Knowledge

Character sum

Source 📝

876: 637: 642: 387: 312: 871:{\displaystyle {\begin{aligned}\Sigma &\ll p^{1/2}\log p,\\\Sigma &\ll 2R^{1/2}p^{3/16}\log p,\\\Sigma &\ll rR^{1-1/r}p^{(r+1)/4r^{2}}(\log p)^{1/2r}\end{aligned}}} 439: 588: 202: 240: 503: 68: 150: 1149:. Mathematics and Its Applications (Soviet Series). Vol. 80. Translated from the Russian by Yu. N. Shakhov. Dordrecht: Kluwer Academic Publishers. 1197: 1104: 1041: 326: 1120: 1154: 1212: 1100: 1037: 322: 318: 1045: 335: 986: 92: 1112: 266: 601:
of the curve in question, and so (Legendre symbol or hyperelliptic case) can be taken as the degree of
403: 1060: 557: 166: 598: 532: 513: 71: 210: 458: 244: 88: 76: 1183: 41: 1180: 1150: 1116: 135: 1160: 1126: 1088: 1078: 1068: 1025: 1017: 994: 974: 253: 110: 17: 1164: 1130: 1092: 1029: 998: 978: 594: 509: 102: 966: 249: 1064: 528: 257: 1206: 536: 524: 517: 548: 87:. Such sums are basic in a number of questions, for example in the distribution of 1006:
Burgess, D. A. (1957). "The distribution of quadratic residues and non-residues".
512:. Here the sum can be evaluated (as −1), a result that is connected to the 1008: 91:, and in particular in the classical question of finding an upper bound for the 31: 1021: 449: 1188: 106: 1083: 989:(1918). "Sur la distribution des residus and nonresidus des puissances". 1073: 969:(1918). "Ueber die Verteilung der quadratischen Reste und Nichtreste". 616:, applying to give non-trivial results beyond Pólya–Vinogradov, for 132:
is then zero. This means that the cases of interest will be sums
971:
Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen
116:
Assume χ is a non-principal Dirichlet character to the modulus
452:. A classical result is the case of a quadratic, for example, 397:
Another significant type of character sum is that formed by
1111:. Cambridge tracts in advanced mathematics. Vol. 97. 44: 1198:
PlanetMath article on the Pólya–Vinogradov inequality
640: 560: 461: 406: 338: 269: 213: 169: 138: 1046:"Exponential sums with multiplicative coefficients" 870: 582: 497: 433: 382:{\displaystyle \Sigma =O({\sqrt {N}}\log \log N).} 381: 306: 234: 207:A fundamental improvement on the trivial estimate 196: 144: 62: 949: 925: 329:have shown that there is the further improvement 1109:Multiplicative number theory I. Classical theory 605:. (More general results, for other values of 307:{\displaystyle \Sigma =O({\sqrt {N}}\log N).} 101:. Character sums are often closely linked to 8: 128:The sum taken over all residue classes mod 913: 1082: 1072: 851: 847: 823: 811: 795: 781: 771: 728: 724: 710: 706: 663: 659: 641: 639: 593:The constant implicit in the notation is 567: 559: 460: 405: 351: 337: 282: 268: 212: 168: 137: 43: 609:, can be obtained starting from there.) 152:over relatively short ranges, of length 83:, taken over a given range of values of 1147:Exponential sums and their applications 937: 894: 901: 7: 754: 689: 645: 527:relate to local zeta-functions of 523:More generally, such sums for the 339: 270: 214: 139: 25: 1184:"The Pólya–Vinogradov inequality" 434:{\displaystyle \sum \chi (F(n))} 991:J. Soc. Phys. Math. Univ. Permi 612:Weil's results also led to the 583:{\displaystyle O({\sqrt {p}}).} 551:, there are non-trivial bounds 248:, established independently by 197:{\displaystyle M\leq n<M+R.} 844: 831: 808: 796: 574: 564: 535:; this means that by means of 492: 480: 471: 465: 428: 425: 419: 413: 373: 348: 319:generalized Riemann hypothesis 298: 279: 229: 223: 57: 51: 1: 950:Montgomery & Vaughan 2007 926:Montgomery & Vaughan 1977 987:Vinogradov, Ivan Matveyevich 235:{\displaystyle \Sigma =O(N)} 498:{\displaystyle F(n)=n(n+1)} 245:Pólya–Vinogradov inequality 93:least quadratic non-residue 18:Pólya-Vinogradov inequality 1229: 1113:Cambridge University Press 63:{\textstyle \sum \chi (n)} 1022:10.1112/S0025579300001157 1053:Inventiones Mathematicae 1145:Korobov, N. M. (1992). 624:greater than 1/4. 145:{\displaystyle \Sigma } 109:(this is like a finite 1213:Analytic number theory 872: 584: 499: 435: 383: 308: 236: 198: 146: 64: 27:Mathematical construct 873: 585: 500: 436: 384: 309: 237: 199: 147: 65: 1115:. pp. 306–325. 638: 558: 533:hyperelliptic curves 459: 404: 336: 267: 256:in 1918, stating in 211: 167: 136: 42: 1101:Montgomery, Hugh L. 1065:1977InMat..43...69M 1038:Montgomery, Hugh L. 627:Assume the modulus 514:local zeta-function 393:Summing polynomials 72:Dirichlet character 1181:Weisstein, Eric W. 1105:Vaughan, Robert C. 1074:10.1007/BF01390204 1042:Vaughan, Robert C. 868: 866: 580: 495: 444:for some function 431: 379: 304: 232: 194: 142: 89:quadratic residues 60: 1122:978-0-521-84903-6 572: 356: 287: 16:(Redirected from 1220: 1194: 1193: 1168: 1134: 1096: 1086: 1076: 1050: 1033: 1002: 982: 953: 947: 941: 935: 929: 923: 917: 911: 905: 899: 881:for any integer 877: 875: 874: 869: 867: 863: 862: 855: 830: 829: 828: 827: 815: 790: 789: 785: 737: 736: 732: 719: 718: 714: 672: 671: 667: 589: 587: 586: 581: 573: 568: 539:'s results, for 504: 502: 501: 496: 440: 438: 437: 432: 388: 386: 385: 380: 357: 352: 313: 311: 310: 305: 288: 283: 254:I. M. Vinogradov 241: 239: 238: 233: 203: 201: 200: 195: 151: 149: 148: 143: 124:Sums over ranges 111:Mellin transform 103:exponential sums 69: 67: 66: 61: 21: 1228: 1227: 1223: 1222: 1221: 1219: 1218: 1217: 1203: 1202: 1179: 1178: 1175: 1157: 1144: 1141: 1139:Further reading 1123: 1099: 1048: 1036: 1005: 985: 965: 962: 957: 956: 948: 944: 936: 932: 924: 920: 914:Vinogradov 1918 912: 908: 900: 896: 891: 865: 864: 843: 819: 791: 767: 757: 751: 750: 720: 702: 692: 686: 685: 655: 648: 636: 635: 556: 555: 529:elliptic curves 510:Legendre symbol 457: 456: 402: 401: 395: 334: 333: 323:Hugh Montgomery 265: 264: 209: 208: 165: 164: 134: 133: 126: 70:of values of a 40: 39: 28: 23: 22: 15: 12: 11: 5: 1226: 1224: 1216: 1215: 1205: 1204: 1201: 1200: 1195: 1174: 1173:External links 1171: 1170: 1169: 1155: 1140: 1137: 1136: 1135: 1121: 1097: 1034: 1016:(2): 106–112. 1003: 983: 961: 958: 955: 954: 942: 930: 918: 906: 893: 892: 890: 887: 879: 878: 861: 858: 854: 850: 846: 842: 839: 836: 833: 826: 822: 818: 814: 810: 807: 804: 801: 798: 794: 788: 784: 780: 777: 774: 770: 766: 763: 760: 758: 756: 753: 752: 749: 746: 743: 740: 735: 731: 727: 723: 717: 713: 709: 705: 701: 698: 695: 693: 691: 688: 687: 684: 681: 678: 675: 670: 666: 662: 658: 654: 651: 649: 647: 644: 643: 591: 590: 579: 576: 571: 566: 563: 506: 505: 494: 491: 488: 485: 482: 479: 476: 473: 470: 467: 464: 448:, generally a 442: 441: 430: 427: 424: 421: 418: 415: 412: 409: 394: 391: 390: 389: 378: 375: 372: 369: 366: 363: 360: 355: 350: 347: 344: 341: 315: 314: 303: 300: 297: 294: 291: 286: 281: 278: 275: 272: 258:big O notation 231: 228: 225: 222: 219: 216: 205: 204: 193: 190: 187: 184: 181: 178: 175: 172: 141: 125: 122: 59: 56: 53: 50: 47: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1225: 1214: 1211: 1210: 1208: 1199: 1196: 1191: 1190: 1185: 1182: 1177: 1176: 1172: 1166: 1162: 1158: 1156:0-7923-1647-9 1152: 1148: 1143: 1142: 1138: 1132: 1128: 1124: 1118: 1114: 1110: 1106: 1102: 1098: 1094: 1090: 1085: 1084:2027.42/46603 1080: 1075: 1070: 1066: 1062: 1058: 1054: 1047: 1043: 1039: 1035: 1031: 1027: 1023: 1019: 1015: 1011: 1010: 1004: 1000: 996: 992: 988: 984: 980: 976: 972: 968: 967:Pólya, George 964: 963: 959: 951: 946: 943: 939: 934: 931: 927: 922: 919: 915: 910: 907: 903: 898: 895: 888: 886: 884: 859: 856: 852: 848: 840: 837: 834: 824: 820: 816: 812: 805: 802: 799: 792: 786: 782: 778: 775: 772: 768: 764: 761: 759: 747: 744: 741: 738: 733: 729: 725: 721: 715: 711: 707: 703: 699: 696: 694: 682: 679: 676: 673: 668: 664: 660: 656: 652: 650: 634: 633: 632: 630: 625: 623: 619: 615: 614:Burgess bound 610: 608: 604: 600: 596: 577: 569: 561: 554: 553: 552: 550: 546: 542: 538: 534: 530: 526: 525:Jacobi symbol 521: 519: 518:conic section 515: 511: 489: 486: 483: 477: 474: 468: 462: 455: 454: 453: 451: 447: 422: 416: 410: 407: 400: 399: 398: 392: 376: 370: 367: 364: 361: 358: 353: 345: 342: 332: 331: 330: 328: 327:R. C. Vaughan 324: 320: 317:Assuming the 301: 295: 292: 289: 284: 276: 273: 263: 262: 261: 259: 255: 251: 247: 246: 226: 220: 217: 191: 188: 185: 182: 179: 176: 173: 170: 163: 162: 161: 159: 155: 131: 123: 121: 119: 114: 112: 108: 104: 100: 97: 94: 90: 86: 82: 79: 78: 73: 54: 48: 45: 37: 36:character sum 33: 19: 1187: 1146: 1108: 1059:(1): 69–82. 1056: 1052: 1013: 1007: 990: 970: 945: 938:Burgess 1957 933: 921: 909: 897: 882: 880: 631:is a prime. 628: 626: 621: 617: 613: 611: 606: 602: 592: 549:prime number 544: 540: 522: 507: 445: 443: 396: 316: 250:George Pólya 243: 206: 157: 153: 129: 127: 117: 115: 98: 95: 84: 80: 75: 35: 29: 1009:Mathematika 620:a power of 32:mathematics 1165:0754.11022 1131:1142.11001 1093:0362.10036 1030:0081.27101 999:48.1352.04 979:46.0265.02 960:References 902:Pólya 1918 537:André Weil 450:polynomial 107:Gauss sums 1189:MathWorld 993:: 18–28. 973:: 21–29. 952:, p. 315. 838:⁡ 776:− 762:≪ 755:Σ 742:⁡ 697:≪ 690:Σ 677:⁡ 653:≪ 646:Σ 411:χ 408:∑ 368:⁡ 362:⁡ 340:Σ 293:⁡ 271:Σ 215:Σ 174:≤ 140:Σ 49:χ 46:∑ 38:is a sum 1207:Category 1107:(2007). 1044:(1977). 508:and χ a 1061:Bibcode 597:in the 242:is the 105:by the 1163:  1153:  1129:  1119:  1091:  1028:  997:  977:  595:linear 96:modulo 77:modulo 1049:(PDF) 889:Notes 885:≥ 3. 599:genus 516:of a 260:that 160:say, 156:< 1151:ISBN 1117:ISBN 531:and 325:and 252:and 180:< 34:, a 1161:Zbl 1127:Zbl 1089:Zbl 1079:hdl 1069:doi 1026:Zbl 1018:doi 995:JFM 975:JFM 835:log 739:log 674:log 365:log 359:log 290:log 113:). 30:In 1209:: 1186:. 1159:. 1125:. 1103:; 1087:. 1077:. 1067:. 1057:43 1055:. 1051:. 1040:; 1024:. 1012:. 734:16 547:a 543:= 520:. 321:, 120:. 74:χ 1192:. 1167:. 1133:. 1095:. 1081:: 1071:: 1063:: 1032:. 1020:: 1014:4 1001:. 981:. 940:. 928:. 916:. 904:. 883:r 860:r 857:2 853:/ 849:1 845:) 841:p 832:( 825:2 821:r 817:4 813:/ 809:) 806:1 803:+ 800:r 797:( 793:p 787:r 783:/ 779:1 773:1 769:R 765:r 748:, 745:p 730:/ 726:3 722:p 716:2 712:/ 708:1 704:R 700:2 683:, 680:p 669:2 665:/ 661:1 657:p 629:N 622:N 618:R 607:N 603:F 578:. 575:) 570:p 565:( 562:O 545:p 541:N 493:) 490:1 487:+ 484:n 481:( 478:n 475:= 472:) 469:n 466:( 463:F 446:F 429:) 426:) 423:n 420:( 417:F 414:( 377:. 374:) 371:N 354:N 349:( 346:O 343:= 302:. 299:) 296:N 285:N 280:( 277:O 274:= 230:) 227:N 224:( 221:O 218:= 192:. 189:R 186:+ 183:M 177:n 171:M 158:N 154:R 130:N 118:N 99:N 85:n 81:N 58:) 55:n 52:( 20:)

Index

Pólya-Vinogradov inequality
mathematics
Dirichlet character
modulo
quadratic residues
least quadratic non-residue
exponential sums
Gauss sums
Mellin transform
Pólya–Vinogradov inequality
George Pólya
I. M. Vinogradov
big O notation
generalized Riemann hypothesis
Hugh Montgomery
R. C. Vaughan
polynomial
Legendre symbol
local zeta-function
conic section
Jacobi symbol
elliptic curves
hyperelliptic curves
André Weil
prime number
linear
genus
Pólya 1918
Vinogradov 1918
Montgomery & Vaughan 1977

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.