Knowledge (XXG)

Exact sequence

Source 📝

31: 7715: 3970: 7498: 1379: 7736: 7704: 3627: 7773: 7746: 7726: 4960: 1162: 5393: 2751: 5907: 5508: 4312: 3965:{\displaystyle {\begin{aligned}\nabla \times {\vec {A}}&=\left(\partial _{y}A_{z}-\partial _{z}A_{y}\right){\hat {i}}+\left(\partial _{z}A_{x}-\partial _{x}A_{z}\right){\hat {j}}+\left(\partial _{x}A_{y}-\partial _{y}A_{x}\right){\hat {k}}\\&=F_{x}{\hat {i}}+F_{y}{\hat {j}}+F_{z}{\hat {k}}={\vec {F}}\end{aligned}}} 4679: 281: 1146: 2771:
Too much use of "we", "note". Also, this section is too technical for most readers of this article: it should be reduced to the definitions that are needed for understanding the statement (exactness of a sequence). The proof and the technical details do not belong to this article, but should appear
1374:{\displaystyle {\begin{aligned}0\rightarrow K_{1}\rightarrow {}&A_{1}\rightarrow K_{2}\rightarrow 0,\\0\rightarrow K_{2}\rightarrow {}&A_{2}\rightarrow K_{3}\rightarrow 0,\\&\ \,\vdots \\0\rightarrow K_{n-1}\rightarrow {}&A_{n-1}\rightarrow K_{n}\rightarrow 0,\\\end{aligned}}} 5289: 1859: 1581: 4496: 5686: 3311: 5767: 1735: 5423: 4087: 5256:. Since definitionally we have landed on a space of integrable functions, any such function can (at least formally) be integrated in order to produce a vector field which divergence is that function — so the image of the divergence is the entirety of 5073: 4955:{\displaystyle {\begin{aligned}-\partial _{x}\int F_{x}dz+\partial _{x}{\vec {C_{2}}}(x,y)-\partial _{y}\int F_{y}dz&=F_{z}\\-\int \left(\partial _{x}F_{x}+\partial _{y}F_{y}\right)dz+\partial _{x}{\vec {C_{2}}}(x,y)&=F_{z}\end{aligned}}} 3106: 6582: 6072: 118: 5759: 988: 7230:
If we take a series of short exact sequences linked by chain complexes (that is, a short exact sequence of chain complexes, or from another point of view, a chain complex of short exact sequences), then we can derive from this a
3027: 6197: 5182: 2899: 6671:(This is true for a number of interesting categories, including any abelian category such as the abelian groups; but it is not true for all categories that allow exact sequences, and in particular is not true for the 3550: 810: 6746: 5388:{\displaystyle 0\to L^{2}\mathrel {\xrightarrow {\operatorname {grad} } } \mathbb {H} _{3}\mathrel {\xrightarrow {\operatorname {curl} } } \mathbb {H} _{3}\mathrel {\xrightarrow {\operatorname {div} } } L^{2}\to 0} 6666: 1789: 6454: 6360:
The importance of short exact sequences is underlined by the fact that every exact sequence results from "weaving together" several overlapping short exact sequences. Consider for instance the exact sequence
2735: 875: 672: 4017: 1520: 4323: 5581: 3413: 5912:
we see that if a function is an eigenfunction of the vector Laplacian, its divergence must be an eigenfunction of the scalar Laplacian with the same eigenvalue. Then we can build our inverse function
5902:{\displaystyle {\begin{aligned}\nabla \cdot \nabla ^{2}{\vec {A}}&=\nabla \cdot \nabla \left(\nabla \cdot {\vec {A}}\right)\\&=\nabla ^{2}\left(\nabla \cdot {\vec {A}}\right)\\\end{aligned}}} 391: 5573: 3229: 2289: 7058: 5772: 4684: 4328: 3632: 1167: 2118: 1436: 3363: 5503:{\displaystyle 0\to L^{2}\mathrel {\xrightarrow {\operatorname {grad} } } \mathbb {H} _{3}\mathrel {\xrightarrow {\operatorname {curl} } } \operatorname {im} (\operatorname {curl} )\to 0.} 4557: 2619: 6987: 1683: 6005: 3591: 4307:{\displaystyle -\partial _{z}A_{y}{\hat {i}}+\partial _{z}A_{x}{\hat {j}}+\left(\partial _{x}A_{y}-\partial _{y}A_{x}\right){\hat {k}}=F_{x}{\hat {i}}+F_{y}{\hat {j}}+F_{z}{\hat {k}}} 2014: 2938: 2336: 1671: 966: 6922: 6843: 6105: 5969: 4968: 3218: 2967: 2471: 1643: 506:. Traditionally, this, along with the single identity element, is denoted 0 (additive notation, usually when the groups are abelian), or denoted 1 (multiplicative notation). 4671: 5940: 454: 6320:
For non-commutative groups, the splitting lemma does not apply, and one has only the equivalence between the two last conditions, with "the direct sum" replaced with "a
4075: 4046: 3620: 3442: 3177: 3148: 2533: 2433: 4317:
Then by simply integrating the first two components, and noting that the 'constant' of integration may still depend on any variable not integrated over, we find that
6876: 2368: 4604: 2186: 502:
To understand the definition, it is helpful to consider relatively simple cases where the sequence is of group homomorphisms, is finite, and begins or ends with the
5281: 5254: 5216: 4635: 3046: 2846: 2505: 2402: 2148: 1487: 422: 321: 62: 276:{\displaystyle G_{0}\;{\xrightarrow {\ f_{1}\ }}\;G_{1}\;{\xrightarrow {\ f_{2}\ }}\;G_{2}\;{\xrightarrow {\ f_{3}\ }}\;\cdots \;{\xrightarrow {\ f_{n}\ }}\;G_{n}} 6472: 6017: 2561: 6797: 2040: 7776: 1456: 1141:{\displaystyle A_{0}\;\xrightarrow {\ f_{1}\ } \;A_{1}\;\xrightarrow {\ f_{2}\ } \;A_{2}\;\xrightarrow {\ f_{3}\ } \;\cdots \;\xrightarrow {\ f_{n}\ } \;A_{n},} 5694: 5517:, and since the Hilbert space of square-integrable functions can be spanned by the eigenfunctions of the Laplacian, we already see that some inverse mapping 5229:
Having thus proved that the image of the curl is precisely the kernel of the divergence, this morphism in turn takes us back to the space we started from
5410:
can be written as a curl of another field. (Reasoning in this direction thus makes use of the fact that 3-dimensional space is topologically trivial.)
2972: 6125: 5081: 6766: 2851: 3451: 7131: 3191:
is then precisely the kernel of the curl, and so we can then take the curl to be our next morphism, taking us again to a (different) subset of
743: 6698: 1854:{\displaystyle 0\to \mathbf {Z} \mathrel {\overset {2\times }{\longrightarrow }} \mathbf {Z} \longrightarrow \mathbf {Z} /2\mathbf {Z} \to 0} 6594: 3121:
is a subset of the kernel of the curl. To prove that they are in fact the same set, prove the converse: that if the curl of a vector field
6367: 1576:{\displaystyle \mathbf {Z} \mathrel {\overset {2\times }{\,\hookrightarrow }} \mathbf {Z} \twoheadrightarrow \mathbf {Z} /2\mathbf {Z} } 4491:{\displaystyle {\begin{aligned}A_{x}&=\int F_{y}dz+{\vec {C_{1}}}(x,y)\\A_{y}&=-\int F_{x}dz+{\vec {C_{2}}}(x,y)\end{aligned}}} 2634: 1748:
and although it looks like an identity function, it is not onto (that is, not an epimorphism) because the odd numbers don't belong to 2
821: 7410: 619: 5681:{\displaystyle \nabla ^{2}{\vec {A}}=\nabla \left(\nabla \cdot {\vec {A}}\right)+\nabla \times \left(\nabla \times {\vec {A}}\right)} 3978: 1772:
used in the previous sequence. This latter sequence does differ in the concrete nature of its first object from the previous one as 2
7764: 7759: 7379: 7349: 6588:
Suppose in addition that the cokernel of each morphism exists, and is isomorphic to the image of the next morphism in the sequence:
2794: 1957:
to be mapped by inclusion (that is, by a monomorphism) as a proper subgroup of itself. Instead the sequence that emerges from the
5971:
into the vector-Laplacian eigenbasis, scaling each by the inverse of their eigenvalue, and taking the divergence; the action of
3368: 7754: 7087:
Conversely, given any list of overlapping short exact sequences, their middle terms form an exact sequence in the same manner.
5188: 3306:{\displaystyle \operatorname {div} \left(\operatorname {curl} {\vec {v}}\right)\equiv \nabla \cdot \nabla \times {\vec {v}}=0,} 2776: 326: 7227:
Given any chain complex, its homology can therefore be thought of as a measure of the degree to which it fails to be exact.
5691:
Since we are trying to construct an identity mapping by composing some function with the gradient, we know that in our case
5520: 2232: 7656: 6992: 7802: 7797: 6353:
gives conditions under which the middle map in a commutative diagram with exact rows of length 5 is an isomorphism; the
2055: 7248: 2766: 983:
A long exact sequence is equivalent to a family of short exact sequences in the following sense: Given a long sequence
1389: 4610:. This permits us to eliminate either of the terms in favor of the other, without spoiling our earlier work that set 3333: 1730:{\displaystyle 2\mathbf {Z} \mathrel {\,\hookrightarrow } \mathbf {Z} \twoheadrightarrow \mathbf {Z} /2\mathbf {Z} } 7664: 4504: 2574: 30: 7095:
In the theory of abelian categories, short exact sequences are often used as a convenient language to talk about
6927: 5403: 1958: 7735: 7463: 7135: 5974: 3555: 483: 5575:
must exist. To explicitly construct such an inverse, we can start from the definition of the vector Laplacian
1677:
of the monomorphism is the kernel of the epimorphism. Essentially "the same" sequence can also be written as
1967: 518:. The image of the leftmost map is 0. Therefore the sequence is exact if and only if the rightmost map (from 7749: 5414: 5407: 2908: 2568:
These homomorphisms are restrictions of similarly defined homomorphisms that form the short exact sequence
7684: 7679: 7605: 7482: 7470: 7443: 7403: 7212: 2303: 479: 5068:{\displaystyle \operatorname {div} {\vec {F}}=\partial _{x}F_{x}+\partial _{y}F_{y}+\partial _{z}F_{z}=0} 1656: 7526: 7453: 2808: 7714: 1783:
The first sequence may also be written without using special symbols for monomorphism and epimorphism:
936: 6881: 6081: 5945: 3194: 3029:— specifically, the set of such functions that represent conservative vector fields. (The generalized 2943: 2438: 1628: 7674: 7626: 7600: 7448: 7251:
is another example. Long exact sequences induced by short exact sequences are also characteristic of
6802: 882: 89: 4640: 2761: 7725: 7521: 7371: 6339: 2217: 475: 463: 97: 81: 35: 5915: 427: 7719: 7669: 7590: 7580: 7458: 7438: 7240: 6672: 6321: 3184: 3037: 1899:
is {0}, and the kernel of multiplication by 2 is also {0}, so the sequence is exact at the first
1888: 491: 287: 85: 7689: 6760:).) Then we obtain a commutative diagram in which all the diagonals are short exact sequences: 4051: 4022: 3596: 3418: 3180: 3153: 3124: 3030: 5402:
space, a curl-free vector field (a field in the kernel of the curl) can always be written as a
2512: 2412: 7707: 7573: 7531: 7396: 7375: 7345: 7341: 7244: 7235:(that is, an exact sequence indexed by the natural numbers) on homology by application of the 7103: 6753: 3321: 3101:{\displaystyle \operatorname {curl} (\operatorname {grad} f)\equiv \nabla \times (\nabla f)=0} 2812: 6848: 2347: 1949:
The first and third sequences are somewhat of a special case owing to the infinite nature of
7487: 7433: 7363: 7333: 6765: 6577:{\displaystyle C_{k}\cong \ker(A_{k}\to A_{k+1})\cong \operatorname {im} (A_{k-1}\to A_{k})} 6354: 6067:{\displaystyle \mathbb {H} _{3}\cong L^{2}\oplus \operatorname {im} (\operatorname {curl} )} 5399: 4574: 2161: 597: 101: 93: 5259: 5232: 5194: 4613: 2824: 2478: 2375: 2126: 1465: 400: 299: 40: 7546: 7541: 7287: 7252: 7220: 7069: 6116: 6008: 2625: 722: 7364: 6107:
can be broken into the sum of a gradient and a curl — which is what we set out to prove.
2540: 7311: 2022: 1673:
indicates an epimorphism (the map mod 2). This is an exact sequence because the image 2
7636: 7568: 7359: 6775: 5754:{\displaystyle \nabla \times {\vec {A}}=\operatorname {curl} \left({\vec {A}}\right)=0} 2189: 1441: 6772:
The only portion of this diagram that depends on the cokernel condition is the object
7791: 7646: 7556: 7536: 7334: 7329: 7258: 7236: 7180: 4048:
without changing the curl. We can use this gauge freedom to set any one component of
2819: 2043: 911: 545:. Therefore the sequence is exact if and only if the image of the leftmost map (from 503: 65: 7739: 7631: 7551: 7497: 5413:
This short exact sequence also permits a much shorter proof of the validity of the
2969:, the space of vector valued, still square-integrable functions on the same domain 2151: 1954: 1877: 527: 467: 17: 7060:
is ensured. Again taking the example of the category of groups, the fact that im(
3022:{\displaystyle \left\lbrace f:\mathbb {R} ^{3}\to \mathbb {R} ^{3}\right\rbrace } 7729: 7641: 6335: 6192:{\displaystyle 0\to A\;\xrightarrow {\ f\ } \;B\;\xrightarrow {\ g\ } \;C\to 0,} 5177:{\displaystyle \int \partial _{z}F_{z}dz+\partial _{x}{\vec {C_{2}}}(x,y)=F_{z}} 585: 558: 7585: 7516: 7475: 7118:?" In the category of groups, this is equivalent to the question, what groups 6350: 6343: 6291: 3317: 3179:
is the gradient of some scalar function. This follows almost immediately from
2407: 919: 581: 471: 456:, i.e., if the image of each homomorphism is equal to the kernel of the next. 2894:{\displaystyle \left\lbrace f:\mathbb {R} ^{3}\to \mathbb {R} \right\rbrace } 7610: 7096: 5514: 5417:
that does not rely on brute-force vector calculus. Consider the subsequence
698: 77: 459:
The sequence of groups and homomorphisms may be either finite or infinite.
3545:{\displaystyle {\vec {F}}=F_{x}{\hat {i}}+F_{y}{\hat {j}}+F_{z}{\hat {k}}} 27:
Sequence of homomorphisms such that each kernel equals the preceding image
7595: 7563: 7512: 7419: 3188: 3118: 2902: 805:{\displaystyle C\cong B/\operatorname {im} (f)=B/\operatorname {ker} (g)} 487: 7114:
of a short exact sequence, what possibilities exist for the middle term
7262: 6741:{\displaystyle H/{\left\langle \operatorname {im} f\right\rangle }^{H}} 5222:, a solution to the above system of equations is guaranteed to exist. 478:. More generally, the notion of an exact sequence makes sense in any 7130:
as the corresponding factor group? This problem is important in the
6661:{\displaystyle C_{k}\cong \operatorname {coker} (A_{k-2}\to A_{k-1})} 6164: 6143: 5472: 5448: 5362: 5338: 5314: 1105: 1077: 1042: 1007: 851: 838: 649: 636: 242: 212: 175: 138: 6449:{\displaystyle A_{1}\to A_{2}\to A_{3}\to A_{4}\to A_{5}\to A_{6}} 2049:
As a more concrete example of an exact sequence on finite groups:
980:, to distinguish from the special case of a short exact sequence. 29: 2848:
of scalar-valued square-integrable functions on three dimensions
2730:{\displaystyle 0\to R/(I\cap J)\to R/I\oplus R/J\to R/(I+J)\to 0} 870:{\displaystyle 0\to A\xrightarrow {f} B\xrightarrow {g} C\to 0\,} 1756:
through this monomorphism is however exactly the same subset of
667:{\displaystyle 0\to A\xrightarrow {f} B\xrightarrow {g} C\to 0.} 7392: 6342:
with two exact rows gives rise to a longer exact sequence. The
4012:{\displaystyle \operatorname {curl} (\operatorname {grad} f)=0} 7219:
Exact sequences are precisely those chain complexes which are
3320:. The converse is somewhat involved (for the general case see 2744: 6357:
is a special case thereof applying to short exact sequences.
4077:
to zero without changing its curl; choosing arbitrarily the
7388: 7366:
Commutative Algebra: with a View Toward Algebraic Geometry
3408:{\displaystyle {\vec {F}}=\operatorname {curl} {\vec {A}}} 3316:
so the image of the curl is a subset of the kernel of the
7072:, which coincides with its conjugate closure; thus coker( 6327:
In both cases, one says that such a short exact sequence
5406:(and thus is in the image of the gradient). Similarly, a 4673:
and applying the last component as a constraint, we have
677:
As established above, for any such short exact sequence,
526:) has kernel {0}; that is, if and only if that map is a 386:{\displaystyle \operatorname {im} (f_{i})=\ker(f_{i+1})} 6078:
or equivalently, any square-integrable vector field on
3448:
We shall proceed by construction: given a vector field
6805: 6778: 5568:{\displaystyle \nabla ^{-1}:\mathbb {H} _{3}\to L^{2}} 5398:
Equivalently, we could have reasoned in reverse: in a
3326: 613:
Short exact sequences are exact sequences of the form
7265:
that transform exact sequences into exact sequences.
6995: 6930: 6884: 6851: 6701: 6597: 6475: 6370: 6128: 6084: 6020: 5977: 5948: 5918: 5770: 5697: 5584: 5523: 5426: 5292: 5262: 5235: 5197: 5084: 4971: 4682: 4643: 4616: 4577: 4507: 4326: 4090: 4054: 4025: 3981: 3630: 3599: 3558: 3454: 3421: 3371: 3336: 3232: 3197: 3156: 3127: 3049: 2975: 2946: 2911: 2854: 2827: 2637: 2577: 2543: 2515: 2481: 2441: 2415: 2378: 2350: 2306: 2284:{\displaystyle 0\to I\cap J\to I\oplus J\to I+J\to 0} 2235: 2164: 2129: 2058: 2025: 1970: 1792: 1686: 1659: 1631: 1523: 1468: 1444: 1392: 1165: 991: 939: 824: 746: 622: 430: 403: 329: 302: 121: 43: 4571:, then we can add another gradient of some function 4019:, we can add the gradient of any scalar function to 466:. For example, one could have an exact sequence of 7655: 7619: 7505: 7426: 7215:of this chain complex is trivial. More succinctly: 7053:{\displaystyle 0\to C_{k}\to A_{k}\to C_{k+1}\to 0} 1514:Consider the following sequence of abelian groups: 580:is both a monomorphism and epimorphism (that is, a 7141:Notice that in an exact sequence, the composition 7052: 6981: 6916: 6870: 6837: 6791: 6740: 6660: 6576: 6448: 6191: 6099: 6066: 5999: 5963: 5934: 5901: 5753: 5680: 5567: 5502: 5387: 5275: 5248: 5210: 5176: 5067: 4954: 4665: 4629: 4598: 4551: 4490: 4306: 4069: 4040: 4011: 3964: 3614: 3585: 3544: 3436: 3407: 3357: 3305: 3212: 3171: 3142: 3117:. However, this only proves that the image of the 3100: 3021: 2961: 2932: 2893: 2840: 2729: 2613: 2555: 2527: 2499: 2465: 2427: 2396: 2362: 2330: 2283: 2180: 2142: 2113:{\displaystyle 1\to C_{n}\to D_{2n}\to C_{2}\to 1} 2112: 2034: 2008: 1853: 1729: 1665: 1637: 1575: 1481: 1450: 1430: 1373: 1140: 960: 869: 804: 666: 448: 416: 385: 315: 275: 56: 7106:is essentially the question "Given the end terms 5191:requires that the first term above be precisely 1431:{\displaystyle K_{i}=\operatorname {im} (f_{i})} 5761:. Then if we take the divergence of both sides 1910:, and the kernel of reducing modulo 2 is also 2 1864:Here 0 denotes the trivial group, the map from 1157:2, we can split it up into the short sequences 976:A general exact sequence is sometimes called a 3358:{\displaystyle \operatorname {div} {\vec {F}}} 1780:even though the two are isomorphic as groups. 7404: 4552:{\displaystyle {\vec {C_{1}}},{\vec {C_{2}}}} 2614:{\displaystyle 0\to R\to R\oplus R\to R\to 0} 685:is an epimorphism. Furthermore, the image of 8: 5513:Since the divergence of the gradient is the 1653:is a monomorphism, and the two-headed arrow 1602:. The second homomorphism maps each element 6982:{\displaystyle A_{k-1}\to A_{k}\to A_{k+1}} 2741:Grad, curl and div in differential geometry 1937:, so the sequence is exact at the position 462:A similar definition can be made for other 112:In the context of group theory, a sequence 7772: 7745: 7411: 7397: 7389: 6176: 6159: 6155: 6138: 6007:is thus clearly the identity. Thus by the 4501:Note that since the two integration terms 1124: 1100: 1096: 1072: 1061: 1037: 1026: 1002: 262: 236: 232: 206: 195: 169: 158: 132: 7032: 7019: 7006: 6994: 6967: 6954: 6935: 6929: 6902: 6889: 6883: 6856: 6850: 6823: 6810: 6804: 6783: 6777: 6732: 6711: 6705: 6700: 6643: 6624: 6602: 6596: 6565: 6546: 6515: 6502: 6480: 6474: 6440: 6427: 6414: 6401: 6388: 6375: 6369: 6127: 6119:states that, for a short exact sequence 6091: 6087: 6086: 6083: 6040: 6027: 6023: 6022: 6019: 6000:{\displaystyle \nabla ^{-1}\circ \nabla } 5982: 5976: 5955: 5951: 5950: 5947: 5923: 5917: 5879: 5878: 5861: 5831: 5830: 5792: 5791: 5785: 5771: 5769: 5730: 5729: 5705: 5704: 5696: 5662: 5661: 5625: 5624: 5596: 5595: 5589: 5583: 5559: 5546: 5542: 5541: 5528: 5522: 5467: 5461: 5457: 5456: 5443: 5437: 5425: 5373: 5357: 5351: 5347: 5346: 5333: 5327: 5323: 5322: 5309: 5303: 5291: 5267: 5261: 5240: 5234: 5202: 5196: 5168: 5134: 5128: 5127: 5121: 5102: 5092: 5083: 5053: 5043: 5030: 5020: 5007: 4997: 4979: 4978: 4970: 4942: 4904: 4898: 4897: 4891: 4867: 4857: 4844: 4834: 4809: 4786: 4773: 4739: 4733: 4732: 4726: 4707: 4694: 4683: 4681: 4651: 4645: 4644: 4642: 4621: 4615: 4576: 4537: 4531: 4530: 4515: 4509: 4508: 4506: 4457: 4451: 4450: 4435: 4412: 4377: 4371: 4370: 4355: 4335: 4327: 4325: 4293: 4292: 4286: 4268: 4267: 4261: 4243: 4242: 4236: 4218: 4217: 4206: 4196: 4183: 4173: 4150: 4149: 4143: 4133: 4115: 4114: 4108: 4098: 4089: 4056: 4055: 4053: 4027: 4026: 4024: 3980: 3947: 3946: 3932: 3931: 3925: 3907: 3906: 3900: 3882: 3881: 3875: 3850: 3849: 3838: 3828: 3815: 3805: 3782: 3781: 3770: 3760: 3747: 3737: 3714: 3713: 3702: 3692: 3679: 3669: 3642: 3641: 3631: 3629: 3601: 3600: 3598: 3586:{\displaystyle \nabla \cdot {\vec {F}}=0} 3566: 3565: 3557: 3531: 3530: 3524: 3506: 3505: 3499: 3481: 3480: 3474: 3456: 3455: 3453: 3423: 3422: 3420: 3394: 3393: 3373: 3372: 3370: 3344: 3343: 3335: 3283: 3282: 3251: 3250: 3231: 3204: 3200: 3199: 3196: 3158: 3157: 3155: 3129: 3128: 3126: 3048: 3008: 3004: 3003: 2993: 2989: 2988: 2974: 2953: 2949: 2948: 2945: 2924: 2920: 2919: 2910: 2882: 2881: 2872: 2868: 2867: 2853: 2832: 2826: 2795:Learn how and when to remove this message 2701: 2687: 2673: 2647: 2636: 2576: 2542: 2514: 2480: 2440: 2414: 2377: 2349: 2305: 2234: 2169: 2163: 2134: 2128: 2098: 2082: 2069: 2057: 2024: 1992: 1969: 1929:, and the kernel of the zero map is also 1914:, so the sequence is exact at the second 1872:is multiplication by 2, and the map from 1840: 1832: 1827: 1819: 1804: 1799: 1791: 1722: 1714: 1709: 1701: 1696: 1695: 1690: 1685: 1658: 1630: 1586:The first homomorphism maps each element 1568: 1560: 1555: 1547: 1532: 1529: 1524: 1522: 1473: 1467: 1443: 1419: 1397: 1391: 1352: 1333: 1325: 1310: 1292: 1269: 1256: 1248: 1239: 1210: 1197: 1189: 1180: 1166: 1164: 1129: 1113: 1085: 1066: 1050: 1031: 1015: 996: 990: 938: 866: 823: 782: 756: 745: 621: 572:→ 0 is exact if and only if the map from 557:; that is, if and only if that map is an 429: 408: 402: 368: 343: 328: 307: 301: 267: 250: 237: 220: 207: 200: 183: 170: 163: 146: 133: 126: 120: 48: 42: 7064:) is the kernel of some homomorphism on 6199:the following conditions are equivalent. 4081:-component, we thus require simply that 2300:-modules, where the module homomorphism 1497:is a long exact sequence if and only if 541:→ 0. The kernel of the rightmost map is 7279: 6459:which implies that there exist objects 3975:First, note that since as proved above 2772:in an article of differential geometry. 2042:as these groups are not supposed to be 2009:{\displaystyle 1\to N\to G\to G/N\to 1} 721:as the corresponding factor object (or 2811:, especially relevant for work on the 2933:{\displaystyle f\in \mathbb {H} _{1}} 1906:the image of multiplication by 2 is 2 1891:2. This is indeed an exact sequence: 92:, and, more generally, objects of an 34:Illustration of an exact sequence of 7: 7370:. Springer-Verlag New York. p.  7288:"exact sequence in nLab, Remark 2.3" 5283:, and we can complete our sequence: 2807:Another example can be derived from 2331:{\displaystyle I\cap J\to I\oplus J} 5942:simply by breaking any function in 3040:of all such fields is zero — since 2019:(here the trivial group is denoted 1740:In this case the monomorphism is 2 1666:{\displaystyle \twoheadrightarrow } 1489:'s (regardless of the exactness of 5994: 5979: 5920: 5872: 5858: 5824: 5816: 5810: 5782: 5775: 5698: 5655: 5644: 5618: 5610: 5586: 5525: 5118: 5089: 5040: 5017: 4994: 4888: 4854: 4831: 4770: 4723: 4691: 4193: 4170: 4130: 4095: 3825: 3802: 3757: 3734: 3689: 3666: 3635: 3559: 3276: 3270: 3083: 3074: 1921:the image of reducing modulo 2 is 25: 1458:. By construction, the sequences 961:{\displaystyle B\cong A\oplus C.} 7771: 7744: 7734: 7724: 7713: 7703: 7702: 7496: 6989:is exact, then the exactness of 6917:{\displaystyle A_{k}\to A_{k+1}} 6838:{\textstyle A_{6}\to C_{7}\to 0} 6799:and the final pair of morphisms 6764: 6100:{\displaystyle \mathbb {R} ^{3}} 5964:{\displaystyle \mathbb {H} _{3}} 3213:{\displaystyle \mathbb {H} _{3}} 2962:{\displaystyle \mathbb {H} _{3}} 2749: 2466:{\displaystyle I\oplus J\to I+J} 2196:, which is a non-abelian group. 1841: 1828: 1820: 1800: 1723: 1710: 1702: 1691: 1638:{\displaystyle \hookrightarrow } 1614:in the quotient group; that is, 1569: 1556: 1548: 1525: 7179:, so every exact sequence is a 7091:Applications of exact sequences 5189:fundamental theorem of calculus 4637:to zero. Choosing to eliminate 2200:Intersection and sum of modules 1645:indicates that the map 2× from 1501:are all short exact sequences. 910:. It follows that if these are 886:if there exists a homomorphism 7044: 7025: 7012: 6999: 6960: 6947: 6895: 6845:. If there exists any object 6829: 6816: 6655: 6636: 6617: 6571: 6558: 6539: 6527: 6508: 6495: 6433: 6420: 6407: 6394: 6381: 6180: 6132: 6061: 6055: 5884: 5836: 5797: 5735: 5710: 5667: 5630: 5601: 5552: 5494: 5491: 5485: 5430: 5379: 5296: 5158: 5146: 5140: 4984: 4928: 4916: 4910: 4763: 4751: 4745: 4666:{\displaystyle {\vec {C_{1}}}} 4657: 4593: 4581: 4543: 4521: 4481: 4469: 4463: 4401: 4389: 4383: 4298: 4273: 4248: 4223: 4155: 4120: 4061: 4032: 4000: 3988: 3952: 3937: 3912: 3887: 3855: 3787: 3719: 3647: 3606: 3571: 3536: 3511: 3486: 3461: 3428: 3399: 3378: 3349: 3288: 3256: 3163: 3134: 3089: 3080: 3068: 3056: 3033:has preserved integrability.) 2999: 2878: 2721: 2718: 2706: 2695: 2667: 2664: 2652: 2641: 2628:yields another exact sequence 2605: 2599: 2587: 2581: 2494: 2482: 2451: 2391: 2379: 2316: 2275: 2263: 2251: 2239: 2104: 2091: 2075: 2062: 2000: 1986: 1980: 1974: 1887:is given by reducing integers 1845: 1824: 1806: 1796: 1706: 1697: 1660: 1632: 1552: 1533: 1425: 1412: 1358: 1345: 1322: 1303: 1275: 1262: 1245: 1232: 1216: 1203: 1186: 1173: 860: 828: 799: 793: 773: 767: 658: 626: 380: 361: 349: 336: 80:between objects (for example, 1: 7076:) is isomorphic to the image 5404:gradient of a scalar function 4606:that also does not depend on 7340:. Berlin: Springer. p.  5935:{\displaystyle \nabla ^{-1}} 693:. It is helpful to think of 564:Therefore, the sequence 0 → 494:, where it is widely used. 449:{\displaystyle 1\leq i<n} 2769:. The specific problem is: 1953:. It is not possible for a 533:Consider the dual sequence 530:(injective, or one-to-one). 100:of one morphism equals the 7819: 7665:Banach fixed-point theorem 6466:in the category such that 4070:{\displaystyle {\vec {A}}} 4041:{\displaystyle {\vec {A}}} 3615:{\displaystyle {\vec {A}}} 3437:{\displaystyle {\vec {A}}} 3172:{\displaystyle {\vec {F}}} 3143:{\displaystyle {\vec {F}}} 2765:to meet Knowledge (XXG)'s 898:such that the composition 689:is equal to the kernel of 510:Consider the sequence 0 → 7698: 7494: 7126:as a normal subgroup and 2528:{\displaystyle I\oplus J} 2428:{\displaystyle I\oplus J} 1959:first isomorphism theorem 1895:the image of the map 0 → 815:The short exact sequence 393:. The sequence is called 7136:Outer automorphism group 7132:classification of groups 7084:) of the next morphism. 6270:There exists a morphism 6237:There exists a morphism 6204:There exists a morphism 3223:Similarly, we note that 2940:moves us to a subset of 2294:is an exact sequence of 737:inducing an isomorphism 490:, and more specially in 7249:Mayer–Vietoris sequence 7192:-images of elements of 6871:{\displaystyle A_{k+1}} 5415:Helmholtz decomposition 5408:solenoidal vector field 2435:, and the homomorphism 2363:{\displaystyle I\cap J} 1776:is not the same set as 1590:in the set of integers 906:is the identity map on 397:if it is exact at each 7720:Mathematics portal 7620:Metrics and properties 7606:Second-countable space 7312:"Divergenceless field" 7054: 6983: 6918: 6872: 6839: 6793: 6742: 6662: 6578: 6450: 6193: 6101: 6068: 6001: 5965: 5936: 5903: 5755: 5682: 5569: 5504: 5389: 5277: 5250: 5212: 5178: 5069: 4956: 4667: 4631: 4600: 4599:{\displaystyle f(x,y)} 4553: 4492: 4308: 4071: 4042: 4013: 3966: 3616: 3587: 3546: 3438: 3409: 3359: 3307: 3214: 3173: 3144: 3102: 3023: 2963: 2934: 2895: 2842: 2731: 2615: 2557: 2529: 2501: 2467: 2429: 2398: 2364: 2332: 2285: 2182: 2181:{\displaystyle D_{2n}} 2144: 2114: 2036: 2010: 1855: 1731: 1667: 1639: 1625:. Here the hook arrow 1577: 1483: 1452: 1432: 1375: 1142: 962: 871: 806: 681:is a monomorphism and 668: 596:(this always holds in 561:(surjective, or onto). 450: 418: 387: 317: 277: 69: 58: 7068:implies that it is a 7055: 6984: 6919: 6873: 6840: 6794: 6743: 6663: 6579: 6451: 6194: 6102: 6069: 6002: 5966: 5937: 5904: 5756: 5683: 5570: 5505: 5390: 5278: 5276:{\displaystyle L^{2}} 5251: 5249:{\displaystyle L^{2}} 5213: 5211:{\displaystyle F_{z}} 5179: 5070: 4957: 4668: 4632: 4630:{\displaystyle A_{z}} 4601: 4554: 4493: 4309: 4072: 4043: 4014: 3967: 3617: 3593:, we produce a field 3588: 3547: 3439: 3410: 3360: 3308: 3215: 3174: 3145: 3103: 3024: 2964: 2935: 2896: 2843: 2841:{\displaystyle L^{2}} 2809:differential geometry 2732: 2616: 2558: 2530: 2502: 2500:{\displaystyle (x,y)} 2468: 2430: 2399: 2397:{\displaystyle (x,x)} 2365: 2333: 2286: 2183: 2145: 2143:{\displaystyle C_{n}} 2115: 2037: 2011: 1856: 1732: 1668: 1640: 1578: 1484: 1482:{\displaystyle K_{i}} 1453: 1433: 1376: 1143: 963: 918:is isomorphic to the 872: 807: 669: 584:), and so usually an 451: 419: 417:{\displaystyle G_{i}} 388: 318: 316:{\displaystyle G_{i}} 278: 59: 57:{\displaystyle G_{i}} 33: 7675:Invariance of domain 7627:Euler characteristic 7601:Bundle (mathematics) 7330:Spanier, Edwin Henry 7183:. Furthermore, only 7099:and factor objects. 6993: 6928: 6882: 6849: 6803: 6776: 6699: 6595: 6473: 6368: 6126: 6082: 6018: 5975: 5946: 5916: 5768: 5695: 5582: 5521: 5424: 5290: 5260: 5233: 5195: 5082: 4969: 4680: 4641: 4614: 4575: 4559:both depend only on 4505: 4324: 4088: 4052: 4023: 3979: 3628: 3597: 3556: 3452: 3419: 3369: 3334: 3230: 3195: 3187:.) The image of the 3154: 3125: 3047: 2973: 2944: 2909: 2852: 2825: 2777:improve this section 2635: 2575: 2541: 2513: 2479: 2439: 2413: 2376: 2348: 2304: 2233: 2162: 2127: 2056: 2023: 1968: 1790: 1684: 1657: 1629: 1521: 1466: 1442: 1390: 1163: 989: 937: 822: 744: 620: 609:Short exact sequence 476:module homomorphisms 474:, or of modules and 464:algebraic structures 428: 401: 327: 300: 119: 41: 7803:Additive categories 7798:Homological algebra 7685:Tychonoff's theorem 7680:Poincaré conjecture 7434:General (point-set) 7314:. December 6, 2009. 7233:long exact sequence 7201:are mapped to 0 by 6346:is a special case. 6340:commutative diagram 6261:is the identity on 6228:is the identity on 6174: 6153: 5476: 5452: 5366: 5342: 5318: 5218:plus a constant in 2556:{\displaystyle x-y} 1510:Integers modulo two 1122: 1094: 1059: 1024: 978:long exact sequence 972:Long exact sequence 855: 842: 653: 640: 288:group homomorphisms 259: 229: 192: 155: 18:Long exact sequence 7670:De Rham cohomology 7591:Polyhedral complex 7581:Simplicial complex 7336:Algebraic Topology 7241:algebraic topology 7050: 6979: 6914: 6868: 6835: 6792:{\textstyle C_{7}} 6789: 6748:, the quotient of 6738: 6673:category of groups 6658: 6574: 6446: 6322:semidirect product 6189: 6097: 6064: 5997: 5961: 5932: 5899: 5897: 5751: 5678: 5565: 5500: 5385: 5273: 5246: 5208: 5174: 5065: 4952: 4950: 4663: 4627: 4596: 4549: 4488: 4486: 4304: 4067: 4038: 4009: 3962: 3960: 3612: 3583: 3542: 3434: 3405: 3355: 3303: 3210: 3185:conservative force 3183:(see the proof at 3169: 3140: 3098: 3019: 2959: 2930: 2891: 2838: 2727: 2611: 2553: 2525: 2497: 2473:maps each element 2463: 2425: 2394: 2360: 2338:maps each element 2328: 2281: 2178: 2140: 2110: 2035:{\displaystyle 1,} 2032: 2006: 1851: 1727: 1663: 1635: 1573: 1479: 1448: 1428: 1371: 1369: 1138: 958: 867: 802: 664: 492:abelian categories 446: 414: 383: 313: 273: 70: 54: 7785: 7784: 7574:fundamental group 7245:relative homology 7239:. It comes up in 7104:extension problem 6754:conjugate closure 6675:, in which coker( 6175: 6173: 6167: 6154: 6152: 6146: 5887: 5839: 5800: 5738: 5713: 5670: 5633: 5604: 5477: 5453: 5367: 5343: 5319: 5227: 5226: 5143: 4987: 4913: 4748: 4660: 4546: 4524: 4466: 4386: 4301: 4276: 4251: 4226: 4158: 4123: 4064: 4035: 3955: 3940: 3915: 3890: 3858: 3790: 3722: 3650: 3609: 3574: 3539: 3514: 3489: 3464: 3431: 3402: 3381: 3352: 3291: 3259: 3166: 3137: 2813:Maxwell equations 2805: 2804: 2797: 2767:quality standards 2758:This section may 1817: 1545: 1462:are exact at the 1451:{\displaystyle i} 1291: 1123: 1121: 1108: 1095: 1093: 1080: 1060: 1058: 1045: 1025: 1023: 1010: 856: 843: 654: 641: 260: 258: 245: 230: 228: 215: 193: 191: 178: 156: 154: 141: 76:is a sequence of 16:(Redirected from 7810: 7775: 7774: 7748: 7747: 7738: 7728: 7718: 7717: 7706: 7705: 7500: 7413: 7406: 7399: 7390: 7385: 7369: 7355: 7339: 7316: 7315: 7308: 7302: 7301: 7299: 7298: 7284: 7253:derived functors 7243:in the study of 7059: 7057: 7056: 7051: 7043: 7042: 7024: 7023: 7011: 7010: 6988: 6986: 6985: 6980: 6978: 6977: 6959: 6958: 6946: 6945: 6923: 6921: 6920: 6915: 6913: 6912: 6894: 6893: 6877: 6875: 6874: 6869: 6867: 6866: 6844: 6842: 6841: 6836: 6828: 6827: 6815: 6814: 6798: 6796: 6795: 6790: 6788: 6787: 6768: 6747: 6745: 6744: 6739: 6737: 6736: 6731: 6730: 6726: 6709: 6667: 6665: 6664: 6659: 6654: 6653: 6635: 6634: 6607: 6606: 6583: 6581: 6580: 6575: 6570: 6569: 6557: 6556: 6526: 6525: 6507: 6506: 6485: 6484: 6455: 6453: 6452: 6447: 6445: 6444: 6432: 6431: 6419: 6418: 6406: 6405: 6393: 6392: 6380: 6379: 6355:short five lemma 6315: 6304: 6289: 6283: 6266: 6260: 6250: 6233: 6227: 6217: 6198: 6196: 6195: 6190: 6171: 6165: 6160: 6150: 6144: 6139: 6106: 6104: 6103: 6098: 6096: 6095: 6090: 6073: 6071: 6070: 6065: 6045: 6044: 6032: 6031: 6026: 6006: 6004: 6003: 5998: 5990: 5989: 5970: 5968: 5967: 5962: 5960: 5959: 5954: 5941: 5939: 5938: 5933: 5931: 5930: 5908: 5906: 5905: 5900: 5898: 5894: 5890: 5889: 5888: 5880: 5866: 5865: 5850: 5846: 5842: 5841: 5840: 5832: 5802: 5801: 5793: 5790: 5789: 5760: 5758: 5757: 5752: 5744: 5740: 5739: 5731: 5715: 5714: 5706: 5687: 5685: 5684: 5679: 5677: 5673: 5672: 5671: 5663: 5640: 5636: 5635: 5634: 5626: 5606: 5605: 5597: 5594: 5593: 5574: 5572: 5571: 5566: 5564: 5563: 5551: 5550: 5545: 5536: 5535: 5509: 5507: 5506: 5501: 5478: 5468: 5466: 5465: 5460: 5454: 5444: 5442: 5441: 5400:simply connected 5394: 5392: 5391: 5386: 5378: 5377: 5368: 5358: 5356: 5355: 5350: 5344: 5334: 5332: 5331: 5326: 5320: 5310: 5308: 5307: 5282: 5280: 5279: 5274: 5272: 5271: 5255: 5253: 5252: 5247: 5245: 5244: 5217: 5215: 5214: 5209: 5207: 5206: 5183: 5181: 5180: 5175: 5173: 5172: 5145: 5144: 5139: 5138: 5129: 5126: 5125: 5107: 5106: 5097: 5096: 5074: 5072: 5071: 5066: 5058: 5057: 5048: 5047: 5035: 5034: 5025: 5024: 5012: 5011: 5002: 5001: 4989: 4988: 4980: 4961: 4959: 4958: 4953: 4951: 4947: 4946: 4915: 4914: 4909: 4908: 4899: 4896: 4895: 4877: 4873: 4872: 4871: 4862: 4861: 4849: 4848: 4839: 4838: 4814: 4813: 4791: 4790: 4778: 4777: 4750: 4749: 4744: 4743: 4734: 4731: 4730: 4712: 4711: 4699: 4698: 4672: 4670: 4669: 4664: 4662: 4661: 4656: 4655: 4646: 4636: 4634: 4633: 4628: 4626: 4625: 4605: 4603: 4602: 4597: 4558: 4556: 4555: 4550: 4548: 4547: 4542: 4541: 4532: 4526: 4525: 4520: 4519: 4510: 4497: 4495: 4494: 4489: 4487: 4468: 4467: 4462: 4461: 4452: 4440: 4439: 4417: 4416: 4388: 4387: 4382: 4381: 4372: 4360: 4359: 4340: 4339: 4313: 4311: 4310: 4305: 4303: 4302: 4294: 4291: 4290: 4278: 4277: 4269: 4266: 4265: 4253: 4252: 4244: 4241: 4240: 4228: 4227: 4219: 4216: 4212: 4211: 4210: 4201: 4200: 4188: 4187: 4178: 4177: 4160: 4159: 4151: 4148: 4147: 4138: 4137: 4125: 4124: 4116: 4113: 4112: 4103: 4102: 4076: 4074: 4073: 4068: 4066: 4065: 4057: 4047: 4045: 4044: 4039: 4037: 4036: 4028: 4018: 4016: 4015: 4010: 3971: 3969: 3968: 3963: 3961: 3957: 3956: 3948: 3942: 3941: 3933: 3930: 3929: 3917: 3916: 3908: 3905: 3904: 3892: 3891: 3883: 3880: 3879: 3864: 3860: 3859: 3851: 3848: 3844: 3843: 3842: 3833: 3832: 3820: 3819: 3810: 3809: 3792: 3791: 3783: 3780: 3776: 3775: 3774: 3765: 3764: 3752: 3751: 3742: 3741: 3724: 3723: 3715: 3712: 3708: 3707: 3706: 3697: 3696: 3684: 3683: 3674: 3673: 3652: 3651: 3643: 3621: 3619: 3618: 3613: 3611: 3610: 3602: 3592: 3590: 3589: 3584: 3576: 3575: 3567: 3551: 3549: 3548: 3543: 3541: 3540: 3532: 3529: 3528: 3516: 3515: 3507: 3504: 3503: 3491: 3490: 3482: 3479: 3478: 3466: 3465: 3457: 3443: 3441: 3440: 3435: 3433: 3432: 3424: 3414: 3412: 3411: 3406: 3404: 3403: 3395: 3383: 3382: 3374: 3364: 3362: 3361: 3356: 3354: 3353: 3345: 3327: 3312: 3310: 3309: 3304: 3293: 3292: 3284: 3266: 3262: 3261: 3260: 3252: 3219: 3217: 3216: 3211: 3209: 3208: 3203: 3178: 3176: 3175: 3170: 3168: 3167: 3159: 3149: 3147: 3146: 3141: 3139: 3138: 3130: 3116: 3107: 3105: 3104: 3099: 3036:First, note the 3028: 3026: 3025: 3020: 3018: 3014: 3013: 3012: 3007: 2998: 2997: 2992: 2968: 2966: 2965: 2960: 2958: 2957: 2952: 2939: 2937: 2936: 2931: 2929: 2928: 2923: 2900: 2898: 2897: 2892: 2890: 2886: 2885: 2877: 2876: 2871: 2847: 2845: 2844: 2839: 2837: 2836: 2800: 2793: 2789: 2786: 2780: 2753: 2752: 2745: 2736: 2734: 2733: 2728: 2705: 2691: 2677: 2651: 2626:quotient modules 2620: 2618: 2617: 2612: 2564: 2562: 2560: 2559: 2554: 2534: 2532: 2531: 2526: 2508: 2506: 2504: 2503: 2498: 2472: 2470: 2469: 2464: 2434: 2432: 2431: 2426: 2405: 2403: 2401: 2400: 2395: 2369: 2367: 2366: 2361: 2343: 2337: 2335: 2334: 2329: 2299: 2290: 2288: 2287: 2282: 2225: 2215: 2209: 2187: 2185: 2184: 2179: 2177: 2176: 2149: 2147: 2146: 2141: 2139: 2138: 2119: 2117: 2116: 2111: 2103: 2102: 2090: 2089: 2074: 2073: 2041: 2039: 2038: 2033: 2015: 2013: 2012: 2007: 1996: 1860: 1858: 1857: 1852: 1844: 1836: 1831: 1823: 1818: 1816: 1805: 1803: 1760:as the image of 1752:. The image of 2 1736: 1734: 1733: 1728: 1726: 1718: 1713: 1705: 1700: 1694: 1672: 1670: 1669: 1664: 1644: 1642: 1641: 1636: 1624: 1594:to the element 2 1582: 1580: 1579: 1574: 1572: 1564: 1559: 1551: 1546: 1544: 1536: 1530: 1528: 1493:). Furthermore, 1488: 1486: 1485: 1480: 1478: 1477: 1457: 1455: 1454: 1449: 1437: 1435: 1434: 1429: 1424: 1423: 1402: 1401: 1380: 1378: 1377: 1372: 1370: 1357: 1356: 1344: 1343: 1326: 1321: 1320: 1289: 1287: 1274: 1273: 1261: 1260: 1249: 1244: 1243: 1215: 1214: 1202: 1201: 1190: 1185: 1184: 1147: 1145: 1144: 1139: 1134: 1133: 1119: 1118: 1117: 1106: 1101: 1091: 1090: 1089: 1078: 1073: 1071: 1070: 1056: 1055: 1054: 1043: 1038: 1036: 1035: 1021: 1020: 1019: 1008: 1003: 1001: 1000: 967: 965: 964: 959: 876: 874: 873: 868: 847: 834: 811: 809: 808: 803: 786: 760: 673: 671: 670: 665: 645: 632: 598:exact categories 455: 453: 452: 447: 423: 421: 420: 415: 413: 412: 392: 390: 389: 384: 379: 378: 348: 347: 322: 320: 319: 314: 312: 311: 282: 280: 279: 274: 272: 271: 261: 256: 255: 254: 243: 238: 231: 226: 225: 224: 213: 208: 205: 204: 194: 189: 188: 187: 176: 171: 168: 167: 157: 152: 151: 150: 139: 134: 131: 130: 96:) such that the 94:abelian category 63: 61: 60: 55: 53: 52: 21: 7818: 7817: 7813: 7812: 7811: 7809: 7808: 7807: 7788: 7787: 7786: 7781: 7712: 7694: 7690:Urysohn's lemma 7651: 7615: 7501: 7492: 7464:low-dimensional 7422: 7417: 7382: 7360:Eisenbud, David 7358: 7352: 7328: 7320: 7319: 7310: 7309: 7305: 7296: 7294: 7286: 7285: 7281: 7271: 7210: 7200: 7191: 7178: 7168: 7159: 7150: 7093: 7070:normal subgroup 7028: 7015: 7002: 6991: 6990: 6963: 6950: 6931: 6926: 6925: 6898: 6885: 6880: 6879: 6852: 6847: 6846: 6819: 6806: 6801: 6800: 6779: 6774: 6773: 6716: 6712: 6710: 6697: 6696: 6639: 6620: 6598: 6593: 6592: 6561: 6542: 6511: 6498: 6476: 6471: 6470: 6464: 6436: 6423: 6410: 6397: 6384: 6371: 6366: 6365: 6306: 6295: 6285: 6271: 6262: 6252: 6238: 6229: 6219: 6205: 6124: 6123: 6117:splitting lemma 6113: 6085: 6080: 6079: 6036: 6021: 6016: 6015: 6009:splitting lemma 5978: 5973: 5972: 5949: 5944: 5943: 5919: 5914: 5913: 5896: 5895: 5871: 5867: 5857: 5848: 5847: 5823: 5819: 5803: 5781: 5766: 5765: 5725: 5693: 5692: 5654: 5650: 5617: 5613: 5585: 5580: 5579: 5555: 5540: 5524: 5519: 5518: 5455: 5433: 5422: 5421: 5369: 5345: 5321: 5299: 5288: 5287: 5263: 5258: 5257: 5236: 5231: 5230: 5198: 5193: 5192: 5164: 5130: 5117: 5098: 5088: 5080: 5079: 5049: 5039: 5026: 5016: 5003: 4993: 4967: 4966: 4965:By assumption, 4949: 4948: 4938: 4931: 4900: 4887: 4863: 4853: 4840: 4830: 4829: 4825: 4816: 4815: 4805: 4798: 4782: 4769: 4735: 4722: 4703: 4690: 4678: 4677: 4647: 4639: 4638: 4617: 4612: 4611: 4573: 4572: 4533: 4511: 4503: 4502: 4485: 4484: 4453: 4431: 4418: 4408: 4405: 4404: 4373: 4351: 4341: 4331: 4322: 4321: 4282: 4257: 4232: 4202: 4192: 4179: 4169: 4168: 4164: 4139: 4129: 4104: 4094: 4086: 4085: 4050: 4049: 4021: 4020: 3977: 3976: 3959: 3958: 3921: 3896: 3871: 3862: 3861: 3834: 3824: 3811: 3801: 3800: 3796: 3766: 3756: 3743: 3733: 3732: 3728: 3698: 3688: 3675: 3665: 3664: 3660: 3653: 3626: 3625: 3595: 3594: 3554: 3553: 3520: 3495: 3470: 3450: 3449: 3417: 3416: 3367: 3366: 3332: 3331: 3243: 3239: 3228: 3227: 3198: 3193: 3192: 3181:Stokes' theorem 3152: 3151: 3123: 3122: 3112: 3045: 3044: 3031:Stokes' theorem 3002: 2987: 2980: 2976: 2971: 2970: 2947: 2942: 2941: 2918: 2907: 2906: 2866: 2859: 2855: 2850: 2849: 2828: 2823: 2822: 2801: 2790: 2784: 2781: 2774: 2754: 2750: 2743: 2633: 2632: 2573: 2572: 2539: 2538: 2536: 2511: 2510: 2477: 2476: 2474: 2437: 2436: 2411: 2410: 2374: 2373: 2371: 2370:to the element 2346: 2345: 2339: 2302: 2301: 2295: 2231: 2230: 2221: 2211: 2205: 2202: 2165: 2160: 2159: 2130: 2125: 2124: 2094: 2078: 2065: 2054: 2053: 2021: 2020: 1966: 1965: 1809: 1788: 1787: 1682: 1681: 1655: 1654: 1627: 1626: 1615: 1537: 1531: 1519: 1518: 1512: 1507: 1469: 1464: 1463: 1440: 1439: 1415: 1393: 1388: 1387: 1368: 1367: 1348: 1329: 1327: 1306: 1297: 1296: 1285: 1284: 1265: 1252: 1250: 1235: 1226: 1225: 1206: 1193: 1191: 1176: 1161: 1160: 1125: 1109: 1081: 1062: 1046: 1027: 1011: 992: 987: 986: 974: 935: 934: 820: 819: 742: 741: 618: 617: 611: 500: 426: 425: 404: 399: 398: 364: 339: 325: 324: 303: 298: 297: 263: 246: 216: 196: 179: 159: 142: 122: 117: 116: 110: 44: 39: 38: 28: 23: 22: 15: 12: 11: 5: 7816: 7814: 7806: 7805: 7800: 7790: 7789: 7783: 7782: 7780: 7779: 7769: 7768: 7767: 7762: 7757: 7742: 7732: 7722: 7710: 7699: 7696: 7695: 7693: 7692: 7687: 7682: 7677: 7672: 7667: 7661: 7659: 7653: 7652: 7650: 7649: 7644: 7639: 7637:Winding number 7634: 7629: 7623: 7621: 7617: 7616: 7614: 7613: 7608: 7603: 7598: 7593: 7588: 7583: 7578: 7577: 7576: 7571: 7569:homotopy group 7561: 7560: 7559: 7554: 7549: 7544: 7539: 7529: 7524: 7519: 7509: 7507: 7503: 7502: 7495: 7493: 7491: 7490: 7485: 7480: 7479: 7478: 7468: 7467: 7466: 7456: 7451: 7446: 7441: 7436: 7430: 7428: 7424: 7423: 7418: 7416: 7415: 7408: 7401: 7393: 7387: 7386: 7380: 7356: 7350: 7325: 7324: 7318: 7317: 7303: 7278: 7277: 7276: 7275: 7270: 7267: 7259:Exact functors 7225: 7224: 7205: 7196: 7187: 7173: 7164: 7155: 7145: 7092: 7089: 7049: 7046: 7041: 7038: 7035: 7031: 7027: 7022: 7018: 7014: 7009: 7005: 7001: 6998: 6976: 6973: 6970: 6966: 6962: 6957: 6953: 6949: 6944: 6941: 6938: 6934: 6911: 6908: 6905: 6901: 6897: 6892: 6888: 6865: 6862: 6859: 6855: 6834: 6831: 6826: 6822: 6818: 6813: 6809: 6786: 6782: 6770: 6769: 6735: 6729: 6725: 6722: 6719: 6715: 6708: 6704: 6669: 6668: 6657: 6652: 6649: 6646: 6642: 6638: 6633: 6630: 6627: 6623: 6619: 6616: 6613: 6610: 6605: 6601: 6586: 6585: 6573: 6568: 6564: 6560: 6555: 6552: 6549: 6545: 6541: 6538: 6535: 6532: 6529: 6524: 6521: 6518: 6514: 6510: 6505: 6501: 6497: 6494: 6491: 6488: 6483: 6479: 6462: 6457: 6456: 6443: 6439: 6435: 6430: 6426: 6422: 6417: 6413: 6409: 6404: 6400: 6396: 6391: 6387: 6383: 6378: 6374: 6318: 6317: 6268: 6235: 6201: 6200: 6188: 6185: 6182: 6179: 6170: 6163: 6158: 6149: 6142: 6137: 6134: 6131: 6112: 6109: 6094: 6089: 6076: 6075: 6063: 6060: 6057: 6054: 6051: 6048: 6043: 6039: 6035: 6030: 6025: 5996: 5993: 5988: 5985: 5981: 5958: 5953: 5929: 5926: 5922: 5910: 5909: 5893: 5886: 5883: 5877: 5874: 5870: 5864: 5860: 5856: 5853: 5851: 5849: 5845: 5838: 5835: 5829: 5826: 5822: 5818: 5815: 5812: 5809: 5806: 5804: 5799: 5796: 5788: 5784: 5780: 5777: 5774: 5773: 5750: 5747: 5743: 5737: 5734: 5728: 5724: 5721: 5718: 5712: 5709: 5703: 5700: 5689: 5688: 5676: 5669: 5666: 5660: 5657: 5653: 5649: 5646: 5643: 5639: 5632: 5629: 5623: 5620: 5616: 5612: 5609: 5603: 5600: 5592: 5588: 5562: 5558: 5554: 5549: 5544: 5539: 5534: 5531: 5527: 5511: 5510: 5499: 5496: 5493: 5490: 5487: 5484: 5481: 5475: 5471: 5464: 5459: 5451: 5447: 5440: 5436: 5432: 5429: 5396: 5395: 5384: 5381: 5376: 5372: 5365: 5361: 5354: 5349: 5341: 5337: 5330: 5325: 5317: 5313: 5306: 5302: 5298: 5295: 5270: 5266: 5243: 5239: 5225: 5224: 5205: 5201: 5185: 5184: 5171: 5167: 5163: 5160: 5157: 5154: 5151: 5148: 5142: 5137: 5133: 5124: 5120: 5116: 5113: 5110: 5105: 5101: 5095: 5091: 5087: 5064: 5061: 5056: 5052: 5046: 5042: 5038: 5033: 5029: 5023: 5019: 5015: 5010: 5006: 5000: 4996: 4992: 4986: 4983: 4977: 4974: 4963: 4962: 4945: 4941: 4937: 4934: 4932: 4930: 4927: 4924: 4921: 4918: 4912: 4907: 4903: 4894: 4890: 4886: 4883: 4880: 4876: 4870: 4866: 4860: 4856: 4852: 4847: 4843: 4837: 4833: 4828: 4824: 4821: 4818: 4817: 4812: 4808: 4804: 4801: 4799: 4797: 4794: 4789: 4785: 4781: 4776: 4772: 4768: 4765: 4762: 4759: 4756: 4753: 4747: 4742: 4738: 4729: 4725: 4721: 4718: 4715: 4710: 4706: 4702: 4697: 4693: 4689: 4686: 4685: 4659: 4654: 4650: 4624: 4620: 4595: 4592: 4589: 4586: 4583: 4580: 4545: 4540: 4536: 4529: 4523: 4518: 4514: 4499: 4498: 4483: 4480: 4477: 4474: 4471: 4465: 4460: 4456: 4449: 4446: 4443: 4438: 4434: 4430: 4427: 4424: 4421: 4419: 4415: 4411: 4407: 4406: 4403: 4400: 4397: 4394: 4391: 4385: 4380: 4376: 4369: 4366: 4363: 4358: 4354: 4350: 4347: 4344: 4342: 4338: 4334: 4330: 4329: 4315: 4314: 4300: 4297: 4289: 4285: 4281: 4275: 4272: 4264: 4260: 4256: 4250: 4247: 4239: 4235: 4231: 4225: 4222: 4215: 4209: 4205: 4199: 4195: 4191: 4186: 4182: 4176: 4172: 4167: 4163: 4157: 4154: 4146: 4142: 4136: 4132: 4128: 4122: 4119: 4111: 4107: 4101: 4097: 4093: 4063: 4060: 4034: 4031: 4008: 4005: 4002: 3999: 3996: 3993: 3990: 3987: 3984: 3973: 3972: 3954: 3951: 3945: 3939: 3936: 3928: 3924: 3920: 3914: 3911: 3903: 3899: 3895: 3889: 3886: 3878: 3874: 3870: 3867: 3865: 3863: 3857: 3854: 3847: 3841: 3837: 3831: 3827: 3823: 3818: 3814: 3808: 3804: 3799: 3795: 3789: 3786: 3779: 3773: 3769: 3763: 3759: 3755: 3750: 3746: 3740: 3736: 3731: 3727: 3721: 3718: 3711: 3705: 3701: 3695: 3691: 3687: 3682: 3678: 3672: 3668: 3663: 3659: 3656: 3654: 3649: 3646: 3640: 3637: 3634: 3633: 3608: 3605: 3582: 3579: 3573: 3570: 3564: 3561: 3538: 3535: 3527: 3523: 3519: 3513: 3510: 3502: 3498: 3494: 3488: 3485: 3477: 3473: 3469: 3463: 3460: 3445: 3444: 3430: 3427: 3401: 3398: 3392: 3389: 3386: 3380: 3377: 3351: 3348: 3342: 3339: 3322:Poincaré lemma 3314: 3313: 3302: 3299: 3296: 3290: 3287: 3281: 3278: 3275: 3272: 3269: 3265: 3258: 3255: 3249: 3246: 3242: 3238: 3235: 3207: 3202: 3165: 3162: 3136: 3133: 3109: 3108: 3097: 3094: 3091: 3088: 3085: 3082: 3079: 3076: 3073: 3070: 3067: 3064: 3061: 3058: 3055: 3052: 3017: 3011: 3006: 3001: 2996: 2991: 2986: 2983: 2979: 2956: 2951: 2927: 2922: 2917: 2914: 2905:of a function 2889: 2884: 2880: 2875: 2870: 2865: 2862: 2858: 2835: 2831: 2803: 2802: 2757: 2755: 2748: 2742: 2739: 2738: 2737: 2726: 2723: 2720: 2717: 2714: 2711: 2708: 2704: 2700: 2697: 2694: 2690: 2686: 2683: 2680: 2676: 2672: 2669: 2666: 2663: 2660: 2657: 2654: 2650: 2646: 2643: 2640: 2622: 2621: 2610: 2607: 2604: 2601: 2598: 2595: 2592: 2589: 2586: 2583: 2580: 2552: 2549: 2546: 2524: 2521: 2518: 2496: 2493: 2490: 2487: 2484: 2462: 2459: 2456: 2453: 2450: 2447: 2444: 2424: 2421: 2418: 2393: 2390: 2387: 2384: 2381: 2359: 2356: 2353: 2327: 2324: 2321: 2318: 2315: 2312: 2309: 2292: 2291: 2280: 2277: 2274: 2271: 2268: 2265: 2262: 2259: 2256: 2253: 2250: 2247: 2244: 2241: 2238: 2201: 2198: 2190:dihedral group 2175: 2172: 2168: 2137: 2133: 2121: 2120: 2109: 2106: 2101: 2097: 2093: 2088: 2085: 2081: 2077: 2072: 2068: 2064: 2061: 2031: 2028: 2017: 2016: 2005: 2002: 1999: 1995: 1991: 1988: 1985: 1982: 1979: 1976: 1973: 1947: 1946: 1919: 1904: 1862: 1861: 1850: 1847: 1843: 1839: 1835: 1830: 1826: 1822: 1815: 1812: 1808: 1802: 1798: 1795: 1738: 1737: 1725: 1721: 1717: 1712: 1708: 1704: 1699: 1693: 1689: 1662: 1634: 1610:to an element 1584: 1583: 1571: 1567: 1563: 1558: 1554: 1550: 1543: 1540: 1535: 1527: 1511: 1508: 1506: 1503: 1476: 1472: 1447: 1427: 1422: 1418: 1414: 1411: 1408: 1405: 1400: 1396: 1366: 1363: 1360: 1355: 1351: 1347: 1342: 1339: 1336: 1332: 1328: 1324: 1319: 1316: 1313: 1309: 1305: 1302: 1299: 1298: 1295: 1288: 1286: 1283: 1280: 1277: 1272: 1268: 1264: 1259: 1255: 1251: 1247: 1242: 1238: 1234: 1231: 1228: 1227: 1224: 1221: 1218: 1213: 1209: 1205: 1200: 1196: 1192: 1188: 1183: 1179: 1175: 1172: 1169: 1168: 1137: 1132: 1128: 1116: 1112: 1104: 1099: 1088: 1084: 1076: 1069: 1065: 1053: 1049: 1041: 1034: 1030: 1018: 1014: 1006: 999: 995: 973: 970: 969: 968: 957: 954: 951: 948: 945: 942: 912:abelian groups 878: 877: 865: 862: 859: 854: 850: 846: 841: 837: 833: 830: 827: 813: 812: 801: 798: 795: 792: 789: 785: 781: 778: 775: 772: 769: 766: 763: 759: 755: 752: 749: 675: 674: 663: 660: 657: 652: 648: 644: 639: 635: 631: 628: 625: 610: 607: 606: 605: 562: 531: 499: 496: 445: 442: 439: 436: 433: 411: 407: 382: 377: 374: 371: 367: 363: 360: 357: 354: 351: 346: 342: 338: 335: 332: 310: 306: 290:is said to be 286:of groups and 284: 283: 270: 266: 253: 249: 241: 235: 223: 219: 211: 203: 199: 186: 182: 174: 166: 162: 149: 145: 137: 129: 125: 109: 106: 74:exact sequence 66:Euler diagrams 51: 47: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 7815: 7804: 7801: 7799: 7796: 7795: 7793: 7778: 7770: 7766: 7763: 7761: 7758: 7756: 7753: 7752: 7751: 7743: 7741: 7737: 7733: 7731: 7727: 7723: 7721: 7716: 7711: 7709: 7701: 7700: 7697: 7691: 7688: 7686: 7683: 7681: 7678: 7676: 7673: 7671: 7668: 7666: 7663: 7662: 7660: 7658: 7654: 7648: 7647:Orientability 7645: 7643: 7640: 7638: 7635: 7633: 7630: 7628: 7625: 7624: 7622: 7618: 7612: 7609: 7607: 7604: 7602: 7599: 7597: 7594: 7592: 7589: 7587: 7584: 7582: 7579: 7575: 7572: 7570: 7567: 7566: 7565: 7562: 7558: 7555: 7553: 7550: 7548: 7545: 7543: 7540: 7538: 7535: 7534: 7533: 7530: 7528: 7525: 7523: 7520: 7518: 7514: 7511: 7510: 7508: 7504: 7499: 7489: 7486: 7484: 7483:Set-theoretic 7481: 7477: 7474: 7473: 7472: 7469: 7465: 7462: 7461: 7460: 7457: 7455: 7452: 7450: 7447: 7445: 7444:Combinatorial 7442: 7440: 7437: 7435: 7432: 7431: 7429: 7425: 7421: 7414: 7409: 7407: 7402: 7400: 7395: 7394: 7391: 7383: 7381:0-387-94269-6 7377: 7373: 7368: 7367: 7361: 7357: 7353: 7351:0-387-94426-5 7347: 7343: 7338: 7337: 7331: 7327: 7326: 7322: 7321: 7313: 7307: 7304: 7293: 7289: 7283: 7280: 7273: 7272: 7268: 7266: 7264: 7260: 7256: 7254: 7250: 7246: 7242: 7238: 7237:zig-zag lemma 7234: 7228: 7222: 7218: 7217: 7216: 7214: 7208: 7204: 7199: 7195: 7190: 7186: 7182: 7181:chain complex 7176: 7172: 7167: 7163: 7158: 7154: 7148: 7144: 7139: 7137: 7133: 7129: 7125: 7121: 7117: 7113: 7109: 7105: 7100: 7098: 7090: 7088: 7085: 7083: 7079: 7075: 7071: 7067: 7063: 7047: 7039: 7036: 7033: 7029: 7020: 7016: 7007: 7003: 6996: 6974: 6971: 6968: 6964: 6955: 6951: 6942: 6939: 6936: 6932: 6909: 6906: 6903: 6899: 6890: 6886: 6878:and morphism 6863: 6860: 6857: 6853: 6832: 6824: 6820: 6811: 6807: 6784: 6780: 6767: 6763: 6762: 6761: 6759: 6755: 6751: 6733: 6727: 6723: 6720: 6717: 6713: 6706: 6702: 6694: 6690: 6686: 6682: 6678: 6674: 6650: 6647: 6644: 6640: 6631: 6628: 6625: 6621: 6614: 6611: 6608: 6603: 6599: 6591: 6590: 6589: 6566: 6562: 6553: 6550: 6547: 6543: 6536: 6533: 6530: 6522: 6519: 6516: 6512: 6503: 6499: 6492: 6489: 6486: 6481: 6477: 6469: 6468: 6467: 6465: 6441: 6437: 6428: 6424: 6415: 6411: 6402: 6398: 6389: 6385: 6376: 6372: 6364: 6363: 6362: 6358: 6356: 6352: 6347: 6345: 6341: 6337: 6332: 6330: 6325: 6323: 6313: 6309: 6302: 6298: 6293: 6288: 6282: 6278: 6274: 6269: 6265: 6259: 6255: 6249: 6245: 6241: 6236: 6232: 6226: 6222: 6216: 6212: 6208: 6203: 6202: 6186: 6183: 6177: 6168: 6161: 6156: 6147: 6140: 6135: 6129: 6122: 6121: 6120: 6118: 6110: 6108: 6092: 6058: 6052: 6049: 6046: 6041: 6037: 6033: 6028: 6014: 6013: 6012: 6010: 5991: 5986: 5983: 5956: 5927: 5924: 5891: 5881: 5875: 5868: 5862: 5854: 5852: 5843: 5833: 5827: 5820: 5813: 5807: 5805: 5794: 5786: 5778: 5764: 5763: 5762: 5748: 5745: 5741: 5732: 5726: 5722: 5719: 5716: 5707: 5701: 5674: 5664: 5658: 5651: 5647: 5641: 5637: 5627: 5621: 5614: 5607: 5598: 5590: 5578: 5577: 5576: 5560: 5556: 5547: 5537: 5532: 5529: 5516: 5497: 5488: 5482: 5479: 5473: 5469: 5462: 5449: 5445: 5438: 5434: 5427: 5420: 5419: 5418: 5416: 5411: 5409: 5405: 5401: 5382: 5374: 5370: 5363: 5359: 5352: 5339: 5335: 5328: 5315: 5311: 5304: 5300: 5293: 5286: 5285: 5284: 5268: 5264: 5241: 5237: 5223: 5221: 5203: 5199: 5190: 5169: 5165: 5161: 5155: 5152: 5149: 5135: 5131: 5122: 5114: 5111: 5108: 5103: 5099: 5093: 5085: 5078: 5077: 5076: 5062: 5059: 5054: 5050: 5044: 5036: 5031: 5027: 5021: 5013: 5008: 5004: 4998: 4990: 4981: 4975: 4972: 4943: 4939: 4935: 4933: 4925: 4922: 4919: 4905: 4901: 4892: 4884: 4881: 4878: 4874: 4868: 4864: 4858: 4850: 4845: 4841: 4835: 4826: 4822: 4819: 4810: 4806: 4802: 4800: 4795: 4792: 4787: 4783: 4779: 4774: 4766: 4760: 4757: 4754: 4740: 4736: 4727: 4719: 4716: 4713: 4708: 4704: 4700: 4695: 4687: 4676: 4675: 4674: 4652: 4648: 4622: 4618: 4609: 4590: 4587: 4584: 4578: 4570: 4566: 4562: 4538: 4534: 4527: 4516: 4512: 4478: 4475: 4472: 4458: 4454: 4447: 4444: 4441: 4436: 4432: 4428: 4425: 4422: 4420: 4413: 4409: 4398: 4395: 4392: 4378: 4374: 4367: 4364: 4361: 4356: 4352: 4348: 4345: 4343: 4336: 4332: 4320: 4319: 4318: 4295: 4287: 4283: 4279: 4270: 4262: 4258: 4254: 4245: 4237: 4233: 4229: 4220: 4213: 4207: 4203: 4197: 4189: 4184: 4180: 4174: 4165: 4161: 4152: 4144: 4140: 4134: 4126: 4117: 4109: 4105: 4099: 4091: 4084: 4083: 4082: 4080: 4058: 4029: 4006: 4003: 3997: 3994: 3991: 3985: 3982: 3949: 3943: 3934: 3926: 3922: 3918: 3909: 3901: 3897: 3893: 3884: 3876: 3872: 3868: 3866: 3852: 3845: 3839: 3835: 3829: 3821: 3816: 3812: 3806: 3797: 3793: 3784: 3777: 3771: 3767: 3761: 3753: 3748: 3744: 3738: 3729: 3725: 3716: 3709: 3703: 3699: 3693: 3685: 3680: 3676: 3670: 3661: 3657: 3655: 3644: 3638: 3624: 3623: 3603: 3580: 3577: 3568: 3562: 3533: 3525: 3521: 3517: 3508: 3500: 3496: 3492: 3483: 3475: 3471: 3467: 3458: 3447: 3446: 3425: 3396: 3390: 3387: 3384: 3375: 3346: 3340: 3337: 3329: 3328: 3325: 3323: 3319: 3300: 3297: 3294: 3285: 3279: 3273: 3267: 3263: 3253: 3247: 3244: 3240: 3236: 3233: 3226: 3225: 3224: 3221: 3205: 3190: 3186: 3182: 3160: 3131: 3120: 3115: 3111:for all such 3095: 3092: 3086: 3077: 3071: 3065: 3062: 3059: 3053: 3050: 3043: 3042: 3041: 3039: 3034: 3032: 3015: 3009: 2994: 2984: 2981: 2977: 2954: 2925: 2915: 2912: 2904: 2901:. Taking the 2887: 2873: 2863: 2860: 2856: 2833: 2829: 2821: 2820:Hilbert space 2818:Consider the 2816: 2814: 2810: 2799: 2796: 2788: 2785:December 2019 2778: 2773: 2768: 2764: 2763: 2756: 2747: 2746: 2740: 2724: 2715: 2712: 2709: 2702: 2698: 2692: 2688: 2684: 2681: 2678: 2674: 2670: 2661: 2658: 2655: 2648: 2644: 2638: 2631: 2630: 2629: 2627: 2608: 2602: 2596: 2593: 2590: 2584: 2578: 2571: 2570: 2569: 2566: 2550: 2547: 2544: 2522: 2519: 2516: 2491: 2488: 2485: 2460: 2457: 2454: 2448: 2445: 2442: 2422: 2419: 2416: 2409: 2388: 2385: 2382: 2357: 2354: 2351: 2342: 2325: 2322: 2319: 2313: 2310: 2307: 2298: 2278: 2272: 2269: 2266: 2260: 2257: 2254: 2248: 2245: 2242: 2236: 2229: 2228: 2227: 2224: 2219: 2214: 2208: 2199: 2197: 2195: 2191: 2173: 2170: 2166: 2157: 2153: 2135: 2131: 2107: 2099: 2095: 2086: 2083: 2079: 2070: 2066: 2059: 2052: 2051: 2050: 2047: 2045: 2029: 2026: 2003: 1997: 1993: 1989: 1983: 1977: 1971: 1964: 1963: 1962: 1960: 1956: 1952: 1944: 1940: 1936: 1932: 1928: 1924: 1920: 1917: 1913: 1909: 1905: 1902: 1898: 1894: 1893: 1892: 1890: 1886: 1882: 1879: 1875: 1871: 1867: 1848: 1837: 1833: 1813: 1810: 1793: 1786: 1785: 1784: 1781: 1779: 1775: 1771: 1767: 1763: 1759: 1755: 1751: 1747: 1743: 1719: 1715: 1687: 1680: 1679: 1678: 1676: 1652: 1648: 1622: 1618: 1613: 1609: 1605: 1601: 1597: 1593: 1589: 1565: 1561: 1541: 1538: 1517: 1516: 1515: 1509: 1504: 1502: 1500: 1496: 1492: 1474: 1470: 1461: 1445: 1420: 1416: 1409: 1406: 1403: 1398: 1394: 1384: 1383: 1364: 1361: 1353: 1349: 1340: 1337: 1334: 1330: 1317: 1314: 1311: 1307: 1300: 1293: 1281: 1278: 1270: 1266: 1257: 1253: 1240: 1236: 1229: 1222: 1219: 1211: 1207: 1198: 1194: 1181: 1177: 1170: 1158: 1156: 1151: 1150: 1135: 1130: 1126: 1114: 1110: 1102: 1097: 1086: 1082: 1074: 1067: 1063: 1051: 1047: 1039: 1032: 1028: 1016: 1012: 1004: 997: 993: 984: 981: 979: 971: 955: 952: 949: 946: 943: 940: 933: 932: 931: 929: 925: 921: 917: 913: 909: 905: 901: 897: 893: 889: 885: 884: 863: 857: 852: 848: 844: 839: 835: 831: 825: 818: 817: 816: 796: 790: 787: 783: 779: 776: 770: 764: 761: 757: 753: 750: 747: 740: 739: 738: 736: 732: 728: 724: 720: 716: 712: 708: 704: 700: 696: 692: 688: 684: 680: 661: 655: 650: 646: 642: 637: 633: 629: 623: 616: 615: 614: 608: 603: 599: 595: 591: 587: 583: 579: 575: 571: 567: 563: 560: 556: 552: 548: 544: 540: 536: 532: 529: 525: 521: 517: 513: 509: 508: 507: 505: 504:trivial group 497: 495: 493: 489: 485: 481: 477: 473: 469: 468:vector spaces 465: 460: 457: 443: 440: 437: 434: 431: 409: 405: 396: 375: 372: 369: 365: 358: 355: 352: 344: 340: 333: 330: 308: 304: 296: 293: 289: 268: 264: 251: 247: 239: 233: 221: 217: 209: 201: 197: 184: 180: 172: 164: 160: 147: 143: 135: 127: 123: 115: 114: 113: 107: 105: 104:of the next. 103: 99: 95: 91: 87: 83: 79: 75: 67: 49: 45: 37: 32: 19: 7777:Publications 7642:Chern number 7632:Betti number 7515: / 7506:Key concepts 7454:Differential 7365: 7335: 7306: 7295:. Retrieved 7291: 7282: 7257: 7232: 7229: 7226: 7206: 7202: 7197: 7193: 7188: 7184: 7174: 7170: 7165: 7161: 7156: 7152: 7146: 7142: 7140: 7127: 7123: 7119: 7115: 7111: 7107: 7101: 7094: 7086: 7081: 7077: 7073: 7065: 7061: 6771: 6757: 6749: 6692: 6688: 6684: 6680: 6676: 6670: 6587: 6460: 6458: 6359: 6348: 6338:shows how a 6333: 6328: 6326: 6319: 6311: 6307: 6300: 6296: 6286: 6280: 6276: 6272: 6263: 6257: 6253: 6247: 6243: 6239: 6230: 6224: 6220: 6214: 6210: 6206: 6114: 6077: 5911: 5690: 5512: 5412: 5397: 5228: 5219: 5186: 4964: 4607: 4568: 4564: 4560: 4500: 4316: 4078: 3974: 3365:= 0 implies 3315: 3222: 3113: 3110: 3035: 2817: 2806: 2791: 2782: 2775:Please help 2770: 2759: 2623: 2567: 2340: 2296: 2293: 2222: 2212: 2206: 2203: 2193: 2155: 2152:cyclic group 2122: 2048: 2018: 1955:finite group 1950: 1948: 1942: 1938: 1934: 1930: 1926: 1922: 1915: 1911: 1907: 1900: 1896: 1884: 1880: 1878:factor group 1873: 1869: 1865: 1863: 1782: 1777: 1773: 1769: 1765: 1761: 1757: 1753: 1749: 1745: 1741: 1739: 1674: 1650: 1646: 1620: 1616: 1611: 1607: 1603: 1599: 1595: 1591: 1587: 1585: 1513: 1498: 1494: 1490: 1459: 1385: 1381: 1159: 1154: 1152: 1148: 985: 982: 977: 975: 927: 923: 915: 907: 903: 899: 895: 891: 887: 881: 879: 814: 734: 730: 726: 718: 714: 710: 706: 702: 694: 690: 686: 682: 678: 676: 612: 601: 593: 589: 577: 573: 569: 565: 554: 553:) is all of 550: 546: 542: 538: 534: 528:monomorphism 523: 519: 515: 511: 501: 498:Simple cases 461: 458: 394: 294: 291: 285: 111: 73: 71: 7740:Wikiversity 7657:Key results 7292:ncatlab.org 7134:. See also 6336:snake lemma 4567:and not on 3330:Proof that 3150:is 0, then 2779:if you can. 2624:Passing to 586:isomorphism 559:epimorphism 472:linear maps 7792:Categories 7586:CW complex 7527:Continuity 7517:Closed set 7476:cohomology 7297:2021-09-05 7269:References 7097:subobjects 6924:such that 6351:five lemma 6344:nine lemma 6292:direct sum 6284:such that 6251:such that 6218:such that 6111:Properties 5187:Since the 3622:such that 3552:such that 3318:divergence 2408:direct sum 2220:of a ring 2192:of order 2 1438:for every 920:direct sum 880:is called 709:embedding 582:bimorphism 108:Definition 7765:geometric 7760:algebraic 7611:Cobordism 7547:Hausdorff 7542:connected 7459:Geometric 7449:Continuum 7439:Algebraic 7274:Citations 7211:, so the 7045:→ 7026:→ 7013:→ 7000:→ 6961:→ 6948:→ 6940:− 6896:→ 6830:→ 6817:→ 6721:⁡ 6679:) : 6648:− 6637:→ 6629:− 6615:⁡ 6609:≅ 6559:→ 6551:− 6537:⁡ 6531:≅ 6509:→ 6493:⁡ 6487:≅ 6434:→ 6421:→ 6408:→ 6395:→ 6382:→ 6181:→ 6133:→ 6053:⁡ 6047:⊕ 6034:≅ 5995:∇ 5992:∘ 5984:− 5980:∇ 5925:− 5921:∇ 5885:→ 5876:⋅ 5873:∇ 5859:∇ 5837:→ 5828:⋅ 5825:∇ 5817:∇ 5814:⋅ 5811:∇ 5798:→ 5783:∇ 5779:⋅ 5776:∇ 5736:→ 5723:⁡ 5711:→ 5702:× 5699:∇ 5668:→ 5659:× 5656:∇ 5648:× 5645:∇ 5631:→ 5622:⋅ 5619:∇ 5611:∇ 5602:→ 5587:∇ 5553:→ 5530:− 5526:∇ 5515:Laplacian 5495:→ 5483:⁡ 5431:→ 5380:→ 5297:→ 5141:→ 5119:∂ 5090:∂ 5086:∫ 5075:, and so 5041:∂ 5018:∂ 4995:∂ 4985:→ 4976:⁡ 4911:→ 4889:∂ 4855:∂ 4832:∂ 4823:∫ 4820:− 4780:∫ 4771:∂ 4767:− 4746:→ 4724:∂ 4701:∫ 4692:∂ 4688:− 4658:→ 4544:→ 4522:→ 4464:→ 4429:∫ 4426:− 4384:→ 4349:∫ 4299:^ 4274:^ 4249:^ 4224:^ 4194:∂ 4190:− 4171:∂ 4156:^ 4131:∂ 4121:^ 4096:∂ 4092:− 4062:→ 4033:→ 3995:⁡ 3986:⁡ 3953:→ 3938:^ 3913:^ 3888:^ 3856:^ 3826:∂ 3822:− 3803:∂ 3788:^ 3758:∂ 3754:− 3735:∂ 3720:^ 3690:∂ 3686:− 3667:∂ 3648:→ 3639:× 3636:∇ 3607:→ 3572:→ 3563:⋅ 3560:∇ 3537:^ 3512:^ 3487:^ 3462:→ 3429:→ 3415:for some 3400:→ 3391:⁡ 3379:→ 3350:→ 3341:⁡ 3289:→ 3280:× 3277:∇ 3274:⋅ 3271:∇ 3268:≡ 3257:→ 3248:⁡ 3237:⁡ 3164:→ 3135:→ 3084:∇ 3078:× 3075:∇ 3072:≡ 3063:⁡ 3054:⁡ 3000:→ 2916:∈ 2879:→ 2722:→ 2696:→ 2682:⊕ 2668:→ 2659:∩ 2642:→ 2606:→ 2600:→ 2594:⊕ 2588:→ 2582:→ 2548:− 2520:⊕ 2452:→ 2446:⊕ 2420:⊕ 2355:∩ 2323:⊕ 2317:→ 2311:∩ 2276:→ 2264:→ 2258:⊕ 2252:→ 2246:∩ 2240:→ 2154:of order 2105:→ 2092:→ 2076:→ 2063:→ 2001:→ 1987:→ 1981:→ 1975:→ 1846:→ 1825:⟶ 1814:× 1807:⟶ 1797:→ 1707:↠ 1698:↪ 1661:↠ 1633:↪ 1553:↠ 1542:× 1534:↪ 1410:⁡ 1359:→ 1346:→ 1338:− 1323:→ 1315:− 1304:→ 1294:⋮ 1276:→ 1263:→ 1246:→ 1233:→ 1217:→ 1204:→ 1187:→ 1174:→ 1098:⋯ 950:⊕ 944:≅ 861:→ 829:→ 791:⁡ 765:⁡ 751:≅ 717:, and of 699:subobject 659:→ 627:→ 488:cokernels 435:≤ 359:⁡ 334:⁡ 234:⋯ 78:morphisms 7730:Wikibook 7708:Category 7596:Manifold 7564:Homotopy 7522:Interior 7513:Open set 7471:Homology 7420:Topology 7362:(1995). 7332:(1995). 7263:functors 7213:homology 7169:to 0 in 6728:⟩ 6714:⟨ 6209: : 6162:→ 6141:→ 5470:→ 5446:→ 5360:→ 5336:→ 5312:→ 3189:gradient 3119:gradient 2903:gradient 2760:require 1764:through 1505:Examples 1103:→ 1075:→ 1040:→ 1005:→ 890: : 849:→ 836:→ 723:quotient 647:→ 634:→ 480:category 424:for all 240:→ 210:→ 173:→ 136:→ 7755:general 7557:uniform 7537:compact 7488:Digital 7323:Sources 7221:acyclic 6752:by the 6687:is not 6290:is the 2762:cleanup 2563:⁠ 2537:⁠ 2507:⁠ 2475:⁠ 2406:of the 2404:⁠ 2372:⁠ 2226:. Then 2216:be two 2188:is the 2150:is the 2044:abelian 1876:to the 733:, with 484:kernels 90:modules 7750:Topics 7552:metric 7427:Fields 7378:  7348:  7247:; the 6756:of im( 6695:) but 6329:splits 6172:  6166:  6151:  6145:  2218:ideals 2123:where 1889:modulo 1386:where 1290:  1120:  1107:  1092:  1079:  1057:  1044:  1022:  1009:  257:  244:  227:  214:  190:  177:  153:  140:  102:kernel 82:groups 64:using 36:groups 7532:Space 7160:maps 7122:have 6612:coker 1623:mod 2 1153:with 883:split 713:into 705:with 697:as a 600:like 588:from 482:with 395:exact 292:exact 98:image 86:rings 7376:ISBN 7346:ISBN 7261:are 7110:and 7102:The 7080:/im( 6691:/im( 6349:The 6334:The 6305:and 6115:The 6059:curl 5720:curl 5489:curl 5474:curl 5450:grad 5340:curl 5316:grad 4563:and 3992:grad 3983:curl 3388:curl 3245:curl 3060:grad 3051:curl 3038:curl 2210:and 2204:Let 2158:and 1961:is 926:and 486:and 470:and 441:< 7372:785 7342:179 6490:ker 6324:". 6294:of 5364:div 4973:div 3338:div 3324:): 3234:div 3220:. 2535:to 2509:of 2344:of 2046:). 1868:to 1768:↦ 2 1744:↦ 2 1649:to 1606:in 1598:in 1499:(2) 1495:(1) 1491:(1) 1460:(2) 1382:(2) 1155:n ≥ 1149:(1) 922:of 788:ker 725:), 701:of 602:Set 592:to 576:to 549:to 522:to 356:ker 323:if 72:An 7794:: 7374:. 7344:. 7290:. 7255:. 7209:+1 7177:+2 7151:∘ 7149:+1 7138:. 6718:im 6683:→ 6534:im 6331:. 6279:→ 6275:: 6256:∘ 6246:→ 6242:: 6223:∘ 6213:→ 6050:im 6011:, 5498:0. 5480:im 2815:. 2565:. 1941:/2 1933:/2 1925:/2 1883:/2 1619:= 1407:im 930:: 914:, 902:∘ 894:→ 762:im 662:0. 604:). 568:→ 537:→ 514:→ 331:im 295:at 88:, 84:, 7412:e 7405:t 7398:v 7384:. 7354:. 7300:. 7223:. 7207:i 7203:f 7198:i 7194:A 7189:i 7185:f 7175:i 7171:A 7166:i 7162:A 7157:i 7153:f 7147:i 7143:f 7128:C 7124:A 7120:B 7116:B 7112:C 7108:A 7082:f 7078:H 7074:f 7066:H 7062:f 7048:0 7040:1 7037:+ 7034:k 7030:C 7021:k 7017:A 7008:k 7004:C 6997:0 6975:1 6972:+ 6969:k 6965:A 6956:k 6952:A 6943:1 6937:k 6933:A 6910:1 6907:+ 6904:k 6900:A 6891:k 6887:A 6864:1 6861:+ 6858:k 6854:A 6833:0 6825:7 6821:C 6812:6 6808:A 6785:7 6781:C 6758:f 6750:H 6734:H 6724:f 6707:/ 6703:H 6693:f 6689:H 6685:H 6681:G 6677:f 6656:) 6651:1 6645:k 6641:A 6632:2 6626:k 6622:A 6618:( 6604:k 6600:C 6584:. 6572:) 6567:k 6563:A 6554:1 6548:k 6544:A 6540:( 6528:) 6523:1 6520:+ 6517:k 6513:A 6504:k 6500:A 6496:( 6482:k 6478:C 6463:k 6461:C 6442:6 6438:A 6429:5 6425:A 6416:4 6412:A 6403:3 6399:A 6390:2 6386:A 6377:1 6373:A 6316:. 6314:) 6312:C 6310:( 6308:u 6303:) 6301:A 6299:( 6297:f 6287:B 6281:B 6277:C 6273:u 6267:. 6264:C 6258:u 6254:g 6248:B 6244:C 6240:u 6234:. 6231:A 6225:f 6221:t 6215:A 6211:B 6207:t 6187:, 6184:0 6178:C 6169:g 6157:B 6148:f 6136:A 6130:0 6093:3 6088:R 6074:, 6062:) 6056:( 6042:2 6038:L 6029:3 6024:H 5987:1 5957:3 5952:H 5928:1 5892:) 5882:A 5869:( 5863:2 5855:= 5844:) 5834:A 5821:( 5808:= 5795:A 5787:2 5749:0 5746:= 5742:) 5733:A 5727:( 5717:= 5708:A 5675:) 5665:A 5652:( 5642:+ 5638:) 5628:A 5615:( 5608:= 5599:A 5591:2 5561:2 5557:L 5548:3 5543:H 5538:: 5533:1 5492:) 5486:( 5463:3 5458:H 5439:2 5435:L 5428:0 5383:0 5375:2 5371:L 5353:3 5348:H 5329:3 5324:H 5305:2 5301:L 5294:0 5269:2 5265:L 5242:2 5238:L 5220:z 5204:z 5200:F 5170:z 5166:F 5162:= 5159:) 5156:y 5153:, 5150:x 5147:( 5136:2 5132:C 5123:x 5115:+ 5112:z 5109:d 5104:z 5100:F 5094:z 5063:0 5060:= 5055:z 5051:F 5045:z 5037:+ 5032:y 5028:F 5022:y 5014:+ 5009:x 5005:F 4999:x 4991:= 4982:F 4944:z 4940:F 4936:= 4929:) 4926:y 4923:, 4920:x 4917:( 4906:2 4902:C 4893:x 4885:+ 4882:z 4879:d 4875:) 4869:y 4865:F 4859:y 4851:+ 4846:x 4842:F 4836:x 4827:( 4811:z 4807:F 4803:= 4796:z 4793:d 4788:y 4784:F 4775:y 4764:) 4761:y 4758:, 4755:x 4752:( 4741:2 4737:C 4728:x 4720:+ 4717:z 4714:d 4709:x 4705:F 4696:x 4653:1 4649:C 4623:z 4619:A 4608:z 4594:) 4591:y 4588:, 4585:x 4582:( 4579:f 4569:z 4565:y 4561:x 4539:2 4535:C 4528:, 4517:1 4513:C 4482:) 4479:y 4476:, 4473:x 4470:( 4459:2 4455:C 4448:+ 4445:z 4442:d 4437:x 4433:F 4423:= 4414:y 4410:A 4402:) 4399:y 4396:, 4393:x 4390:( 4379:1 4375:C 4368:+ 4365:z 4362:d 4357:y 4353:F 4346:= 4337:x 4333:A 4296:k 4288:z 4284:F 4280:+ 4271:j 4263:y 4259:F 4255:+ 4246:i 4238:x 4234:F 4230:= 4221:k 4214:) 4208:x 4204:A 4198:y 4185:y 4181:A 4175:x 4166:( 4162:+ 4153:j 4145:x 4141:A 4135:z 4127:+ 4118:i 4110:y 4106:A 4100:z 4079:z 4059:A 4030:A 4007:0 4004:= 4001:) 3998:f 3989:( 3950:F 3944:= 3935:k 3927:z 3923:F 3919:+ 3910:j 3902:y 3898:F 3894:+ 3885:i 3877:x 3873:F 3869:= 3853:k 3846:) 3840:x 3836:A 3830:y 3817:y 3813:A 3807:x 3798:( 3794:+ 3785:j 3778:) 3772:z 3768:A 3762:x 3749:x 3745:A 3739:z 3730:( 3726:+ 3717:i 3710:) 3704:y 3700:A 3694:z 3681:z 3677:A 3671:y 3662:( 3658:= 3645:A 3604:A 3581:0 3578:= 3569:F 3534:k 3526:z 3522:F 3518:+ 3509:j 3501:y 3497:F 3493:+ 3484:i 3476:x 3472:F 3468:= 3459:F 3426:A 3397:A 3385:= 3376:F 3347:F 3301:, 3298:0 3295:= 3286:v 3264:) 3254:v 3241:( 3206:3 3201:H 3161:F 3132:F 3114:f 3096:0 3093:= 3090:) 3087:f 3081:( 3069:) 3066:f 3057:( 3016:} 3010:3 3005:R 2995:3 2990:R 2985:: 2982:f 2978:{ 2955:3 2950:H 2926:1 2921:H 2913:f 2888:} 2883:R 2874:3 2869:R 2864:: 2861:f 2857:{ 2834:2 2830:L 2798:) 2792:( 2787:) 2783:( 2725:0 2719:) 2716:J 2713:+ 2710:I 2707:( 2703:/ 2699:R 2693:J 2689:/ 2685:R 2679:I 2675:/ 2671:R 2665:) 2662:J 2656:I 2653:( 2649:/ 2645:R 2639:0 2609:0 2603:R 2597:R 2591:R 2585:R 2579:0 2551:y 2545:x 2523:J 2517:I 2495:) 2492:y 2489:, 2486:x 2483:( 2461:J 2458:+ 2455:I 2449:J 2443:I 2423:J 2417:I 2392:) 2389:x 2386:, 2383:x 2380:( 2358:J 2352:I 2341:x 2326:J 2320:I 2314:J 2308:I 2297:R 2279:0 2273:J 2270:+ 2267:I 2261:J 2255:I 2249:J 2243:I 2237:0 2223:R 2213:J 2207:I 2194:n 2174:n 2171:2 2167:D 2156:n 2136:n 2132:C 2108:1 2100:2 2096:C 2087:n 2084:2 2080:D 2071:n 2067:C 2060:1 2030:, 2027:1 2004:1 1998:N 1994:/ 1990:G 1984:G 1978:N 1972:1 1951:Z 1945:. 1943:Z 1939:Z 1935:Z 1931:Z 1927:Z 1923:Z 1918:. 1916:Z 1912:Z 1908:Z 1903:. 1901:Z 1897:Z 1885:Z 1881:Z 1874:Z 1870:Z 1866:Z 1849:0 1842:Z 1838:2 1834:/ 1829:Z 1821:Z 1811:2 1801:Z 1794:0 1778:Z 1774:Z 1770:n 1766:n 1762:Z 1758:Z 1754:Z 1750:Z 1746:n 1742:n 1724:Z 1720:2 1716:/ 1711:Z 1703:Z 1692:Z 1688:2 1675:Z 1651:Z 1647:Z 1621:i 1617:j 1612:j 1608:Z 1604:i 1600:Z 1596:i 1592:Z 1588:i 1570:Z 1566:2 1562:/ 1557:Z 1549:Z 1539:2 1526:Z 1475:i 1471:K 1446:i 1426:) 1421:i 1417:f 1413:( 1404:= 1399:i 1395:K 1365:, 1362:0 1354:n 1350:K 1341:1 1335:n 1331:A 1318:1 1312:n 1308:K 1301:0 1282:, 1279:0 1271:3 1267:K 1258:2 1254:A 1241:2 1237:K 1230:0 1223:, 1220:0 1212:2 1208:K 1199:1 1195:A 1182:1 1178:K 1171:0 1136:, 1131:n 1127:A 1115:n 1111:f 1087:3 1083:f 1068:2 1064:A 1052:2 1048:f 1033:1 1029:A 1017:1 1013:f 998:0 994:A 956:. 953:C 947:A 941:B 928:C 924:A 916:B 908:C 904:h 900:g 896:B 892:C 888:h 864:0 858:C 853:g 845:B 840:f 832:A 826:0 800:) 797:g 794:( 784:/ 780:B 777:= 774:) 771:f 768:( 758:/ 754:B 748:C 735:g 731:A 729:/ 727:B 719:C 715:B 711:A 707:f 703:B 695:A 691:g 687:f 683:g 679:f 656:C 651:g 643:B 638:f 630:A 624:0 594:Y 590:X 578:Y 574:X 570:Y 566:X 555:C 551:C 547:B 543:C 539:C 535:B 524:B 520:A 516:B 512:A 444:n 438:i 432:1 410:i 406:G 381:) 376:1 373:+ 370:i 366:f 362:( 353:= 350:) 345:i 341:f 337:( 309:i 305:G 269:n 265:G 252:n 248:f 222:3 218:f 202:2 198:G 185:2 181:f 165:1 161:G 148:1 144:f 128:0 124:G 68:. 50:i 46:G 20:)

Index

Long exact sequence
Illustration of an exact sequence of groups using Euler diagrams. Each group is represented by a circle, within which there is a subgroup that is simultaneously the range of the previous homomorphism and the kernel of the next one, because of the exact sequence condition.
groups
Euler diagrams
morphisms
groups
rings
modules
abelian category
image
kernel
group homomorphisms
algebraic structures
vector spaces
linear maps
module homomorphisms
category
kernels
cokernels
abelian categories
trivial group
monomorphism
epimorphism
bimorphism
isomorphism
exact categories
subobject
quotient
split
abelian groups

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.