Knowledge (XXG)

p-compact group

Source đź“ť

727:: Given a connected p-compact group for each prime, all with the same rational type, there is an explicit double coset space of possible connected finite loop spaces with p-completion the give p-compact groups. As connected p-compact groups are classified combinatorially, this implies a classification of connected loop spaces as well. 170:, in the sense of homotopy theory, of (the classifying space of) a compact connected Lie group defines a connected p-compact group. (The Weyl group is just its ordinary Weyl group, now viewed as a p-adic reflection group by tensoring the coweight lattice by 710:
a similar statement holds but the new exotic 3-compact group is now group number 12 on the Shepard-Todd list, of rank 2. For primes greater than 3, family 2 on the Shepard-Todd list will contain infinitely many exotic p-compact groups.
402: 458: 651: 487: 343: 235: 197: 673: 622: 509: 257: 74:-adic reflection group. They admit a classification in terms of root data, which mirrors the classification of compact Lie groups, but with the integers replaced by the 624:-reflection groups. Simple exotic p-compact groups are again in 1-1-correspondence with irreducible complex reflection groups whose character field can be embedded in 723:
is a pointed space BG such that the loop space ΩBG is homotopy equivalent to a finite CW-complex. The classification of connected p-compact groups implies a
528: 749:
The classification also implies a classification of which graded polynomial rings can occur as the cohomology ring of a space, the so-called
1017: 686:, where BH is the 2-completion of the classifying space of a connected compact Lie group, and BDI(4) denotes s copies of the " 127:, but then one needs to keep in mind that the loop space structure is part of the data (which then allows one to recover 994: 62:, which are defined purely homotopically in terms of the classifying space, but with the important difference that the 1012: 54:, making precise earlier notions of a mod p finite loop space. A p-compact group has many Lie-like properties like 767:
Andersen, K.K.S.; Grodal, J.; Møller, J.; Viruel, A. (2008), "The classification of p-compact groups for p odd",
571:, up to isomorphism. This is analogous to the classical classification of connected compact Lie groups, with the 360: 1022: 703: 355: 415: 695: 105: 915:
Dwyer, W.G; Wilkerson, C.W (1994), "Homotopy fixed-point methods for Lie groups and finite loop spaces",
734:: They are exactly those finite loop spaces that admit an integral maximal torus; this was the so-called 1037: 730:
Using the classification, one can identify the compact Lie groups inside finite loop spaces, giving a
627: 463: 319: 211: 173: 687: 1027: 947: 809: 656: 605: 492: 240: 164: 1032: 974: 934: 878: 860: 836: 818: 796: 778: 21: 308:. These spheres turn out to have a unique loop space structure. They were first constructed by 1042: 917: 769: 515:-compact group with this Weyl group is then relatively straightforward for large primes where 956: 926: 902: 870: 828: 788: 576: 67: 969:
Grodal, J. (2010), "The classification of p-compact groups and homotopical group theory",
565: 309: 281: 143: 75: 986: 598:-completion of a compact connected Lie group and BK is finite direct product of simple 408:-compact group for infinitely many primes, with the primes being determined by whether 961: 1006: 800: 55: 37: 840: 882: 44: 832: 890: 33: 17: 807:
Andersen, K.K.S.; Grodal, J. (2009), "The classification of 2-compact groups",
792: 602:
p-compact groups i.e., simple p-compact groups whose Weyl group group is not a
109: 63: 59: 945:
Dwyer, W.G; Wilkerson, C.W (1993), "A new finite loop space at the prime 2",
907: 874: 561: 40: 699: 848: 146:(in general the group of components of G will be a finite p-group). The 938: 823: 783: 293: 930: 531:), but requires more sophisticated methods for the "modular primes" 979: 865: 312:
in his 1970 MIT notes. (The Weyl group is a cyclic group of order
682:
this implies that every connected 2-compact group can be written
971:
Proceedings of the International Congress of Mathematicians 2010
849:"The Steenrod problem of realizing polynomial cohomology rings" 690:-Wilkerson 2-compact group" BDI(4) of rank 3, constructed in 891:"The realization of polynomial algebras as cohomology rings" 732:
homotopical characterisation of compact connected Lie groups
556:
states that there is a 1-1 correspondence between connected
43:, but with all the local structure concentrated at a single 694:
with Weyl group corresponding to group number 24 in the
280:. A rank 1 connected p-compact group, for p odd, is a " 659: 630: 608: 495: 466: 418: 363: 322: 243: 214: 176: 208:
defines a p-compact group. (Here the Weyl will be a
667: 645: 616: 503: 481: 452: 396: 337: 251: 229: 191: 560:-compact groups, up to homotopy equivalence, and 154:-compact group is the rank of its maximal torus. 754: 739: 725:classification of connected finite loop spaces 691: 553: 51: 206:p-completion of a connected finite loop space 8: 996:Homotopy Lie Groups and Their Classification 582:It follows from the classification that any 237:-reflection group that may not come from a 524: 397:{\displaystyle W\leq GL_{r}(\mathbb {C} )} 119:homology. One sometimes also refer to the 978: 960: 906: 864: 822: 782: 661: 660: 658: 637: 633: 632: 629: 610: 609: 607: 497: 496: 494: 473: 469: 468: 465: 441: 437: 436: 426: 417: 387: 386: 377: 362: 354:Generalizing the rank 1 case, any finite 329: 325: 324: 321: 245: 244: 242: 221: 217: 216: 213: 183: 179: 178: 175: 453:{\displaystyle GL_{r}(\mathbb {Z} _{p})} 715:Some consequences of the classification 404:can be realized as the Weyl group of a 743: 847:Andersen, K.K.S.; Grodal, J. (2008), 101:, which is local with respect to mod 7: 70:over the integers, is now a finite 14: 962:10.1090/S0894-0347-1993-1161306-9 586:-compact group can be written as 50:. This concept was introduced in 646:{\displaystyle \mathbb {Q} _{p}} 482:{\displaystyle \mathbb {Z} _{p}} 338:{\displaystyle \mathbb {Z} _{p}} 230:{\displaystyle \mathbb {Z} _{p}} 192:{\displaystyle \mathbb {Z} _{p}} 529:Chevalley–Shephard–Todd theorem 460:or not, with some embedding of 447: 432: 391: 383: 1: 988:Homotopy Lie Groups: A Survey 889:Clark, A.; Ewing, J. (1974), 833:10.1090/S0894-0347-08-00623-1 575:-adic integers replacing the 519:does not divide the order of 268:-compact group is either the 138:-compact group is said to be 66:, rather than being a finite 755:Andersen & Grodal (2008) 740:Andersen & Grodal (2009) 692:Dwyer & Wilkerson (1993) 668:{\displaystyle \mathbb {Q} } 617:{\displaystyle \mathbb {Z} } 554:Andersen & Grodal (2009) 504:{\displaystyle \mathbb {C} } 252:{\displaystyle \mathbb {Z} } 52:Dwyer & Wilkerson (1994) 1059: 793:10.4007/annals.2008.167.95 704:complex reflection groups 535:that divide the order of 736:maximal torus conjecture 525:Clark & Ewing (1974) 523:(carried out already in 511:. The construction of a 356:complex reflection group 908:10.2140/pjm.1974.50.425 412:and be conjugated into 108:, and such the pointed 1018:Topology of Lie groups 669: 647: 618: 548:The classification of 505: 483: 454: 398: 339: 253: 231: 193: 875:10.1112/jtopol/jtn021 670: 648: 619: 552:-compact groups from 506: 484: 455: 399: 340: 254: 232: 194: 657: 628: 606: 493: 464: 416: 361: 320: 241: 212: 174: 948:J. Amer. Math. Soc. 810:J. Amer. Math. Soc. 678:For instance, when 284:sphere", i.e., the 264:A rank 1 connected 259:-reflection group.) 204:More generally the 97:is a pointed space 1013:Algebraic topology 665: 643: 614: 501: 479: 450: 394: 349:th root of unity.) 335: 249: 227: 189: 123:-compact group by 22:algebraic topology 918:Ann. of Math. (2) 770:Ann. of Math. (2) 721:finite loop space 577:rational integers 288:-completion of a 1050: 983: 982: 965: 964: 941: 911: 910: 895:Pacific J. Math. 885: 868: 843: 826: 803: 786: 751:Steenrod problem 684:BG = BH Ă— BDI(4) 674: 672: 671: 666: 664: 652: 650: 649: 644: 642: 641: 636: 623: 621: 620: 615: 613: 510: 508: 507: 502: 500: 488: 486: 485: 480: 478: 477: 472: 459: 457: 456: 451: 446: 445: 440: 431: 430: 403: 401: 400: 395: 390: 382: 381: 344: 342: 341: 336: 334: 333: 328: 258: 256: 255: 250: 248: 236: 234: 233: 228: 226: 225: 220: 198: 196: 195: 190: 188: 187: 182: 68:reflection group 20:, in particular 1058: 1057: 1053: 1052: 1051: 1049: 1048: 1047: 1023:Homotopy theory 1003: 1002: 968: 944: 931:10.2307/2946585 914: 888: 846: 806: 766: 763: 717: 702:enumeration of 655: 654: 631: 626: 625: 604: 603: 546: 491: 490: 467: 462: 461: 435: 422: 414: 413: 373: 359: 358: 323: 318: 317: 310:Dennis Sullivan 272:-completion of 239: 238: 215: 210: 209: 177: 172: 171: 160: 144:connected space 115:has finite mod 87: 12: 11: 5: 1056: 1054: 1046: 1045: 1040: 1035: 1030: 1025: 1020: 1015: 1005: 1004: 1001: 1000: 992: 984: 966: 942: 912: 901:(2): 425–434, 886: 859:(4): 747–760, 844: 817:(2): 387–436, 804: 762: 759: 716: 713: 663: 640: 635: 612: 569:-adic integers 545: 544:Classification 542: 541: 540: 499: 476: 471: 449: 444: 439: 434: 429: 425: 421: 393: 389: 385: 380: 376: 372: 369: 366: 351: 350: 332: 327: 261: 260: 247: 224: 219: 201: 200: 186: 181: 159: 156: 86: 83: 79:-adic integers 13: 10: 9: 6: 4: 3: 2: 1055: 1044: 1041: 1039: 1036: 1034: 1031: 1029: 1026: 1024: 1021: 1019: 1016: 1014: 1011: 1010: 1008: 999: 997: 993: 991: 989: 985: 981: 976: 972: 967: 963: 958: 954: 950: 949: 943: 940: 936: 932: 928: 924: 920: 919: 913: 909: 904: 900: 896: 892: 887: 884: 880: 876: 872: 867: 862: 858: 854: 850: 845: 842: 838: 834: 830: 825: 820: 816: 812: 811: 805: 802: 798: 794: 790: 785: 780: 776: 772: 771: 765: 764: 760: 758: 756: 752: 747: 745: 744:Grodal (2010) 741: 737: 733: 728: 726: 722: 714: 712: 709: 705: 701: 697: 693: 689: 685: 681: 676: 653:, but is not 638: 601: 597: 593: 589: 585: 580: 578: 574: 570: 568: 563: 559: 555: 551: 543: 538: 534: 530: 526: 522: 518: 514: 474: 442: 427: 423: 419: 411: 407: 378: 374: 370: 367: 364: 357: 353: 352: 348: 330: 315: 311: 307: 303: 299: 295: 291: 287: 283: 279: 275: 271: 267: 263: 262: 222: 207: 203: 202: 184: 169: 167: 162: 161: 157: 155: 153: 149: 145: 141: 137: 132: 130: 126: 122: 118: 114: 111: 107: 104: 100: 96: 95:compact group 92: 84: 82: 80: 78: 73: 69: 65: 61: 57: 53: 49: 46: 42: 39: 36:version of a 35: 31: 30:compact group 27: 23: 19: 1038:Group theory 995: 987: 970: 952: 946: 922: 916: 898: 894: 856: 852: 824:math/0611437 814: 808: 784:math/0302346 774: 768: 750: 748: 735: 731: 729: 724: 720: 718: 707: 683: 679: 677: 599: 595: 591: 588:BG = BH Ă— BK 587: 583: 581: 572: 566: 557: 549: 547: 536: 532: 520: 516: 512: 409: 405: 346: 316:, acting on 313: 305: 301: 297: 289: 285: 277: 273: 269: 265: 205: 165: 151: 147: 139: 135: 133: 128: 124: 120: 116: 112: 102: 98: 94: 90: 88: 76: 71: 56:maximal tori 47: 29: 25: 15: 925:: 395–442, 168:-completion 60:Weyl groups 34:homotopical 18:mathematics 1028:Lie groups 1007:Categories 777:: 95–210, 761:References 527:using the 142:if G is a 110:loop space 85:Definition 64:Weyl group 1033:Manifolds 980:1003.4010 955:: 37–64, 866:0704.4002 853:J. Topol. 801:119168267 564:over the 562:root data 368:≤ 296:S, where 140:connected 41:Lie group 1043:Symmetry 841:17542829 304:− 300:divides 282:Sullivan 158:Examples 106:homology 939:2946585 883:1583621 753:. (See 738:. (See 696:Shepard 594:is the 345:via an 113:G = ΩBG 38:compact 937:  881:  839:  799:  706:. For 600:exotic 590:where 294:sphere 998:(PDF) 990:(PDF) 975:arXiv 935:JSTOR 879:S2CID 861:arXiv 837:S2CID 819:arXiv 797:S2CID 779:arXiv 688:Dwyer 278:SO(3) 274:SU(2) 150:of a 45:prime 32:is a 746:.) 742:and 700:Todd 290:2n-1 163:The 148:rank 131:). 58:and 24:, a 957:doi 927:doi 923:139 903:doi 871:doi 829:doi 789:doi 775:167 757:.) 708:p=3 680:p=2 489:in 276:or 16:In 1009:: 973:, 951:, 933:, 921:, 899:50 897:, 893:, 877:, 869:, 855:, 851:, 835:, 827:, 815:22 813:, 795:, 787:, 773:, 719:A 675:. 592:BH 579:. 199:.) 134:A 129:BG 99:BG 89:A 81:. 977:: 959:: 953:6 929:: 905:: 873:: 863:: 857:1 831:: 821:: 791:: 781:: 698:- 662:Q 639:p 634:Q 611:Z 596:p 584:p 573:p 567:p 558:p 550:p 539:. 537:W 533:p 521:W 517:p 513:p 498:C 475:p 470:Z 448:) 443:p 438:Z 433:( 428:r 424:L 420:G 410:W 406:p 392:) 388:C 384:( 379:r 375:L 371:G 365:W 347:n 331:p 326:Z 314:n 306:1 302:p 298:n 292:- 286:p 270:2 266:2 246:Z 223:p 218:Z 185:p 180:Z 166:p 152:p 136:p 125:G 121:p 117:p 103:p 93:- 91:p 77:p 72:p 48:p 28:- 26:p

Index

mathematics
algebraic topology
homotopical
compact
Lie group
prime
Dwyer & Wilkerson (1994)
maximal tori
Weyl groups
Weyl group
reflection group
p-adic integers
homology
loop space
connected space
p-completion
Sullivan
sphere
Dennis Sullivan
complex reflection group
Clark & Ewing (1974)
Chevalley–Shephard–Todd theorem
Andersen & Grodal (2009)
root data
p-adic integers
rational integers
Dwyer
Dwyer & Wilkerson (1993)
Shepard
Todd

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑