Knowledge (XXG)

Longitudinal wave

Source 📝

37: 716:
materials has increased in recent years, particularly within the study of polycrystalline materials where researchers aim to "nondestructively evaluate the degree of damage of engineering components" and to "develop improved procedures for characterizing microstructures" according to a research team led by R. Bruce Thompson in a
1135:" or homogeneous media. Maxwell's equations, as we now understand them, retain that conclusion: in free-space or other uniform isotropic dielectrics, electro-magnetic waves are strictly transverse. However electromagnetic waves can display a longitudinal component in the electric and/or magnetic fields when traversing 1043:
A current prediction for modeling attenuation of waves in polycrystalline materials with elongated grains is the second-order approximation (SOA) model which accounts the second order of inhomogeneity allowing for the consideration multiple scattering in the crystal system. This model predicts that
715:
of a wave in a medium describes the loss of energy a wave carries as it propagates throughout the medium. This is caused by the scattering of the wave at interfaces, the loss of energy due to the friction between molecules, or geometric divergence. The study of attenuation of elastic waves in
1154:
and Bo Lehnert of the Swedish Royal Society, have used the Proca equation in an attempt to demonstrate photon mass as a longitudinal electromagnetic component of Maxwell's equations, suggesting that longitudinal electromagnetic waves could exist in a Dirac polarized vacuum. However
274: 1038: 876: 1150:(1897–1955) was known for developing relativistic quantum field equations bearing his name (Proca's equations) which apply to the massive vector spin-1 mesons. In recent decades some other theorists, such as 138:"Longitudinal waves" and "transverse waves" have been abbreviated by some authors as "L-waves" and "T-waves", respectively, for their own convenience. While these two abbreviations have specific meanings in 1236: 1114:; due to the fact that they would need particles to vibrate upon, the electric and magnetic fields of which the wave consists are perpendicular to the direction of the wave's propagation. However 1641:"Hear the Weird Sounds of a Black Hole Singing – As part of an effort to "sonify" the cosmos, researchers have converted the pressure waves from a black hole into an audible … something" 619: 524: 400: 442: 946:
which form the bulk material. Due to the difference in crystal structure and properties of these grains, when a wave propagating through a poly-crystal crosses a grain boundary, a
1941: 154:), some authors chose to use "l-waves" (lowercase 'L') and "t-waves" instead, although they are not commonly found in physics writings except for some popular science books. 786: 759: 932: 905: 696: 670: 557: 182: 639: 1288: 20: 955: 793: 2091: 1052:
The equations for sound in a fluid given above also apply to acoustic waves in an elastic solid. Although solids also support transverse waves (known as
1910: 1118:
are longitudinal since these are not electromagnetic waves but density waves of charged particles, but which can couple to the electromagnetic field.
447:
For sound waves, the amplitude of the wave is the difference between the pressure of the undisturbed air and the maximum pressure caused by the wave.
289: 950:
event occurs causing scattering based attenuation of the wave. Additionally it has been shown that the ratio rule for viscoelastic materials,
1354: 114:, in which the displacements of the medium are at right angles to the direction of propagation. Transverse waves, for instance, describe 59:
of the medium is parallel to the direction the wave travels and displacement of the medium is in the same (or opposite) direction of the
1537: 1609: 2066: 1710: 1693: 1677: 1422: 95:
toy, where the distance between coils increases and decreases, is a good visualization. Real-world examples include sound waves (
1903: 1937: 1640: 2045: 566: 477: 364: 1896: 411: 2274: 2056: 2004: 1538:"Elastic wave velocity dispersion in polycrystals with elongated grains: Theoretical and numerical analysis" 19: 1481:"Longitudinal wave attenuation in polycrystals with elongated grains: 3D numerical and analytical modeling" 2022: 1126: 1103: 2000: 1817:
Krishan, S.; Selim, A. A. (1968). "Generation of transverse waves by non-linear wave-wave interaction".
718: 76: 2029: 1306:
Thompson, R. Bruce; Margetan, F.J.; Haldipur, P.; Yu, L.; Li, A.; Panetta, P.; Wasan, H. (April 2008).
130:
waves" to differentiate them from the (longitudinal) pressure waves that these materials also support.
1756:
Lakes, Roderic (1998). "Experimental Limits on the Photon Mass and Cosmic Magnetic Vector Potential".
1826: 1765: 1549: 1492: 1434: 1376: 1319: 1107: 100: 1139:
materials, or inhomogeneous materials especially at interfaces (surface waves for instance) such as
2248: 2071: 1958: 147: 1863: 1669: 1645: 1366: 1151: 1065: 764: 737: 292:
Representation of the propagation of an omnidirectional pulse wave on a 2d grid (empirical shape)
127: 16:
Waves in which the direction of media displacement is parallel (along) to the direction of travel
2034: 1129:, Heaviside concluded that electromagnetic waves were not to be found as longitudinal waves in " 405:
The wavelength can be calculated as the relation between a wave's speed and ordinary frequency.
288: 2136: 1928: 1795: 1706: 1689: 1673: 1575: 1567: 1518: 1510: 1458: 1450: 1400: 1392: 1335: 1251: 332: 1270: 1220: 1216: 454:
depends on the type, temperature, and composition of the medium through which it propagates.
269:{\displaystyle y(x,t)=y_{0}\cos \!{\bigg (}\omega \!\left(t-{\frac {x}{c}}\right)\!{\bigg )}} 2081: 2061: 1855: 1834: 1773: 1557: 1500: 1442: 1384: 1327: 60: 910: 883: 681: 648: 535: 40: 2086: 2012: 1888: 1423:"Bounds on the longitudinal and shear wave attenuation ratio of polycrystalline materials" 1172: 1147: 1111: 1092: 731: 560: 163: 111: 64: 1830: 1769: 1553: 1496: 1438: 1380: 1323: 2124: 2051: 1975: 1920: 1846:
Barrow, W.L. (1936). "Transmission of Electromagnetic Waves in Hollow Tubes of Metal".
1636: 1232: 1160: 1061: 1033:{\displaystyle {\frac {\alpha _{L}}{\alpha _{T}}}\geq {\frac {4c_{T}^{3}}{3c_{L}^{3}}}} 943: 871:{\displaystyle {\frac {\alpha _{L}}{\alpha _{T}}}\geq {\frac {4c_{T}^{3}}{3c_{L}^{3}}}} 624: 451: 1878:". Acoustics Animations, Pennsylvania State University, Graduate Program in Acoustics. 1838: 1594: 2268: 2233: 2171: 2076: 1980: 1182: 642: 1867: 2253: 1806:– A.J. Devaney, H. Levine, and T. Plona. Ann Arbor, Mich., Ann Arbor Science, 1982. 1331: 1192: 1140: 1136: 1084: 1077: 673: 1804:
Attenuation due to scattering of ultrasonic compressional waves in granular media
1307: 2228: 2186: 2141: 2106: 1990: 1970: 1953: 1777: 1536:
Huang, M.; Sha, G.; Huthwaite, P.; Rokhlin, S. I.; Lowe, M. J. S. (2020-12-01).
1479:
Huang, M.; Sha, G.; Huthwaite, P.; Rokhlin, S. I.; Lowe, M. J. S. (2021-04-01).
1115: 712: 99:
in pressure, a particle of displacement, and particle velocity propagated in an
80: 1859: 2166: 2161: 2156: 1985: 1963: 1924: 1131: 1076:, the latter of which is described (as with sound in a gas) by the material's 1057: 947: 173: 139: 1571: 1514: 1454: 1396: 1355:"An inequality for longitudinal and transverse wave attenuation coefficients" 1339: 2208: 2146: 2101: 2039: 1258: 1122: 1073: 1044:
the shape of the grains in a poly-crystal has little effect on attenuation.
316: 169: 143: 96: 56: 1579: 1522: 1462: 1404: 1159:
is strongly doubted by almost all physicists and is incompatible with the
2223: 2176: 2119: 2008: 471:
solids and liquids, the speed of a Longitudinal wave can be described by
468: 88: 2243: 2218: 2201: 2196: 2129: 2114: 1811:
Experimental Observation of Pressure Waves in Gas-Solids Fluidized Beds
1744:
Nikola Tesla, Lightning Observations, and stationary waves, Appendix II
1562: 1505: 1480: 1069: 1053: 699: 1705:
Gerald E. Marsh (1996), Force-free Magnetic Fields, World Scientific,
1446: 1388: 2213: 2191: 2181: 2151: 1187: 1156: 151: 123: 104: 92: 1809:
Schaaf, John van der, Jaap C. Schouten, and Cor M. van den Bleek, "
1371: 2238: 1813:". American Institute of Chemical Engineers. New York, N.Y., 1997. 1177: 1088: 1087:(converting astronomical data associated with pressure waves into 119: 1995: 1614: 1308:"Scattering of elastic waves in simple and complex polycrystals" 52: 41:
Detailed animation of longitudinal wave motion (CC-BY-NC-ND 4.0)
1892: 934:
are the transverse and longitudinal wave speeds respectively.
286:
is the displacement of the point on the traveling sound wave;
1040:
applies equally successfully to polycrystalline materials.
1727:
Appendices: D. On compressional electric or magnetic waves
942:
Polycrystalline materials are made up of various crystal
734:
materials, the attenuation coefficients per length alpha
23:
A type of longitudinal wave: A plane pressure pulse wave.
30:
Nonfree image: detailed animation of a longitudinal wave
1608:
Watzke, Megan; Porter, Molly; Mohon, Lee (4 May 2022).
788:
for transverse waves must satisfy the following ratio:
347:
is the time that the wave takes to travel the distance
1421:
Kube, Christopher M.; Norris, Andrew N. (2017-04-01).
1060:), longitudinal sound waves in the solid exist with a 958: 913: 886: 796: 767: 740: 684: 651: 627: 569: 538: 480: 414: 367: 185: 300:
is the distance from the point to the wave's source;
2100: 29: 1032: 926: 899: 870: 780: 753: 690: 664: 633: 613: 551: 518: 436: 394: 268: 87:, because they produce increases and decreases in 261: 258: 231: 223: 220: 1610:"New NASA Black Hole Sonifications with a Remix" 1542:The Journal of the Acoustical Society of America 1485:The Journal of the Acoustical Society of America 1427:The Journal of the Acoustical Society of America 1359:The Journal of the Acoustical Society of America 1729:. Chelsea Pub Co; 3rd edition (1971) 082840237X 1904: 1213:Stone in Architecture: Properties, Durability 8: 1688:John D. Jackson, Classical Electrodynamics, 1665: 1663: 614:{\displaystyle E_{L}=K_{b}+{\frac {4G}{3}}} 519:{\displaystyle v_{l}={\sqrt {E_{l}/\rho }}} 395:{\displaystyle f={\frac {\omega }{2\pi }}.} 168:For longitudinal harmonic sound waves, the 1911: 1897: 1889: 1561: 1504: 1370: 1091:) of the black hole at the center of the 1021: 1016: 1001: 996: 986: 975: 965: 959: 957: 918: 912: 891: 885: 859: 854: 839: 834: 824: 813: 803: 797: 795: 772: 766: 745: 739: 683: 656: 650: 626: 596: 587: 574: 568: 543: 537: 506: 500: 494: 485: 479: 421: 413: 374: 366: 260: 259: 243: 222: 221: 211: 184: 107:(created by earthquakes and explosions). 91:. A wave along the length of a stretched 938:Attenuation in polycrystalline materials 437:{\displaystyle \lambda ={\frac {c}{f}}.} 287: 18: 1876:Longitudinal and Transverse Wave Motion 1800:Elastic wave scattering and propagation 1253:Abbreviations Dictionary, Tenth Edition 1223:, Springer Science & Business Media 1204: 1146:In the development of modern physics, 83:when travelling through a medium, and 26: 1881:Longitudinal Waves, with animations " 1598:". Eric Weisstein's World of Science. 726:Attenuation in viscoelastic materials 7: 1474: 1472: 1416: 1414: 1283: 1281: 1250:Dean A. Stahl, Karen Landen (2001), 1672:, Introduction to Electrodynamics, 110:The other main type of wave is the 67:longitudinal waves are also called 1241:(3rd ed.), Oxford University Press 14: 707:Attenuation of longitudinal waves 1738:Corum, K. L., and J. F. Corum, " 1353:Norris, Andrew N. (2017-01-01). 1110:in a vacuum, which are strictly 176:can be described by the formula 35: 1083:In May 2022, NASA reported the 1332:10.1016/j.wavemoti.2007.09.008 1238:A Dictionary of Earth Sciences 201: 189: 1: 325:is the speed of the wave; and 1068:dependent on the material's 1839:10.1088/0032-1028/10/10/305 1778:10.1103/PhysRevLett.80.1826 781:{\displaystyle \alpha _{T}} 761:for longitudinal waves and 754:{\displaystyle \alpha _{l}} 458:Speed of Longitudinal Waves 2291: 1860:10.1109/JRPROC.1936.227357 1125:'s attempts to generalize 1106:lead to the prediction of 358:) of the wave is given by 161: 126:); these are also called " 2046:Music On A Long Thin Wire 1949: 1935: 1269:Francine Milford (2016), 34: 1942:Hornbostel–Sachs numbers 1740:The Zenneck surface wave 354:The ordinary frequency ( 1758:Physical Review Letters 1211:Erhard Winkler (1997), 75:, because they produce 2023:Long-string instrument 1848:Proceedings of the IRE 1723:Electromagnetic theory 1093:Perseus galaxy cluster 1034: 928: 901: 872: 782: 755: 692: 666: 635: 615: 553: 520: 438: 396: 293: 270: 122:materials (but not in 24: 1883:The Physics Classroom 1592:Weisstein, Eric W., " 1108:electromagnetic waves 1035: 929: 927:{\displaystyle c_{L}} 902: 900:{\displaystyle c_{T}} 873: 783: 756: 693: 691:{\displaystyle \rho } 667: 665:{\displaystyle K_{B}} 636: 616: 554: 552:{\displaystyle E_{l}} 521: 439: 397: 291: 271: 162:Further information: 22: 1796:Vasundara V. Varadan 1794:Varadan, V. K., and 1721:Heaviside, Oliver, " 956: 911: 884: 794: 765: 738: 682: 649: 625: 567: 536: 478: 412: 365: 319:of the oscillations, 306:is the time elapsed; 183: 118:bulk sound waves in 103:medium) and seismic 1831:1968PlPh...10..931K 1770:1998PhRvL..80.1826L 1554:2020ASAJ..148.3645H 1497:2021ASAJ..149.2377H 1439:2017ASAJ..141.2633K 1381:2017ASAJ..141..475N 1324:2008WaMot..45..655T 1127:Maxwell's equations 1104:Maxwell's equations 1026: 1006: 864: 844: 148:electrocardiography 2030:Melde's experiment 1670:David J. Griffiths 1646:The New York Times 1563:10.1121/10.0002916 1506:10.1121/10.0003955 1152:Jean-Pierre Vigier 1030: 1012: 992: 924: 897: 868: 850: 830: 778: 751: 688: 662: 631: 611: 549: 516: 434: 392: 294: 266: 146:or long wave) and 49:Longitudinal waves 25: 2262: 2261: 2018:Longitudinal wave 1854:(10): 1298–1328. 1447:10.1121/1.4979980 1389:10.1121/1.4974152 1028: 981: 866: 819: 634:{\displaystyle G} 609: 514: 452:propagation speed 429: 387: 333:angular frequency 251: 73:compression waves 46: 45: 2282: 2082:String vibration 1913: 1906: 1899: 1890: 1871: 1842: 1782: 1781: 1764:(9): 1826–1829. 1753: 1747: 1736: 1730: 1719: 1713: 1703: 1697: 1686: 1680: 1667: 1658: 1657: 1655: 1653: 1633: 1627: 1626: 1624: 1622: 1605: 1599: 1590: 1584: 1583: 1565: 1548:(6): 3645–3662. 1533: 1527: 1526: 1508: 1491:(4): 2377–2394. 1476: 1467: 1466: 1433:(4): 2633–2636. 1418: 1409: 1408: 1374: 1350: 1344: 1343: 1303: 1297: 1296: 1285: 1276: 1267: 1261: 1248: 1242: 1230: 1224: 1209: 1157:photon rest mass 1112:transverse waves 1099:Electromagnetics 1039: 1037: 1036: 1031: 1029: 1027: 1025: 1020: 1007: 1005: 1000: 987: 982: 980: 979: 970: 969: 960: 933: 931: 930: 925: 923: 922: 906: 904: 903: 898: 896: 895: 877: 875: 874: 869: 867: 865: 863: 858: 845: 843: 838: 825: 820: 818: 817: 808: 807: 798: 787: 785: 784: 779: 777: 776: 760: 758: 757: 752: 750: 749: 697: 695: 694: 689: 671: 669: 668: 663: 661: 660: 640: 638: 637: 632: 620: 618: 617: 612: 610: 605: 597: 592: 591: 579: 578: 558: 556: 555: 550: 548: 547: 525: 523: 522: 517: 515: 510: 505: 504: 495: 490: 489: 463:Isotropic medium 443: 441: 440: 435: 430: 422: 401: 399: 398: 393: 388: 386: 375: 275: 273: 272: 267: 265: 264: 257: 253: 252: 244: 227: 226: 216: 215: 61:wave propagation 39: 38: 27: 2290: 2289: 2285: 2284: 2283: 2281: 2280: 2279: 2265: 2264: 2263: 2258: 2167:Japanese fiddle 2105: 2096: 2087:Transverse wave 2035:Mersenne's laws 2013:String harmonic 1945: 1931: 1917: 1874:Russell, Dan, " 1845: 1825:(10): 931–937. 1816: 1791: 1789:Further reading 1786: 1785: 1755: 1754: 1750: 1737: 1733: 1720: 1716: 1704: 1700: 1687: 1683: 1668: 1661: 1651: 1649: 1637:Overbye, Dennis 1635: 1634: 1630: 1620: 1618: 1607: 1606: 1602: 1591: 1587: 1535: 1534: 1530: 1478: 1477: 1470: 1420: 1419: 1412: 1352: 1351: 1347: 1305: 1304: 1300: 1287: 1286: 1279: 1272:The Tuning Fork 1268: 1264: 1249: 1245: 1231: 1227: 1210: 1206: 1201: 1173:Transverse wave 1169: 1148:Alexandru Proca 1101: 1050: 1008: 988: 971: 961: 954: 953: 940: 914: 909: 908: 887: 882: 881: 846: 826: 809: 799: 792: 791: 768: 763: 762: 741: 736: 735: 728: 709: 680: 679: 652: 647: 646: 623: 622: 598: 583: 570: 565: 564: 561:elastic modulus 539: 534: 533: 496: 481: 476: 475: 465: 460: 410: 409: 379: 363: 362: 314: 236: 232: 207: 181: 180: 166: 164:Acoustic theory 160: 136: 112:transverse wave 36: 17: 12: 11: 5: 2288: 2286: 2278: 2277: 2275:Wave mechanics 2267: 2266: 2260: 2259: 2257: 2256: 2251: 2246: 2241: 2236: 2231: 2226: 2221: 2216: 2211: 2206: 2205: 2204: 2199: 2194: 2189: 2184: 2179: 2169: 2164: 2159: 2154: 2149: 2144: 2139: 2134: 2133: 2132: 2125:Bladder fiddle 2122: 2117: 2111: 2109: 2098: 2097: 2095: 2094: 2089: 2084: 2079: 2074: 2069: 2064: 2059: 2054: 2049: 2042: 2037: 2032: 2027: 2026: 2025: 2015: 1998: 1993: 1988: 1983: 1978: 1973: 1968: 1967: 1966: 1956: 1950: 1947: 1946: 1936: 1933: 1932: 1918: 1916: 1915: 1908: 1901: 1893: 1887: 1886: 1879: 1872: 1843: 1819:Plasma Physics 1814: 1807: 1790: 1787: 1784: 1783: 1748: 1731: 1714: 1698: 1681: 1659: 1639:(7 May 2022). 1628: 1600: 1585: 1528: 1468: 1410: 1365:(1): 475–479. 1345: 1318:(5): 655–674. 1298: 1277: 1262: 1243: 1233:Michael Allaby 1225: 1203: 1202: 1200: 1197: 1196: 1195: 1190: 1185: 1180: 1175: 1168: 1165: 1161:Standard Model 1100: 1097: 1066:wave impedance 1049: 1048:Pressure waves 1046: 1024: 1019: 1015: 1011: 1004: 999: 995: 991: 985: 978: 974: 968: 964: 939: 936: 921: 917: 894: 890: 862: 857: 853: 849: 842: 837: 833: 829: 823: 816: 812: 806: 802: 775: 771: 748: 744: 727: 724: 708: 705: 704: 703: 702:of the medium. 687: 677: 659: 655: 630: 608: 604: 601: 595: 590: 586: 582: 577: 573: 546: 542: 527: 526: 513: 509: 503: 499: 493: 488: 484: 464: 461: 459: 456: 445: 444: 433: 428: 425: 420: 417: 403: 402: 391: 385: 382: 378: 373: 370: 337: 336: 326: 320: 312: 307: 301: 295: 277: 276: 263: 256: 250: 247: 242: 239: 235: 230: 225: 219: 214: 210: 206: 203: 200: 197: 194: 191: 188: 159: 156: 135: 132: 85:pressure waves 44: 43: 32: 31: 15: 13: 10: 9: 6: 4: 3: 2: 2287: 2276: 2273: 2272: 2270: 2255: 2252: 2250: 2247: 2245: 2242: 2240: 2237: 2235: 2234:Tromba marina 2232: 2230: 2227: 2225: 2222: 2220: 2217: 2215: 2212: 2210: 2207: 2203: 2200: 2198: 2195: 2193: 2190: 2188: 2185: 2183: 2180: 2178: 2175: 2174: 2173: 2170: 2168: 2165: 2163: 2160: 2158: 2155: 2153: 2150: 2148: 2145: 2143: 2140: 2138: 2135: 2131: 2128: 2127: 2126: 2123: 2121: 2118: 2116: 2113: 2112: 2110: 2108: 2103: 2099: 2093: 2090: 2088: 2085: 2083: 2080: 2078: 2077:Standing wave 2075: 2073: 2070: 2068: 2065: 2063: 2060: 2058: 2055: 2053: 2050: 2048: 2047: 2043: 2041: 2038: 2036: 2033: 2031: 2028: 2024: 2021: 2020: 2019: 2016: 2014: 2010: 2006: 2002: 1999: 1997: 1994: 1992: 1989: 1987: 1984: 1982: 1979: 1977: 1974: 1972: 1969: 1965: 1962: 1961: 1960: 1957: 1955: 1952: 1951: 1948: 1943: 1939: 1934: 1930: 1926: 1922: 1914: 1909: 1907: 1902: 1900: 1895: 1894: 1891: 1884: 1880: 1877: 1873: 1869: 1865: 1861: 1857: 1853: 1849: 1844: 1840: 1836: 1832: 1828: 1824: 1820: 1815: 1812: 1808: 1805: 1801: 1797: 1793: 1792: 1788: 1779: 1775: 1771: 1767: 1763: 1759: 1752: 1749: 1745: 1741: 1735: 1732: 1728: 1724: 1718: 1715: 1712: 1711:981-02-2497-4 1708: 1702: 1699: 1695: 1694:0-471-30932-X 1691: 1685: 1682: 1679: 1678:0-13-805326-X 1675: 1671: 1666: 1664: 1660: 1648: 1647: 1642: 1638: 1632: 1629: 1617: 1616: 1611: 1604: 1601: 1597: 1596: 1589: 1586: 1581: 1577: 1573: 1569: 1564: 1559: 1555: 1551: 1547: 1543: 1539: 1532: 1529: 1524: 1520: 1516: 1512: 1507: 1502: 1498: 1494: 1490: 1486: 1482: 1475: 1473: 1469: 1464: 1460: 1456: 1452: 1448: 1444: 1440: 1436: 1432: 1428: 1424: 1417: 1415: 1411: 1406: 1402: 1398: 1394: 1390: 1386: 1382: 1378: 1373: 1368: 1364: 1360: 1356: 1349: 1346: 1341: 1337: 1333: 1329: 1325: 1321: 1317: 1313: 1309: 1302: 1299: 1294: 1290: 1289:"Attenuation" 1284: 1282: 1278: 1275: 1273: 1266: 1263: 1260: 1256: 1254: 1247: 1244: 1240: 1239: 1234: 1229: 1226: 1222: 1218: 1214: 1208: 1205: 1198: 1194: 1191: 1189: 1186: 1184: 1183:Acoustic wave 1181: 1179: 1176: 1174: 1171: 1170: 1166: 1164: 1162: 1158: 1153: 1149: 1144: 1142: 1141:Zenneck waves 1138: 1134: 1133: 1128: 1124: 1119: 1117: 1113: 1109: 1105: 1098: 1096: 1094: 1090: 1086: 1081: 1079: 1075: 1071: 1067: 1063: 1059: 1055: 1047: 1045: 1041: 1022: 1017: 1013: 1009: 1002: 997: 993: 989: 983: 976: 972: 966: 962: 951: 949: 945: 937: 935: 919: 915: 892: 888: 878: 860: 855: 851: 847: 840: 835: 831: 827: 821: 814: 810: 804: 800: 789: 773: 769: 746: 742: 733: 725: 723: 722:publication. 721: 720: 714: 706: 701: 685: 678: 675: 657: 653: 644: 643:shear modulus 628: 606: 602: 599: 593: 588: 584: 580: 575: 571: 562: 544: 540: 532: 531: 530: 511: 507: 501: 497: 491: 486: 482: 474: 473: 472: 470: 462: 457: 455: 453: 448: 431: 426: 423: 418: 415: 408: 407: 406: 389: 383: 380: 376: 371: 368: 361: 360: 359: 357: 352: 350: 346: 342: 339:The quantity 334: 330: 327: 324: 321: 318: 311: 308: 305: 302: 299: 296: 290: 285: 282: 281: 280: 254: 248: 245: 240: 237: 233: 228: 217: 212: 208: 204: 198: 195: 192: 186: 179: 178: 177: 175: 171: 165: 157: 155: 153: 149: 145: 141: 133: 131: 129: 125: 121: 117: 113: 108: 106: 102: 98: 94: 90: 86: 82: 78: 74: 70: 69:compressional 66: 62: 58: 55:in which the 54: 50: 42: 33: 28: 21: 2254:Washtub bass 2107:musical bows 2067:Scale length 2044: 2017: 1964:Third bridge 1882: 1875: 1851: 1847: 1822: 1818: 1810: 1803: 1799: 1761: 1757: 1751: 1743: 1739: 1734: 1726: 1722: 1717: 1701: 1684: 1650:. Retrieved 1644: 1631: 1619:. Retrieved 1613: 1603: 1593: 1588: 1545: 1541: 1531: 1488: 1484: 1430: 1426: 1362: 1358: 1348: 1315: 1311: 1301: 1292: 1271: 1265: 1252: 1246: 1237: 1228: 1212: 1207: 1193:Plasma waves 1163:of physics. 1145: 1137:birefringent 1130: 1120: 1116:plasma waves 1102: 1085:sonification 1082: 1078:bulk modulus 1051: 1042: 952: 941: 879: 790: 732:viscoelastic 729: 717: 710: 674:bulk modulus 528: 466: 449: 446: 404: 355: 353: 348: 344: 340: 338: 335:of the wave. 328: 322: 309: 303: 297: 283: 278: 167: 142:(L-wave for 137: 134:Nomenclature 115: 109: 84: 72: 68: 48: 47: 2229:Psalmodicon 2142:Diddley bow 2001:Fundamental 1991:Fingerboard 1971:Chordophone 1929:instruments 1312:Wave Motion 719:Wave Motion 713:attenuation 158:Sound waves 81:rarefaction 77:compression 2162:Ichigenkin 2157:Ground bow 2102:Monochords 2092:Tuning peg 2072:Soundboard 1986:Enharmonic 1372:1605.04326 1274:, pp.43–44 1199:References 1132:free space 1058:seismology 948:scattering 563:such that 174:wavelength 140:seismology 97:vibrations 65:Mechanical 2209:Langeleik 2147:Duxianqin 2040:Monochord 2009:Overtones 2005:Harmonics 1572:0001-4966 1515:0001-4966 1455:0001-4966 1397:0001-4966 1340:0165-2125 1259:CRC Press 1123:Heaviside 984:≥ 973:α 963:α 822:≥ 811:α 801:α 770:α 743:α 686:ρ 512:ρ 469:isotropic 416:λ 384:π 377:ω 317:amplitude 241:− 229:ω 170:frequency 144:Love wave 57:vibration 2269:Category 2224:Onavillu 2177:Genggong 2172:Jaw harp 2120:Berimbau 2062:Re-entry 1919:Musical 1868:32056359 1580:33379920 1523:33940885 1463:28464650 1405:28147617 1293:SEG Wiki 1235:(2008), 1167:See also 1074:rigidity 1072:and its 1062:velocity 450:Sound's 89:pressure 2244:Umuduri 2219:Masenqo 2202:Mukkuri 2197:Morsing 2137:Đàn bầu 2130:Boom-ba 2115:Ahardin 1921:strings 1827:Bibcode 1766:Bibcode 1746:. 1994. 1550:Bibcode 1493:Bibcode 1435:Bibcode 1377:Bibcode 1320:Bibcode 1255:, p.618 1070:density 1054:S-waves 700:density 698:is the 672:is the 641:is the 559:is the 331:is the 315:is the 279:where: 105:P-waves 101:elastic 2249:Unitar 2214:Lesiba 2192:Kubing 2187:Khomuz 2182:Gogona 2152:Ektara 1976:Course 1959:Bridge 1927:, and 1866:  1709:  1692:  1676:  1652:11 May 1621:11 May 1595:P-Wave 1578:  1570:  1521:  1513:  1461:  1453:  1403:  1395:  1338:  1188:P-wave 1121:After 944:grains 880:where 621:where 529:where 152:T wave 124:fluids 93:Slinky 2239:Tumbi 1981:Drone 1925:wires 1864:S2CID 1367:arXiv 1178:Sound 1089:sound 150:(see 128:shear 120:solid 53:waves 2052:Node 1996:Fret 1938:List 1707:ISBN 1690:ISBN 1674:ISBN 1654:2022 1623:2022 1615:NASA 1576:PMID 1568:ISSN 1519:PMID 1511:ISSN 1459:PMID 1451:ISSN 1401:PMID 1393:ISSN 1336:ISSN 1221:p.57 1219:and 1217:p.55 1064:and 907:and 711:The 645:and 467:For 172:and 116:some 79:and 51:are 2104:and 2057:Nut 1954:Bow 1856:doi 1835:doi 1802:". 1798:, " 1774:doi 1742:", 1725:". 1558:doi 1546:148 1501:doi 1489:149 1443:doi 1431:141 1385:doi 1363:141 1328:doi 1056:in 730:In 218:cos 71:or 2271:: 1923:, 1862:. 1852:24 1850:. 1833:. 1823:10 1821:. 1772:. 1762:80 1760:. 1662:^ 1643:. 1612:. 1574:. 1566:. 1556:. 1544:. 1540:. 1517:. 1509:. 1499:. 1487:. 1483:. 1471:^ 1457:. 1449:. 1441:. 1429:. 1425:. 1413:^ 1399:. 1391:. 1383:. 1375:. 1361:. 1357:. 1334:. 1326:. 1316:45 1314:. 1310:. 1291:. 1280:^ 1257:, 1215:, 1143:. 1095:. 1080:. 351:. 63:. 2011:/ 2007:/ 2003:/ 1944:) 1940:( 1912:e 1905:t 1898:v 1885:" 1870:. 1858:: 1841:. 1837:: 1829:: 1780:. 1776:: 1768:: 1696:. 1656:. 1625:. 1582:. 1560:: 1552:: 1525:. 1503:: 1495:: 1465:. 1445:: 1437:: 1407:. 1387:: 1379:: 1369:: 1342:. 1330:: 1322:: 1295:. 1023:3 1018:L 1014:c 1010:3 1003:3 998:T 994:c 990:4 977:T 967:L 920:L 916:c 893:T 889:c 861:3 856:L 852:c 848:3 841:3 836:T 832:c 828:4 815:T 805:L 774:T 747:l 676:; 658:B 654:K 629:G 607:3 603:G 600:4 594:+ 589:b 585:K 581:= 576:L 572:E 545:l 541:E 508:/ 502:l 498:E 492:= 487:l 483:v 432:. 427:f 424:c 419:= 390:. 381:2 372:= 369:f 356:f 349:x 345:c 343:/ 341:x 329:ω 323:c 313:0 310:y 304:t 298:x 284:y 262:) 255:) 249:c 246:x 238:t 234:( 224:( 213:0 209:y 205:= 202:) 199:t 196:, 193:x 190:( 187:y

Index


Detailed animation of longitudinal wave motion (CC-BY-NC-ND 4.0)
waves
vibration
wave propagation
Mechanical
compression
rarefaction
pressure
Slinky
vibrations
elastic
P-waves
transverse wave
solid
fluids
shear
seismology
Love wave
electrocardiography
T wave
Acoustic theory
frequency
wavelength

amplitude
angular frequency
propagation speed
isotropic
elastic modulus

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.