391: 6363: 6316: 6292: 6267: 6246:Katsumi Nomizu 6239:indecomposable 6224: 6200: 6172: 6159: 6158: 6145: 6140: 6135: 6130: 6125: 6099: 6096: 6075:torsion tensor 6001: 5998: 5977: 5972: 5968: 5963: 5959: 5955: 5951: 5923: 5920: 5917: 5916: 5904: 5879: 5864: 5861: 5858: 5846: 5843: 5840: 5836: 5833: 5822: 5808: 5804: 5793: 5789: 5788: 5775: 5771: 5766: 5752: 5749: 5746: 5734: 5731: 5728: 5724: 5721: 5718: 5715: 5704: 5690: 5686: 5675: 5671: 5670: 5657: 5653: 5648: 5638:isomorphic to 5625: 5621: 5616: 5604: 5601: 5598: 5586: 5583: 5580: 5576: 5573: 5569: 5566: 5563: 5560: 5556: 5553: 5542: 5528: 5524: 5513: 5509: 5508: 5495: 5491: 5487: 5483: 5479: 5475: 5471: 5462:isomorphic to 5449: 5445: 5441: 5437: 5433: 5429: 5425: 5414: 5411: 5408: 5396: 5393: 5390: 5386: 5383: 5379: 5374: 5370: 5359: 5345: 5341: 5330: 5326: 5325: 5312: 5308: 5304: 5300: 5296: 5292: 5288: 5275: 5272: 5269: 5257: 5253: 5250: 5247: 5243: 5240: 5236: 5232: 5229: 5226: 5222: 5219: 5216: 5213: 5202: 5188: 5184: 5173: 5169: 5168: 5155: 5151: 5147: 5143: 5139: 5135: 5131: 5122:isomorphic to 5109: 5105: 5101: 5097: 5093: 5089: 5085: 5074: 5071: 5068: 5056: 5053: 5050: 5046: 5043: 5039: 5034: 5030: 5019: 5005: 5001: 4990: 4986: 4985: 4973: 4969: 4965: 4942: 4938: 4934: 4930: 4926: 4922: 4918: 4905: 4902: 4899: 4887: 4884: 4881: 4877: 4874: 4870: 4867: 4864: 4861: 4857: 4854: 4843: 4829: 4825: 4814: 4810: 4809: 4807: 4804: 4801: 4789: 4786: 4783: 4780: 4776: 4772: 4769: 4766: 4762: 4759: 4748: 4734: 4730: 4719: 4715: 4714: 4701: 4696: 4693: 4669: 4665: 4661: 4657: 4653: 4649: 4645: 4634: 4631: 4628: 4614: 4610: 4599: 4585: 4581: 4570: 4566: 4565: 4552: 4548: 4544: 4540: 4536: 4532: 4528: 4514: 4511: 4508: 4496: 4493: 4490: 4486: 4483: 4479: 4476: 4473: 4470: 4466: 4463: 4452: 4438: 4434: 4423: 4419: 4418: 4405: 4401: 4397: 4393: 4389: 4385: 4381: 4359: 4355: 4351: 4347: 4343: 4339: 4335: 4324: 4321: 4318: 4306: 4303: 4300: 4296: 4293: 4289: 4286: 4283: 4280: 4276: 4273: 4262: 4248: 4244: 4233: 4229: 4228: 4226: 4223: 4220: 4208: 4205: 4202: 4199: 4195: 4191: 4188: 4185: 4181: 4178: 4167: 4153: 4149: 4138: 4134: 4133: 4120: 4117: 4114: 4109: 4089: 4078: 4075: 4072: 4069: 4066: 4063: 4053: 4042: 4039: 4036: 4026: 4014: 4011: 4008: 4004: 4001: 3997: 3994: 3991: 3988: 3984: 3981: 3970: 3958: 3955: 3952: 3949: 3946: 3942: 3939: 3928: 3924: 3923: 3909: 3904: 3891: 3880: 3870: 3859: 3856: 3853: 3850: 3847: 3844: 3834: 3822: 3819: 3816: 3812: 3801: 3789: 3786: 3783: 3779: 3776: 3765: 3761: 3760: 3747: 3744: 3739: 3726: 3715: 3712: 3708: 3704: 3701: 3691: 3680: 3677: 3674: 3671: 3668: 3665: 3655: 3643: 3640: 3637: 3633: 3622: 3610: 3607: 3604: 3601: 3597: 3594: 3583: 3579: 3578: 3565: 3562: 3559: 3554: 3534: 3523: 3520: 3517: 3514: 3511: 3508: 3498: 3487: 3484: 3474: 3462: 3459: 3456: 3452: 3449: 3445: 3442: 3439: 3436: 3432: 3429: 3418: 3406: 3403: 3400: 3397: 3394: 3390: 3387: 3376: 3372: 3371: 3358: 3355: 3352: 3347: 3327: 3316: 3313: 3310: 3307: 3304: 3301: 3291: 3280: 3277: 3274: 3264: 3252: 3249: 3246: 3243: 3239: 3235: 3232: 3229: 3226: 3222: 3218: 3214: 3203: 3191: 3188: 3185: 3182: 3179: 3175: 3172: 3161: 3157: 3156: 3142: 3139: 3134: 3121: 3110: 3107: 3104: 3094: 3083: 3080: 3077: 3074: 3071: 3068: 3065: 3062: 3059: 3056: 3053: 3043: 3031: 3028: 3025: 3021: 3018: 3007: 2995: 2992: 2989: 2986: 2982: 2979: 2968: 2964: 2963: 2949: 2944: 2931: 2920: 2917: 2914: 2904: 2893: 2889: 2885: 2882: 2879: 2876: 2873: 2870: 2867: 2864: 2861: 2858: 2848: 2836: 2833: 2830: 2826: 2823: 2812: 2800: 2797: 2794: 2790: 2787: 2776: 2772: 2771: 2768: 2765: 2762: 2757: 2752: 2726: 2723: 2702:that contains 2684: 2677: 2670: 2663: 2656: 2572: 2571: 2561: 2547: 2536:Euclidean type 2516: 2513: 2450:Main article: 2447: 2444: 2402: 2390: 2384: 2367: 2358: 2340: 2339: 2328: 2325: 2321: 2318: 2312: 2309: 2305: 2301: 2298: 2295: 2292: 2289: 2285: 2282: 2277: 2274: 2271: 2268: 2265: 2260: 2256: 2194:, we obtain a 2154:To summarize, 2140: 2134: 2130: 2124: 2120: 2116: 2094: 2090: 2066: 2065: 2052: 2048: 2044: 2041: 2038: 2033: 2029: 2025: 2022: 2019: 2016: 2013: 2010: 2007: 2004: 1979: 1967: 1950: 1927:isotropy group 1878: 1875: 1860: 1836: 1808: 1781: 1770:brackets into 1757: 1729: 1705: 1681: 1657: 1633: 1609: 1596: 1595: 1584: 1579: 1574: 1571: 1566: 1561: 1556: 1551: 1547: 1542: 1537: 1534: 1529: 1524: 1519: 1514: 1510: 1505: 1500: 1497: 1492: 1487: 1482: 1477: 1463: 1462: 1449: 1444: 1439: 1434: 1429: 1415:decomposition 1398: 1370: 1338: 1302: 1270: 1269: 1258: 1255: 1252: 1249: 1246: 1243: 1240: 1237: 1234: 1231: 1228: 1225: 1222: 1219: 1214: 1210: 1188: 1133: 1130: 1110: 1107: 1104: 1101: 1098: 1095: 1075:Every compact 1049: 1046: 999:if and only if 986: 983: 969:is said to be 924: 921: 918: 915: 912: 909: 906: 903: 900: 897: 894: 891: 888: 885: 865: 862: 859: 856: 853: 850: 806: 803: 741: 736: 732: 634: 633: 631: 630: 623: 616: 608: 605: 604: 603: 602: 597: 589: 588: 584: 583: 578: 576:Harish-Chandra 573: 568: 563: 558: 553: 551:Henri Poincaré 548: 542: 541: 538: 537: 534: 533: 529: 528: 523: 518: 513: 507: 506: 501:Lie groups in 500: 499: 496: 495: 491: 490: 485: 480: 475: 470: 465: 459: 458: 453: 452: 449: 448: 444: 443: 438: 433: 431: 430: 425: 419: 417: 415: 414: 409: 403: 401: 396: 390: 389: 384: 383: 380: 379: 375: 374: 369: 364: 359: 357: 356: 351: 345: 343: 338: 333: 327: 326: 321: 320: 317: 316: 312: 311: 306: 301: 299:Diffeomorphism 296: 291: 286: 281: 275: 274: 269: 268: 265: 264: 259: 258: 257: 256: 252: 248: 244: 240: 236: 232: 228: 224: 220: 213: 212: 208: 207: 206: 205: 199: 195: 189: 185: 179: 175: 169: 162: 161: 155: 150: 149: 146: 145: 141: 140: 130: 120: 110: 100: 90: 83:Special linear 80: 73:General linear 69: 68: 63: 62: 59: 58: 50: 49: 28: 24: 14: 13: 10: 9: 6: 4: 3: 2: 11081: 11070: 11067: 11065: 11062: 11060: 11057: 11055: 11052: 11051: 11049: 11039: 11033: 11029: 11024: 11020: 11015: 11011: 11007: 11003: 11002:Selberg, Atle 10999: 10996: 10992: 10988: 10984: 10980: 10976: 10972: 10968: 10964: 10960: 10955: 10951: 10946: 10942: 10940:0-471-15732-5 10936: 10932: 10931: 10925: 10921: 10917: 10914:(1): 79–106. 10913: 10909: 10902: 10897: 10894: 10892:0-12-338301-3 10888: 10883: 10882: 10875: 10871: 10869:0-12-338460-5 10865: 10861: 10856: 10853: 10847: 10843: 10838: 10834: 10829: 10825: 10821: 10816: 10812: 10807: 10803: 10799: 10795: 10791: 10788: 10786:0-8218-0288-7 10782: 10778: 10774: 10773:Borel, Armand 10770: 10766: 10764:0-387-15279-2 10760: 10755: 10754: 10748: 10744: 10740: 10735: 10732:(2): 85–177, 10731: 10727: 10723: 10719: 10716: 10710: 10706: 10701: 10698: 10694: 10690: 10686: 10682: 10677: 10676: 10670: 10664: 10661: 10654: 10650: 10647: 10645: 10642: 10640: 10637: 10635: 10632: 10631: 10627: 10625: 10623: 10619: 10615: 10609: 10601: 10599: 10597: 10593: 10589: 10585: 10581: 10577: 10573: 10569: 10565: 10561: 10557: 10552: 10550: 10546: 10540: 10532: 10530: 10526: 10520: 10516: 10512: 10508: 10503: 10501: 10495: 10487: 10485: 10483: 10479: 10473: 10465: 10460: 10458: 10455: 10453: 10449: 10445: 10422: 10408: 10405: 10394: 10390: 10386: 10381: 10378: 10375: 10368: 10354: 10351: 10340: 10336: 10332: 10327: 10321: 10318: 10315: 10305: 10304: 10303: 10265: 10262: 10259: 10236: 10233: 10225: 10213: 10208: 10189: 10188: 10187: 10168: 10156: 10153: 10150: 10145: 10133: 10119: 10118: 10117: 10071: 10067: 10063: 10058: 10054: 10045: 10041: 10037: 10029: 10025: 10021: 10011: 10007: 10000: 9992: 9988: 9984: 9979: 9975: 9968: 9965: 9957: 9953: 9949: 9944: 9940: 9931: 9927: 9923: 9915: 9911: 9907: 9897: 9893: 9882: 9881: 9880: 9861: 9857: 9851: 9847: 9843: 9833: 9829: 9821: 9820: 9819: 9779: 9775: 9771: 9768: 9765: 9760: 9756: 9747: 9728: 9725: 9722: 9716: 9669: 9666: 9663: 9634: 9631: 9628: 9622: 9619: 9607: 9603: 9600: 9590: 9589: 9588: 9568: 9561: 9492:Factorization 9491: 9489: 9463: 9460: 9457: 9434: 9416: 9397: 9394: 9391: 9388: 9385: 9382: 9379: 9373: 9370: 9367: 9361: 9358: 9355: 9349: 9329: 9324: 9320: 9297: 9289: 9286: 9283: 9241: 9227: 9224: 9221: 9218: 9209: 9206: 9203: 9197: 9194: 9180: 9177: 9172: 9168: 9164: 9161: 9158: 9155: 9147: 9139: 9136: 9133: 9124: 9119: 9104: 9101: 9098: 9088: 9087: 9086: 9084: 9080: 9076: 9072: 9071:metric tensor 9064: 9062: 9056: 9054: 9052: 9048: 9043: 9041: 9037: 9033: 9025: 9021: 9017: 9013: 9009: 9006: 9002: 8999: 8998: 8997: 8995: 8991: 8987: 8983: 8979: 8975: 8971: 8967: 8962: 8960: 8956: 8952: 8948: 8944: 8943:Gelfand pairs 8940: 8936: 8932: 8928: 8924: 8920: 8916: 8912: 8908: 8904: 8900: 8896: 8892: 8888: 8884: 8880: 8876: 8872: 8868: 8865:In the 1950s 8862: 8854: 8847: 8827: 8824: 8812: 8801: 8795: 8794: 8782: 8770: 8767: 8755: 8748: 8742: 8741: 8729: 8722: 8719: 8713: 8712: 8708: 8696: 8693: 8685: 8682: 8676: 8675: 8649: 8647:)×Sp(1) 8646: 8636: 8628: 8619: 8611: 8609:× SO(2) 8600: 8594: 8593: 8571: 8568: 8564: 8550: 8537: 8530: 8524: 8523: 8501: 8499:)×Sp(1) 8498: 8488: 8480: 8477: 8467: 8453: 8446: 8440: 8439: 8436:× SO(2) 8427: 8420: 8413: 8410: 8404: 8403: 8399: 8387: 8384: 8380: 8372: 8369: 8361: 8358: 8352: 8351: 8336: 8329: 8327:)×Sp(1) 8326: 8318: 8311: 8301: 8295: 8294: 8283: 8281:)×SO(2) 8280: 8270: 8267: 8253: 8246: 8239: 8233: 8232: 8221: 8219:)×SO(2) 8218: 8204: 8201: 8187: 8184: 8170: 8163: 8157: 8156: 8145: 8138: 8136:)×SU(2) 8135: 8125: 8121: 8113: 8110: 8096: 8089: 8083: 8082: 8071: 8064: 8057: 8050: 8047: 8041: 8040: 8029: 8026: 8022: 8014: 8011: 8007: 7999: 7996: 7988: 7985: 7979: 7978: 7967: 7964: 7958: 7955: 7949: 7946: 7941: 7938: 7937: 7930: 7927: 7918: 7914: 7907: 7904: 7898: 7895: 7890: 7887: 7886: 7879: 7876: 7870: 7867: 7864: 7859: 7856: 7855: 7851: 7844: 7841: 7838: 7834: 7827: 7824: 7821: 7815: 7814: 7806: 7803:)× SL(2, 7802: 7795: 7792: 7786: 7783: 7778: 7775: 7774: 7767: 7764: 7761: 7756: 7753: 7752: 7748: 7745:)× SL(2, 7744: 7737: 7734: 7731: 7726: 7723: 7722: 7719: 7715: 7710: 7700: 7696: 7692: 7687: 7684: =  7683: 7680: +  7679: 7675: 7671: 7667: 7664: 7661: 7657: 7653: 7647: 7643: 7639: 7635: 7631: 7628: 7625: 7621: 7617: 7614: 7613: 7609: 7605: 7601: 7597: 7591: 7587: 7583: 7580: 7577: 7573: 7569: 7565: 7558: 7554: 7549: 7545: 7540: 7536: 7529: 7525: 7522: 7520: 7517: =  7516: 7513: +  7512: 7508: 7504: 7500: 7497: 7496: 7492: 7488: 7484: 7481: 7479: 7476: =  7475: 7472: +  7471: 7467: 7463: 7459: 7455: 7451: 7448: 7445: 7441: 7437: 7434: 7433: 7425: 7421: 7417: 7411: 7407: 7403: 7399: 7395: 7392: 7389: 7385: 7381: 7375: 7371: 7367: 7363: 7359: 7356: 7353: 7349: 7345: 7341: 7338: 7337: 7333: 7329: 7325: 7321: 7315: 7311: 7307: 7303: 7299: 7296: 7293: 7289: 7285: 7281: 7274: 7270: 7265: 7261: 7256: 7252: 7247: 7243: 7239: 7236: 7233: 7229: 7225: 7222: 7221: 7217: 7213: 7209: 7205: 7202: 7200: 7196: 7192: 7188: 7184: 7180: 7176: 7172: 7169: 7166: 7162: 7158: 7155: 7154: 7147: 7143: 7139: 7135: 7131: 7127: 7123: 7119: 7116: 7113: 7109: 7105: 7099: 7095: 7091: 7087: 7083: 7079: 7075: 7072: 7069: 7065: 7061: 7058: 7055: 7051: 7047: 7043: 7040: 7039: 7035: 7031: 7027: 7023: 7017: 7013: 7009: 7005: 7001: 6998: 6995: 6991: 6987: 6983: 6976: 6972: 6967: 6963: 6958: 6954: 6947: 6943: 6940: 6937: 6933: 6929: 6925: 6919: 6915: 6911: 6908: 6906: 6902: 6898: 6894: 6890: 6886: 6883: 6882: 6878: 6874: 6870: 6866: 6863: 6860: 6856: 6852: 6848: 6842: 6838: 6834: 6830: 6826: 6823: 6820: 6816: 6812: 6809: 6806: 6802: 6798: 6795: 6794: 6790: 6786: 6782: 6778: 6775: 6773: 6769: 6765: 6761: 6757: 6753: 6749: 6745: 6742: 6739: 6735: 6731: 6728: 6725: 6721: 6717: 6714: 6713: 6710: 6704: 6702: 6700: 6696: 6692: 6688: 6684: 6666: 6649: 6645: 6641: 6636: 6634: 6630: 6626: 6608: 6591: 6573: 6556: 6552: 6510: 6492: 6490: 6486: 6482: 6478: 6474: 6470: 6466: 6462: 6420: 6379: 6351: 6347: 6343: 6338: 6336: 6332: 6255: 6251: 6247: 6242: 6240: 6188: 6138: 6128: 6114: 6113: 6112: 6110: 6106: 6097: 6095: 6092: 6088: 6084: 6080: 6077:vanishes) on 6076: 6072: 6068: 6063: 6059: 6055: 6049: 6047: 6043: 6039: 6035: 6031: 6027: 6023: 6019: 6015: 6011: 6007: 5999: 5997: 5995: 5991: 5975: 5970: 5957: 5941: 5937: 5933: 5929: 5921: 5894: 5869: 5865: 5862: 5859: 5841: 5823: 5806: 5802: 5794: 5791: 5790: 5773: 5769: 5756: 5753: 5750: 5747: 5729: 5705: 5688: 5684: 5676: 5673: 5672: 5655: 5651: 5623: 5619: 5605: 5602: 5599: 5581: 5567: 5561: 5543: 5526: 5522: 5514: 5511: 5510: 5493: 5489: 5477: 5447: 5443: 5431: 5415: 5412: 5409: 5391: 5377: 5372: 5368: 5360: 5343: 5339: 5331: 5328: 5327: 5310: 5306: 5294: 5279: 5276: 5273: 5270: 5241: 5234: 5227: 5203: 5186: 5182: 5174: 5171: 5170: 5153: 5149: 5137: 5107: 5103: 5091: 5075: 5072: 5069: 5051: 5037: 5032: 5028: 5020: 5003: 4999: 4991: 4988: 4987: 4967: 4940: 4936: 4924: 4909: 4906: 4903: 4900: 4882: 4868: 4862: 4844: 4827: 4823: 4815: 4812: 4811: 4808: 4805: 4802: 4784: 4781: 4774: 4767: 4749: 4732: 4728: 4720: 4717: 4716: 4699: 4682:isometric to 4667: 4663: 4651: 4635: 4632: 4629: 4612: 4608: 4600: 4583: 4579: 4571: 4568: 4567: 4550: 4546: 4534: 4519: 4516:Complexified 4515: 4512: 4509: 4491: 4477: 4471: 4453: 4436: 4432: 4424: 4421: 4420: 4403: 4399: 4387: 4372:isometric to 4357: 4353: 4341: 4325: 4322: 4319: 4301: 4287: 4281: 4263: 4246: 4242: 4234: 4231: 4230: 4227: 4224: 4221: 4203: 4200: 4193: 4186: 4168: 4151: 4147: 4139: 4136: 4135: 4118: 4115: 4112: 4097: 4093: 4090: 4073: 4070: 4067: 4054: 4040: 4037: 4034: 4027: 4009: 3995: 3989: 3971: 3953: 3950: 3947: 3929: 3926: 3925: 3907: 3892: 3878: 3871: 3854: 3851: 3848: 3842: 3835: 3817: 3802: 3784: 3766: 3763: 3762: 3745: 3742: 3727: 3710: 3706: 3702: 3692: 3675: 3672: 3669: 3663: 3656: 3638: 3623: 3605: 3602: 3584: 3581: 3580: 3563: 3560: 3557: 3542: 3538: 3535: 3518: 3515: 3512: 3499: 3485: 3482: 3475: 3457: 3443: 3437: 3419: 3401: 3398: 3395: 3377: 3374: 3373: 3356: 3353: 3350: 3335: 3331: 3328: 3311: 3308: 3305: 3292: 3278: 3275: 3272: 3265: 3244: 3233: 3227: 3204: 3186: 3183: 3180: 3162: 3159: 3158: 3140: 3137: 3122: 3108: 3105: 3102: 3095: 3078: 3075: 3072: 3069: 3060: 3057: 3054: 3044: 3026: 3008: 2990: 2987: 2969: 2966: 2965: 2947: 2932: 2918: 2915: 2912: 2905: 2891: 2887: 2880: 2877: 2874: 2865: 2862: 2859: 2831: 2813: 2795: 2777: 2774: 2773: 2769: 2766: 2763: 2761: 2758: 2756: 2753: 2750: 2749: 2746: 2744: 2740: 2736: 2732: 2724: 2722: 2719: 2717: 2713: 2709: 2705: 2701: 2697: 2693: 2688: 2683: 2676: 2669: 2662: 2655: 2652: 2648: 2644: 2640: 2635: 2633: 2632: 2626: 2622: 2618: 2614: 2610: 2606: 2602: 2598: 2593: 2591: 2586: 2584: 2579: 2577: 2569: 2565: 2562: 2559: 2555: 2551: 2548: 2545: 2541: 2537: 2534: 2533: 2532: 2530: 2525: 2522: 2514: 2512: 2510: 2506: 2502: 2498: 2494: 2490: 2486: 2482: 2478: 2474: 2470: 2466: 2461: 2459: 2453: 2445: 2443: 2441: 2437: 2433: 2429: 2425: 2421: 2416: 2414: 2410: 2405: 2401: 2397: 2393: 2387: 2383: 2379: 2375: 2370: 2366: 2361: 2357: 2353: 2349: 2345: 2326: 2319: 2316: 2310: 2307: 2303: 2296: 2293: 2287: 2283: 2280: 2275: 2272: 2266: 2263: 2258: 2254: 2246: 2245: 2244: 2243:) and define 2242: 2238: 2234: 2229: 2225: 2220: 2216: 2213:To show that 2211: 2209: 2205: 2201: 2197: 2193: 2189: 2185: 2181: 2177: 2173: 2169: 2165: 2161: 2157: 2152: 2138: 2132: 2122: 2118: 2092: 2088: 2079: 2075: 2071: 2050: 2046: 2042: 2039: 2036: 2031: 2027: 2020: 2017: 2014: 2008: 2005: 2002: 1995: 1994: 1993: 1991: 1987: 1982: 1978: 1974: 1970: 1965: 1961: 1957: 1953: 1948: 1944: 1940: 1936: 1932: 1928: 1924: 1920: 1916: 1912: 1908: 1904: 1900: 1896: 1892: 1888: 1884: 1876: 1874: 1824: 1795: 1745: 1582: 1572: 1559: 1545: 1535: 1522: 1508: 1498: 1485: 1468: 1467: 1466: 1442: 1432: 1418: 1417: 1416: 1414: 1386: 1358: 1354: 1326: 1322: 1318: 1290: 1286: 1281: 1279: 1275: 1256: 1250: 1247: 1241: 1235: 1232: 1229: 1226: 1223: 1217: 1212: 1208: 1200: 1199: 1198: 1196: 1191: 1186: 1182: 1178: 1174: 1170: 1167: 1163: 1159: 1155: 1151: 1147: 1143: 1139: 1131: 1129: 1127: 1122: 1105: 1102: 1099: 1093: 1085: 1080: 1078: 1073: 1071: 1067: 1063: 1059: 1055: 1047: 1045: 1041: 1039: 1035: 1031: 1027: 1023: 1019: 1014: 1012: 1008: 1004: 1000: 996: 993:implies that 992: 984: 982: 980: 976: 972: 968: 964: 962: 958: 954: 950: 946: 945:tangent space 942: 938: 922: 916: 913: 907: 904: 895: 889: 883: 863: 860: 854: 848: 840: 836: 832: 828: 824: 820: 816: 812: 804: 802: 800: 799:Marcel Berger 795: 793: 789: 785: 781: 777: 774: 770: 766: 761: 759: 755: 739: 734: 730: 721: 717: 713: 709: 705: 701: 695: 693: 689: 685: 681: 677: 673: 669: 665: 661: 657: 653: 649: 645: 641: 629: 624: 622: 617: 615: 610: 609: 607: 606: 601: 598: 596: 593: 592: 591: 590: 582: 579: 577: 574: 572: 569: 567: 564: 562: 559: 557: 554: 552: 549: 547: 544: 543: 536: 535: 527: 524: 522: 519: 517: 514: 512: 509: 508: 504: 498: 497: 489: 486: 484: 481: 479: 476: 474: 471: 469: 466: 464: 461: 460: 456: 451: 450: 442: 439: 437: 434: 429: 426: 424: 421: 420: 418: 413: 410: 408: 405: 404: 402: 400: 397: 395: 392: 391: 387: 382: 381: 373: 370: 368: 365: 363: 360: 355: 352: 350: 347: 346: 344: 342: 339: 337: 334: 332: 329: 328: 324: 319: 318: 310: 307: 305: 302: 300: 297: 295: 292: 290: 287: 285: 282: 280: 277: 276: 272: 267: 266: 255: 249: 247: 241: 239: 233: 231: 225: 223: 217: 216: 215: 214: 209: 204: 202: 196: 194: 192: 186: 184: 182: 176: 174: 172: 166: 165: 164: 163: 158: 153: 148: 147: 138: 134: 131: 128: 124: 121: 118: 114: 111: 108: 104: 101: 98: 94: 91: 88: 84: 81: 78: 74: 71: 70: 66: 61: 60: 56: 52: 51: 48: 44: 40: 35: 27: 19: 11027: 11018: 11009: 11005: 10981:(1): 33–65, 10978: 10974: 10958: 10949: 10929: 10911: 10907: 10880: 10859: 10841: 10823: 10819: 10801: 10797: 10794:Cartan, Élie 10776: 10752: 10729: 10725: 10704: 10688: 10684: 10668: 10663: 10611: 10595: 10591: 10587: 10583: 10579: 10575: 10563: 10559: 10555: 10553: 10544: 10542: 10524: 10518: 10514: 10510: 10506: 10504: 10497: 10475: 10456: 10447: 10443: 10441: 10251: 10185: 10091: 9878: 9745: 9652: 9495: 9415:Killing form 9272: 9083:Killing form 9078: 9074: 9068: 9060: 9044: 9039: 9035: 9031: 9029: 9023: 9019: 9015: 9011: 9004: 9000: 8996:, such that 8993: 8989: 8985: 8981: 8977: 8973: 8969: 8965: 8963: 8958: 8954: 8950: 8934: 8930: 8926: 8922: 8918: 8914: 8910: 8906: 8902: 8898: 8894: 8890: 8889:normalising 8886: 8882: 8878: 8874: 8870: 8867:Atle Selberg 8864: 8845: 8822: 8810:×Sp(1) 8791:×SU(2) 8780: 8765: 8738:×Sp(1) 8706: 8691: 8658:×SO(2) 8644: 8634: 8617: 8590:×SO(2) 8580:×SO(2) 8566: 8565:)×SL(2, 8562: 8520:×SO(2) 8496: 8486: 8475: 8465: 8397: 8382: 8381:)×Sp(2, 8378: 8367: 8343:4(−20) 8324: 8278: 8265: 8216: 8199: 8182: 8133: 8123: 8122:)×SL(2, 8119: 8108: 8024: 8023:)×SO(2, 8020: 8009: 8008:)×SL(2, 8005: 7994: 7965: 7956: 7947: 7939: 7928: 7916: 7915:)×Sp(2, 7912: 7905: 7896: 7888: 7877: 7868: 7857: 7849: 7842: 7836: 7835:)×Sp(2, 7832: 7825: 7804: 7800: 7793: 7784: 7776: 7765: 7754: 7746: 7742: 7735: 7724: 7713: 7708: 7706: 7698: 7694: 7690: 7685: 7681: 7677: 7673: 7669: 7665: 7659: 7655: 7651: 7645: 7641: 7637: 7633: 7629: 7623: 7619: 7615: 7607: 7603: 7599: 7595: 7589: 7585: 7581: 7575: 7571: 7567: 7563: 7556: 7552: 7547: 7543: 7538: 7534: 7527: 7523: 7518: 7514: 7510: 7506: 7502: 7498: 7490: 7486: 7482: 7477: 7473: 7469: 7465: 7461: 7457: 7453: 7449: 7443: 7439: 7435: 7423: 7419: 7415: 7409: 7405: 7401: 7397: 7393: 7387: 7383: 7379: 7373: 7369: 7365: 7361: 7357: 7351: 7347: 7343: 7339: 7331: 7327: 7323: 7319: 7313: 7309: 7305: 7301: 7297: 7291: 7287: 7283: 7279: 7272: 7268: 7263: 7259: 7254: 7250: 7245: 7241: 7237: 7231: 7227: 7223: 7215: 7211: 7207: 7203: 7198: 7194: 7190: 7186: 7182: 7178: 7174: 7170: 7164: 7160: 7156: 7145: 7141: 7137: 7133: 7129: 7125: 7121: 7117: 7111: 7107: 7103: 7097: 7093: 7089: 7085: 7081: 7077: 7073: 7067: 7063: 7059: 7053: 7049: 7045: 7041: 7033: 7029: 7025: 7021: 7015: 7011: 7007: 7003: 6999: 6993: 6989: 6985: 6981: 6974: 6970: 6965: 6961: 6956: 6952: 6945: 6941: 6935: 6931: 6927: 6923: 6917: 6913: 6909: 6904: 6900: 6896: 6892: 6888: 6884: 6876: 6872: 6868: 6864: 6858: 6854: 6850: 6846: 6840: 6836: 6832: 6828: 6824: 6818: 6814: 6810: 6804: 6800: 6796: 6788: 6784: 6780: 6776: 6771: 6767: 6763: 6759: 6755: 6751: 6747: 6743: 6737: 6733: 6729: 6723: 6719: 6715: 6708: 6694: 6690: 6686: 6682: 6647: 6643: 6639: 6637: 6632: 6628: 6624: 6589: 6554: 6493: 6488: 6484: 6480: 6476: 6472: 6468: 6464: 6460: 6377: 6349: 6345: 6341: 6339: 6334: 6330: 6253: 6249: 6243: 6160: 6108: 6104: 6101: 6078: 6066: 6061: 6057: 6053: 6050: 6045: 6041: 6021: 6017: 6013: 6005: 6003: 5993: 5989: 5925: 4095: 4092:Grassmannian 3540: 3537:Grassmannian 3333: 3330:Grassmannian 2759: 2754: 2742: 2738: 2734: 2730: 2728: 2720: 2715: 2711: 2707: 2703: 2699: 2695: 2691: 2689: 2681: 2674: 2667: 2660: 2653: 2646: 2642: 2638: 2636: 2630: 2624: 2620: 2616: 2612: 2608: 2604: 2600: 2594: 2589: 2587: 2582: 2580: 2575: 2573: 2567: 2563: 2553: 2550:Compact type 2549: 2539: 2535: 2528: 2526: 2520: 2518: 2508: 2500: 2496: 2492: 2484: 2480: 2476: 2472: 2468: 2464: 2462: 2455: 2439: 2435: 2431: 2427: 2423: 2419: 2417: 2412: 2408: 2403: 2399: 2395: 2391: 2385: 2381: 2377: 2373: 2368: 2364: 2359: 2355: 2351: 2347: 2343: 2341: 2240: 2236: 2232: 2231:(a coset of 2227: 2223: 2218: 2214: 2212: 2207: 2203: 2199: 2195: 2191: 2187: 2183: 2179: 2175: 2171: 2167: 2163: 2159: 2155: 2153: 2077: 2074:automorphism 2067: 1989: 1985: 1980: 1976: 1972: 1968: 1963: 1955: 1951: 1946: 1942: 1938: 1934: 1930: 1925:denotes the 1922: 1918: 1914: 1910: 1906: 1902: 1898: 1890: 1886: 1882: 1880: 1822: 1796: 1597: 1464: 1384: 1356: 1352: 1324: 1320: 1316: 1288: 1284: 1282: 1277: 1273: 1271: 1194: 1189: 1184: 1180: 1176: 1172: 1168: 1161: 1157: 1153: 1149: 1145: 1137: 1135: 1123: 1081: 1074: 1051: 1042: 1037: 1033: 1029: 1025: 1017: 1015: 994: 988: 978: 974: 970: 966: 965: 960: 956: 952: 948: 940: 936: 838: 834: 830: 826: 822: 818: 814: 810: 808: 796: 794:is compact. 791: 787: 779: 775: 768: 764: 762: 719: 715: 711: 707: 703: 699: 696: 662:contains an 643: 637: 581:Armand Borel 566:Hermann Weyl 367:Loop algebra 349:Killing form 323:Lie algebras 200: 190: 180: 170: 136: 126: 116: 106: 96: 86: 76: 47:Lie algebras 26: 10826:: 114–134, 10804:: 214–216, 10618:loop spaces 9447:this makes 9051:Wolf (2007) 8844:×SL(2, 8779:×SL(2, 8705:×Sp(2, 8396:×SO(2, 7640:)×Sp(2 7460:)×Sp(2 6553:involution 6329:is simple, 3332:of complex 2521:irreducible 2458:Élie Cartan 1022:homogeneous 817:a point of 640:mathematics 561:Élie Cartan 407:Root system 211:Exceptional 11064:Lie groups 11048:Categories 10967:Nomizu, K. 10961:, Benjamin 10952:, Benjamin 10655:References 10482:7 families 9057:Properties 8913:such that 7542:)×Sp( 7258:)×SO( 7181:)×SO( 7084:)×GL( 6835:)×GL( 6754:)×GL( 6551:antilinear 2764:Dimension 2507:, because 2072:Lie group 2070:involutive 1992:, the map 1901:(that is, 1413:direct sum 1166:involution 1084:lens space 1070:Lie groups 959:to all of 784:involution 676:Lie theory 660:isometries 546:Sophus Lie 539:Scientists 412:Weyl group 133:Symplectic 93:Orthogonal 43:Lie groups 10391:λ 10379:⋯ 10337:λ 10325:⟩ 10322:⋅ 10316:⋅ 10313:⟨ 10263:≠ 10157:⊕ 10154:⋯ 10151:⊕ 10077:⟩ 10051:⟨ 10042:λ 10035:⟩ 10017:# 10004:⟨ 9963:⟩ 9937:⟨ 9928:λ 9921:⟩ 9903:# 9890:⟨ 9848:λ 9839:# 9769:… 9729:⋅ 9723:⋅ 9673:⟩ 9670:⋅ 9664:⋅ 9661:⟨ 9617:⟩ 9612:# 9598:⟨ 9573:# 9565:↦ 9535:→ 9468:⟩ 9464:⋅ 9458:⋅ 9455:⟨ 9395:⁡ 9389:∘ 9383:⁡ 9374:⁡ 9294:⟩ 9290:⋅ 9284:⋅ 9281:⟨ 9249:otherwise 9228:∈ 9195:− 9181:≅ 9165:∈ 9144:⟩ 9131:⟨ 9109:⟩ 9096:⟨ 6960:)×U( 6213:. Since 6139:⊕ 6083:curvature 5958:⊗ 5568:⋅ 5478:⊗ 5432:⊗ 5378:⋅ 5295:⊗ 5242:± 5138:⊗ 5092:⊗ 5038:⋅ 4968:⊗ 4925:⊗ 4869:⋅ 4782:± 4652:⊗ 4535:⊗ 4478:⋅ 4388:⊗ 4342:⊗ 4288:⋅ 4201:± 3996:× 3673:− 3444:× 3234:× 3106:− 3058:− 2916:− 2863:− 2308:− 2297:σ 2291:↦ 2270:→ 2123:σ 2093:σ 2043:∘ 2037:∘ 2024:↦ 2012:→ 2003:σ 1895:Lie group 1573:⊂ 1536:⊂ 1499:⊂ 1443:⊕ 1236:σ 1227:∈ 1213:σ 1144:. Then a 1142:Lie group 1036:(because 914:− 908:γ 890:γ 849:γ 773:Lie group 423:Real form 309:Euclidean 160:Classical 10969:(1954), 10775:(2001), 10749:(1987), 10691:: 3–24, 10628:See also 8720:– 8683:– 8411:– 8359:– 8277:or Sk(5, 8048:– 7986:– 7865:– 7822:– 7762:– 7732:– 6588:, while 6467:, where 6087:parallel 6016:, i.e., 2629:rank of 2320:′ 2284:′ 2235:, where 1921:, where 1383:. Since 1272:Because 1175:). Thus 1048:Examples 1011:complete 754:complete 672:holonomy 654:) whose 595:Glossary 289:Poincaré 11012:: 47–87 10995:2372398 10612:In the 9554:taking 9413:is the 6348:× 5938:, or a 2398:. Thus 2350:fixing 1171:in Aut( 1058:spheres 718:fixing 503:physics 284:Lorentz 113:Unitary 11034:  10993:  10937:  10889:  10866:  10848:  10783:  10761:  10711:  10616:, the 9653:where 9432:  9342:, and 9273:Here, 9018:sends 9003:fixes 8842:7(−25) 8838:8(−24) 8830:8(−24) 8819:8(−24) 8815:8(−24) 8804:8(−24) 8798:8(−24) 8783:) or E 8666:6(−26) 8662:7(−25) 8656:6(−14) 8652:7(−25) 8641:7(−25) 8631:7(−25) 8624:7(−25) 8614:7(−25) 8603:7(−25) 8597:7(−25) 8588:6(−14) 8339:6(−26) 8332:6(−26) 8321:6(−26) 8314:6(−26) 8304:6(−26) 8298:6(−26) 8290:4(−20) 8286:6(−14) 8273:6(−14) 8262:6(−14) 8256:6(−14) 8249:6(−14) 8242:6(−14) 8236:6(−14) 7969:4(−20) 7960:4(−20) 7951:4(−20) 7943:4(−20) 7594:or Sp( 7562:or Sp( 7318:or SO( 7278:or SO( 7136:even, 7020:or SU( 6980:or SU( 6922:or SU( 6705:Tables 6185:is an 6081:whose 5172:EVIII 2751:Label 2645:), Sp( 2641:), SU( 2611:× 2342:where 2068:is an 1670:is an 1082:Every 1064:, and 680:Cartan 279:Circle 10991:JSTOR 10904:(PDF) 10570:on a 10186:with 9818:with 9371:trace 9030:When 8834:7(−5) 8789:7(−5) 8584:7(−5) 8574:7(−5) 8559:7(−5) 8553:7(−5) 8546:7(−5) 8540:7(−5) 8533:7(−5) 8527:7(−5) 7412:even 7404:/2), 7376:even 7368:/2), 7354:even 7316:even 7308:/2), 7218:even 7128:/2), 7100:even 7056:even 7044:= SL( 7018:even 7010:/2), 6887:= SU( 6879:even 6861:even 6799:= SL( 6791:even 6718:= SL( 6697:is a 6483:with 6404:. If 4989:EVII 4955:over 4422:EIII 3582:DIII 3160:AIII 2767:Rank 2467:let ( 1960:1-jet 1893:is a 1465:with 1183:with 876:then 656:group 646:is a 354:Index 11032:ISBN 10935:ISBN 10887:ISBN 10864:ISBN 10846:ISBN 10781:ISBN 10759:ISBN 10709:ISBN 10448:i.e. 10444:e.g. 10252:for 9709:and 9069:The 9022:to − 8992:and 8921:and 8785:8(8) 8777:7(7) 8773:8(8) 8762:8(8) 8758:8(8) 8751:8(8) 8745:8(8) 8660:or E 8639:or E 8622:or E 8582:or E 8578:6(2) 8557:or E 8544:or E 8518:6(2) 8514:7(7) 8512:or E 8508:6(6) 8504:7(7) 8493:7(7) 8491:or E 8483:7(7) 8472:7(7) 8470:or E 8462:7(7) 8460:or E 8456:7(7) 8449:7(7) 8443:7(7) 8260:or E 8228:4(4) 8224:6(2) 8213:6(2) 8211:or E 8207:6(2) 8196:6(2) 8194:or E 8190:6(2) 8179:6(2) 8177:or E 8173:6(2) 8166:6(2) 8160:6(2) 8152:4(4) 8148:6(6) 8141:6(6) 8130:6(6) 8128:or E 8116:6(6) 8105:6(6) 8103:or E 8099:6(6) 8092:6(6) 8086:6(6) 7932:4(4) 7923:4(4) 7921:or F 7909:4(4) 7900:4(4) 7892:4(4) 7797:2(2) 7788:2(2) 7780:2(2) 7226:=SO( 7159:=SO( 7092:)), 6762:)), 6685:and 6036:and 5992:and 5674:FII 5410:112 5329:EIX 5271:128 4813:EVI 4569:EIV 4232:EII 3927:CII 3375:BDI 2967:AII 2741:and 2615:and 2576:rank 2376:) = 1949:on T 1193:and 1187:= id 1148:for 1136:Let 989:The 809:Let 690:and 642:, a 304:Loop 45:and 10983:doi 10916:doi 10912:350 10828:doi 10806:doi 10734:doi 10693:doi 10527:= 2 9794:of 9587:as 9014:at 8984:of 8976:at 8968:in 8953:on 8949:of 8909:in 8901:in 7716:= 0 7689:or 7676:), 7650:or 7509:), 7468:), 7422:/4, 7414:or 7400:/2, 7386:/2, 7378:or 7364:/2, 7350:), 7346:/2, 7304:/2, 7214:), 7210:/2, 7189:), 7124:/2, 7110:/2, 7102:or 7088:/2, 7080:/2, 7066:/2, 7052:), 7048:/2, 7006:/2, 6978:)) 6895:), 6875:), 6857:), 6853:/2, 6845:or 6843:)) 6787:), 6693:or 6557:of 6189:of 6085:is 5748:16 5600:28 5512:FI 5070:54 4901:64 4803:70 4718:EV 4630:26 4510:32 4320:40 4222:42 4137:EI 4062:min 3764:CI 3507:min 3300:min 2775:AI 2607:is 2588:B. 2581:A. 2202:on 1988:at 1937:at 1933:on 1919:G/K 1909:of 1881:If 1718:in 1351:of 1315:of 947:of 939:at 786:of 710:of 658:of 638:In 135:Sp( 125:SU( 105:SO( 85:SL( 75:GL( 11050:: 11010:20 11008:, 10989:, 10979:76 10977:, 10973:, 10910:. 10906:. 10824:55 10822:, 10802:54 10800:, 10730:74 10728:, 10687:, 10551:. 10484:. 9392:ad 9380:ad 9053:. 9038:, 8927:σx 8925:= 8923:sy 8919:σy 8917:= 8915:sx 8897:, 8848:) 8825:) 8768:) 8709:) 8694:) 8637:) 8620:) 8569:) 8489:) 8478:) 8400:) 8385:) 8370:) 8268:) 8202:) 8185:) 8126:) 8111:) 8027:) 8012:) 7997:) 7852:) 7839:) 7807:) 7749:) 7718:. 7714:kl 7701:) 7662:) 7648:) 7626:) 7610:) 7592:) 7578:) 7560:) 7493:) 7446:) 7426:) 7390:) 7334:) 7294:) 7276:) 7234:) 7197:= 7193:+ 7167:) 7144:= 7140:+ 7114:) 7070:) 7036:) 6996:) 6938:) 6920:) 6903:= 6899:+ 6821:) 6807:) 6770:= 6766:+ 6740:) 6726:) 6635:. 6344:= 6056:= 6032:, 5863:2 5860:8 5792:G 5751:1 5603:4 5413:4 5274:8 5228:16 5073:3 4904:4 4863:12 4806:7 4633:2 4513:2 4472:10 4323:4 4225:6 2718:. 2687:. 2680:, 2673:, 2666:, 2659:, 2634:. 2566:: 2552:: 2538:: 2479:, 2475:, 2471:, 2442:. 2434:, 2430:, 2426:, 2239:∈ 2228:hK 2226:= 2210:. 2184:eK 1913:, 1794:. 1287:, 1128:. 1060:, 1056:, 1009:, 981:. 963:. 788:G. 760:. 702:, 694:. 686:, 115:U( 95:O( 10985:: 10922:. 10918:: 10830:: 10808:: 10736:: 10695:: 10689:4 10596:q 10592:p 10588:q 10584:p 10580:q 10576:p 10564:K 10560:K 10556:G 10545:M 10525:p 10519:i 10515:K 10511:K 10507:G 10423:d 10417:m 10409:| 10406:B 10395:d 10387:1 10382:+ 10376:+ 10369:1 10363:m 10355:| 10352:B 10341:1 10333:1 10328:= 10319:, 10288:g 10266:j 10260:i 10237:0 10234:= 10231:] 10226:j 10220:m 10214:, 10209:i 10203:m 10197:[ 10169:d 10163:m 10146:1 10140:m 10134:= 10129:m 10102:m 10072:i 10068:Y 10064:, 10059:j 10055:Y 10046:j 10038:= 10030:i 10026:Y 10022:, 10012:j 10008:Y 10001:= 9998:) 9993:j 9989:Y 9985:, 9980:i 9976:Y 9972:( 9969:B 9966:= 9958:j 9954:Y 9950:, 9945:i 9941:Y 9932:i 9924:= 9916:j 9912:Y 9908:, 9898:i 9894:Y 9862:i 9858:Y 9852:i 9844:= 9834:i 9830:Y 9804:m 9780:n 9776:Y 9772:, 9766:, 9761:1 9757:Y 9732:) 9726:, 9720:( 9717:B 9695:m 9667:, 9638:) 9635:Y 9632:, 9629:X 9626:( 9623:B 9620:= 9608:Y 9604:, 9601:X 9569:Y 9562:Y 9540:m 9530:m 9506:m 9473:g 9461:, 9435:; 9427:h 9401:) 9398:Y 9386:X 9377:( 9368:= 9365:) 9362:Y 9359:, 9356:X 9353:( 9350:B 9330:M 9325:p 9321:T 9298:p 9287:, 9242:0 9233:h 9225:Y 9222:, 9219:X 9213:) 9210:Y 9207:, 9204:X 9201:( 9198:B 9186:m 9178:M 9173:p 9169:T 9162:Y 9159:, 9156:X 9148:p 9140:Y 9137:, 9134:X 9125:{ 9120:= 9114:g 9105:Y 9102:, 9099:X 9079:G 9075:M 9040:M 9036:X 9032:s 9026:. 9024:X 9020:X 9016:x 9012:s 9007:; 9005:x 9001:s 8994:X 8990:x 8986:M 8982:s 8978:x 8974:X 8970:M 8966:x 8959:M 8957:( 8955:L 8951:G 8935:G 8931:σ 8911:G 8907:s 8903:M 8899:y 8895:x 8891:G 8887:σ 8883:G 8879:M 8846:R 8828:E 8823:H 8813:E 8808:7 8802:E 8796:E 8781:R 8771:E 8766:H 8756:E 8749:E 8743:E 8736:7 8732:8 8730:E 8725:8 8723:E 8716:8 8714:E 8707:C 8703:7 8699:8 8697:E 8692:C 8688:8 8686:E 8679:8 8677:E 8650:E 8645:H 8635:R 8629:E 8618:H 8612:E 8607:6 8601:E 8595:E 8572:E 8567:R 8563:H 8551:E 8538:E 8531:E 8525:E 8502:E 8497:H 8487:R 8481:E 8476:H 8468:) 8466:R 8454:E 8447:E 8441:E 8434:6 8430:7 8428:E 8423:7 8421:E 8416:7 8414:E 8407:7 8405:E 8398:C 8394:6 8390:7 8388:E 8383:C 8379:C 8375:7 8373:E 8368:C 8364:7 8362:E 8355:7 8353:E 8337:E 8330:E 8325:H 8319:E 8312:E 8308:4 8302:E 8296:E 8284:E 8279:H 8271:E 8266:R 8254:E 8247:E 8240:E 8234:E 8222:E 8217:H 8205:E 8200:R 8188:E 8183:R 8171:E 8164:E 8158:E 8146:E 8139:E 8134:H 8124:R 8120:R 8114:E 8109:R 8097:E 8090:E 8084:E 8078:4 8074:6 8072:E 8067:6 8065:E 8060:6 8058:E 8053:6 8051:E 8044:6 8042:E 8036:4 8032:6 8030:E 8025:C 8021:C 8017:6 8015:E 8010:C 8006:C 8002:6 8000:E 7995:C 7991:6 7989:E 7982:6 7980:E 7966:F 7957:F 7948:F 7940:F 7929:F 7919:) 7917:R 7913:R 7906:F 7897:F 7889:F 7881:4 7878:F 7872:4 7869:F 7861:4 7858:F 7850:C 7846:4 7843:F 7837:C 7833:C 7829:4 7826:F 7818:4 7816:F 7805:R 7801:R 7794:G 7785:G 7777:G 7769:2 7766:G 7758:2 7755:G 7747:C 7743:C 7739:2 7736:G 7728:2 7725:G 7709:σ 7699:R 7697:, 7695:n 7691:G 7686:n 7682:ℓ 7678:k 7674:ℓ 7672:, 7670:k 7666:G 7660:C 7658:, 7656:n 7652:G 7646:R 7644:, 7642:l 7638:R 7636:, 7634:k 7630:G 7624:R 7622:, 7620:n 7616:G 7608:H 7606:, 7604:p 7600:p 7598:, 7596:p 7590:q 7588:, 7586:p 7582:G 7576:C 7574:, 7572:n 7568:n 7566:, 7564:n 7557:q 7553:ℓ 7551:, 7548:p 7544:ℓ 7539:q 7535:k 7533:, 7531:p 7528:k 7524:G 7519:n 7515:q 7511:p 7507:q 7505:, 7503:p 7499:G 7491:C 7489:, 7487:n 7483:G 7478:n 7474:ℓ 7470:k 7466:C 7464:, 7462:ℓ 7458:C 7456:, 7454:k 7450:G 7444:C 7442:, 7440:n 7436:G 7424:H 7420:n 7416:G 7410:ℓ 7408:, 7406:k 7402:ℓ 7398:k 7394:G 7388:C 7384:n 7380:G 7374:ℓ 7372:, 7370:k 7366:ℓ 7362:k 7358:G 7352:n 7348:H 7344:n 7340:G 7332:R 7330:, 7328:n 7324:n 7322:, 7320:n 7314:q 7312:, 7310:p 7306:q 7302:p 7298:G 7292:C 7290:, 7288:n 7284:n 7282:, 7280:n 7273:q 7269:l 7267:, 7264:p 7260:ℓ 7255:q 7251:k 7249:, 7246:p 7242:k 7238:G 7232:q 7230:, 7228:p 7224:G 7216:n 7212:C 7208:n 7204:G 7199:n 7195:ℓ 7191:k 7187:C 7185:, 7183:ℓ 7179:C 7177:, 7175:k 7171:G 7165:C 7163:, 7161:n 7157:G 7146:n 7142:ℓ 7138:k 7134:ℓ 7132:, 7130:k 7126:ℓ 7122:k 7118:G 7112:C 7108:n 7104:G 7098:ℓ 7096:, 7094:k 7090:H 7086:ℓ 7082:H 7078:k 7074:G 7068:H 7064:n 7060:G 7054:n 7050:H 7046:n 7042:G 7034:R 7032:, 7030:p 7026:p 7024:, 7022:p 7016:q 7014:, 7012:p 7008:q 7004:p 7000:G 6994:C 6992:, 6990:p 6986:p 6984:, 6982:p 6975:q 6971:l 6969:, 6966:p 6962:l 6957:q 6953:k 6951:, 6949:p 6946:k 6942:G 6936:H 6934:, 6932:p 6928:p 6926:, 6924:p 6918:q 6916:, 6914:p 6910:G 6905:n 6901:q 6897:p 6893:q 6891:, 6889:p 6885:G 6877:n 6873:R 6871:, 6869:n 6865:G 6859:n 6855:C 6851:n 6847:G 6841:R 6839:, 6837:l 6833:R 6831:, 6829:k 6825:G 6819:l 6817:, 6815:k 6811:G 6805:R 6803:, 6801:n 6797:G 6789:n 6785:C 6783:, 6781:n 6777:G 6772:n 6768:ℓ 6764:k 6760:C 6758:, 6756:ℓ 6752:C 6750:, 6748:k 6744:G 6738:C 6736:, 6734:n 6730:G 6724:C 6722:, 6720:n 6716:G 6695:τ 6691:σ 6687:τ 6683:σ 6667:c 6661:g 6648:τ 6644:τ 6642:∘ 6640:σ 6633:τ 6631:∘ 6629:σ 6625:τ 6609:c 6603:g 6590:σ 6574:c 6568:g 6555:τ 6535:g 6511:c 6505:g 6489:K 6485:G 6481:K 6477:G 6473:G 6469:H 6465:H 6461:G 6445:g 6421:c 6415:g 6390:g 6378:σ 6362:g 6350:H 6346:H 6342:G 6335:H 6331:G 6315:g 6291:g 6266:g 6254:H 6250:G 6223:h 6199:h 6171:m 6144:m 6134:h 6129:= 6124:g 6109:H 6105:G 6079:M 6067:G 6062:H 6058:G 6054:M 6046:n 6042:n 6022:n 6018:n 5994:B 5990:A 5976:, 5971:n 5967:) 5962:B 5954:A 5950:( 5903:H 5878:O 5845:) 5842:4 5839:( 5835:O 5832:S 5807:2 5803:G 5774:2 5770:P 5765:O 5733:) 5730:9 5727:( 5723:n 5720:i 5717:p 5714:S 5689:4 5685:F 5656:2 5652:P 5647:H 5624:2 5620:P 5615:O 5585:) 5582:2 5579:( 5575:U 5572:S 5565:) 5562:3 5559:( 5555:p 5552:S 5527:4 5523:F 5494:2 5490:P 5486:) 5482:O 5474:H 5470:( 5448:2 5444:P 5440:) 5436:O 5428:O 5424:( 5395:) 5392:2 5389:( 5385:U 5382:S 5373:7 5369:E 5344:8 5340:E 5311:2 5307:P 5303:) 5299:O 5291:O 5287:( 5256:} 5252:l 5249:o 5246:v 5239:{ 5235:/ 5231:) 5225:( 5221:n 5218:i 5215:p 5212:S 5187:8 5183:E 5154:2 5150:P 5146:) 5142:O 5134:C 5130:( 5108:2 5104:P 5100:) 5096:O 5088:H 5084:( 5055:) 5052:2 5049:( 5045:O 5042:S 5033:6 5029:E 5004:7 5000:E 4972:O 4964:H 4941:2 4937:P 4933:) 4929:O 4921:H 4917:( 4886:) 4883:2 4880:( 4876:U 4873:S 4866:) 4860:( 4856:O 4853:S 4828:7 4824:E 4788:} 4785:I 4779:{ 4775:/ 4771:) 4768:8 4765:( 4761:U 4758:S 4733:7 4729:E 4700:2 4695:P 4692:O 4668:2 4664:P 4660:) 4656:O 4648:C 4644:( 4613:4 4609:F 4584:6 4580:E 4551:2 4547:P 4543:) 4539:O 4531:C 4527:( 4495:) 4492:2 4489:( 4485:O 4482:S 4475:) 4469:( 4465:O 4462:S 4437:6 4433:E 4404:2 4400:P 4396:) 4392:H 4384:C 4380:( 4358:2 4354:P 4350:) 4346:O 4338:C 4334:( 4305:) 4302:2 4299:( 4295:U 4292:S 4285:) 4282:6 4279:( 4275:U 4272:S 4247:6 4243:E 4207:} 4204:I 4198:{ 4194:/ 4190:) 4187:4 4184:( 4180:p 4177:S 4152:6 4148:E 4119:q 4116:+ 4113:p 4108:H 4096:p 4077:) 4074:q 4071:, 4068:p 4065:( 4041:q 4038:p 4035:4 4013:) 4010:q 4007:( 4003:p 4000:S 3993:) 3990:p 3987:( 3983:p 3980:S 3957:) 3954:q 3951:+ 3948:p 3945:( 3941:p 3938:S 3908:n 3903:H 3879:n 3858:) 3855:1 3852:+ 3849:n 3846:( 3843:n 3821:) 3818:n 3815:( 3811:U 3788:) 3785:n 3782:( 3778:p 3775:S 3746:n 3743:2 3738:R 3714:] 3711:2 3707:/ 3703:n 3700:[ 3679:) 3676:1 3670:n 3667:( 3664:n 3642:) 3639:n 3636:( 3632:U 3609:) 3606:n 3603:2 3600:( 3596:O 3593:S 3564:q 3561:+ 3558:p 3553:R 3541:p 3522:) 3519:q 3516:, 3513:p 3510:( 3486:q 3483:p 3461:) 3458:q 3455:( 3451:O 3448:S 3441:) 3438:p 3435:( 3431:O 3428:S 3405:) 3402:q 3399:+ 3396:p 3393:( 3389:O 3386:S 3357:q 3354:+ 3351:p 3346:C 3334:p 3315:) 3312:q 3309:, 3306:p 3303:( 3279:q 3276:p 3273:2 3251:) 3248:) 3245:q 3242:( 3238:U 3231:) 3228:p 3225:( 3221:U 3217:( 3213:S 3190:) 3187:q 3184:+ 3181:p 3178:( 3174:U 3171:S 3141:n 3138:2 3133:C 3109:1 3103:n 3082:) 3079:1 3076:+ 3073:n 3070:2 3067:( 3064:) 3061:1 3055:n 3052:( 3030:) 3027:n 3024:( 3020:p 3017:S 2994:) 2991:n 2988:2 2985:( 2981:U 2978:S 2948:n 2943:C 2919:1 2913:n 2892:2 2888:/ 2884:) 2881:2 2878:+ 2875:n 2872:( 2869:) 2866:1 2860:n 2857:( 2835:) 2832:n 2829:( 2825:O 2822:S 2799:) 2796:n 2793:( 2789:U 2786:S 2760:K 2755:G 2743:K 2739:G 2735:K 2731:G 2716:G 2712:G 2708:G 2704:K 2700:G 2696:K 2692:G 2685:2 2682:G 2678:4 2675:F 2671:8 2668:E 2664:7 2661:E 2657:6 2654:E 2647:n 2643:n 2639:n 2631:G 2625:K 2621:G 2617:K 2613:M 2609:M 2605:G 2601:M 2590:G 2583:G 2568:M 2560:. 2554:M 2546:. 2540:M 2529:M 2509:G 2501:K 2497:M 2493:G 2485:M 2481:g 2477:σ 2473:K 2469:G 2465:M 2440:M 2436:g 2432:σ 2428:K 2424:G 2420:M 2413:M 2409:p 2404:p 2400:s 2396:M 2392:p 2386:p 2382:s 2378:p 2374:p 2372:( 2369:p 2365:s 2360:p 2356:s 2352:K 2348:G 2344:σ 2327:K 2324:) 2317:h 2311:1 2304:h 2300:( 2294:h 2288:K 2281:h 2276:, 2273:M 2267:M 2264:: 2259:p 2255:s 2241:G 2237:h 2233:K 2224:p 2219:K 2215:G 2208:K 2204:G 2200:g 2196:G 2192:G 2188:K 2180:K 2176:G 2172:K 2168:K 2164:K 2160:G 2156:M 2139:, 2133:o 2129:) 2119:G 2115:( 2089:G 2078:K 2051:p 2047:s 2040:h 2032:p 2028:s 2021:h 2018:, 2015:G 2009:G 2006:: 1990:p 1986:M 1981:p 1977:s 1973:M 1969:p 1964:K 1956:M 1952:p 1947:K 1943:p 1939:p 1935:M 1931:G 1923:K 1915:M 1911:M 1907:p 1903:M 1899:M 1891:M 1887:G 1883:M 1859:m 1835:h 1823:σ 1807:g 1780:h 1756:m 1728:g 1704:h 1680:h 1656:m 1632:g 1608:h 1583:. 1578:h 1570:] 1565:m 1560:, 1555:m 1550:[ 1546:, 1541:m 1533:] 1528:m 1523:, 1518:h 1513:[ 1509:, 1504:h 1496:] 1491:h 1486:, 1481:h 1476:[ 1448:m 1438:h 1433:= 1428:g 1397:g 1385:σ 1369:m 1357:G 1353:H 1337:h 1325:σ 1321:σ 1317:G 1301:g 1289:σ 1285:G 1278:G 1274:H 1257:. 1254:} 1251:g 1248:= 1245:) 1242:g 1239:( 1233:: 1230:G 1224:g 1221:{ 1218:= 1209:G 1195:H 1190:G 1185:σ 1181:G 1177:σ 1173:G 1169:σ 1162:H 1158:H 1154:G 1150:G 1138:G 1109:) 1106:1 1103:, 1100:2 1097:( 1094:L 1038:M 1034:M 1030:M 1026:M 1018:M 995:M 979:M 967:M 961:M 957:p 953:f 949:p 941:p 937:f 923:. 920:) 917:t 911:( 905:= 902:) 899:) 896:t 893:( 887:( 884:f 864:p 861:= 858:) 855:0 852:( 839:γ 835:p 827:p 823:f 819:M 815:p 811:M 792:H 780:H 776:G 769:H 765:G 740:M 735:p 731:T 720:p 716:M 712:M 708:p 704:g 700:M 698:( 627:e 620:t 613:v 253:8 251:E 245:7 243:E 237:6 235:E 229:4 227:F 221:2 219:G 201:n 198:D 191:n 188:C 181:n 178:B 171:n 168:A 139:) 137:n 129:) 127:n 119:) 117:n 109:) 107:n 99:) 97:n 89:) 87:n 79:) 77:n 36:. 20:)

Index

Locally symmetric variety
Symmetric space (disambiguation)
Lie groups
Lie algebras

Classical groups
General linear
Special linear
Orthogonal
Special orthogonal
Unitary
Special unitary
Symplectic
Simple Lie groups
An
Bn
Cn
Dn
G2
F4
E6
E7
E8
Other Lie groups
Circle
Lorentz
Poincaré
Conformal group
Diffeomorphism
Loop

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.