Knowledge (XXG)

P-type ATPase

Source 📝

1375:), ATPase gene gain and loss as well as horizontal transfer occurred seldom in contrast to most other bacterial phyla. Some families (i.e., Kdp-type ATPases) underwent far less horizontal gene transfer than other prokaryotic families, possibly due to their multisubunit characteristics. Functional motifs are better conserved across family lines than across organismal lines, and these motifs can be family specific, facilitating functional predictions. In some cases, gene fusion events created P-type ATPases covalently linked to regulatory catalytic enzymes. In one family (FUPA Family 24), a type I ATPase gene (N-terminal) is fused to a type II ATPase gene (C-terminal) with retention of function only for the latter. Genome minimalization led to preferential loss of P-type ATPase genes. Chan et al. (2010) suggested that in prokaryotes and some unicellular eukaryotes, the primary function of P-type ATPases is protection from extreme environmental stress conditions. The classification of P-type ATPases of unknown function into phylogenetic families provides guides for future molecular biological studies. 757:), invariant residues in helixes 6, 7 and 8 form two transmembrane metal binding sites (TM-MBSs). These bind Cu with high affinity in a trigonal planar geometry. The cytoplasmic Cu chaperone CopZ transfers the metal directly to the TM-MBSs; however, loading both of the TM-MBSs requires binding of nucleotides to the enzyme. In agreement with the classical transport mechanism of P-type ATPases, occupancy of both transmembrane sites by cytoplasmic Cu is a requirement for enzyme phosphorylation and subsequent transport into the periplasmic or extracellular milieu. Transport studies have shown that most Cu-ATPases drive cytoplasmic Cu efflux, albeit with quite different transport rates in tune with their various physiological roles. Archetypical Cu-efflux pumps responsible for Cu tolerance, like the 737:), has been studied. CopZ interacted with and delivered the metal to the N-terminal metal binding domain(s) of CopA (MBDs). Cu-loaded MBDs, acting as metal donors, were unable to activate CopA or a truncated CopA lacking MBDs. Conversely, Cu-loaded CopZ activated the CopA ATPase and CopA constructs in which MBDs were rendered unable to bind Cu. Furthermore, under nonturnover conditions, CopZ transferred Cu to the TM-MBS of a CopA lacking MBDs altogether. Thus, MBDs may serve a regulatory function without participating directly in metal transport, and the chaperone delivers Cu directly to transmembrane transport sites of Cu-ATPases. Wu et al. (2008) have determined structures of two constructs of the Cu (CopA) pump from 1206:. Ten transmembrane helices and three cytoplasmic domains define the functional unit of ATP-coupled proton transport across the plasma membrane, and the structure is locked in a functional state not previously observed in P-type ATPases. The transmembrane domain reveals a large cavity, which is likely to be filled with water, located near the middle of the membrane plane where it is lined by conserved hydrophilic and charged residues. Proton transport against a high membrane potential is readily explained by this structural arrangement. 5096: 446:(M1-M10), with the binding sites for transported ligand(s) located near the midpoint of the bilayer. While most subfamilies have 10 transmembrane helices, there are some notable exceptions. The P1A ATPases are predicted to have 7, and the large subfamily of heavy metal pumps P1B) is predicted to have 8 transmembrane helices. P5 ATPases appear to have a total of 12 transmembrane helices. 516:
of the transported ligand(s) in the transmembrane binding sites, and it is pivot in transposing the energy from the hydrolysis of ATP in the cytoplasmic domains to the vectorial transport of cations in the transmembrane domain. The A domain dephosphorylates the P domain as part of the reaction cycle using a highly conserved TGES motif located at one end of the jellyroll.
398:
function. Additional subunits that lack catalytic activity are present in the ATPase complexes of P1A, P2A, P2C and P4 ATPases. E.g. the catalytic alpha subunit of Na/K-ATPase consists of two additional subunits, beta and gamma, involved in trafficking, folding, and regulation of these pumps. The first P-type ATPase to be crystallized was
21: 862:(M1-M10), with the two Ca-binding sites located near the midpoint of the bilayer. The binding sites are formed by side-chains and backbone carbonyls from M4, M5, M6, and M8. M4 is unwound in this region due to a conserved proline (P308). This unwinding of M4 is recognised as a key structural feature of P-type ATPases. 761:
CopA, have turnover rates ten times higher than those involved in cuproprotein assembly (or alternative functions). This explains the incapability of the latter group to significantly contribute to the metal efflux required for survival in high copper environments. Structural and mechanistic details
632:
analysis of 159 sequences made in 1998 by Axelsen and Palmgren suggested that P-type ATPases can be divided into five subfamilies (types; designated as P1-P5), based strictly on a conserved sequence kernel excluding the highly variable N and C terminal regions. Chan et al. (2010) also analyzed P-type
912:
state, the reaction cycle begins as the enzyme releases 1-3 protons from the cation-ligating residues, in exchange for cytoplasmic Ca-ions. This leads to assembly of the phosphorylation site between the ATP-bound N domain and the P domain, while the A domain directs the occlusion of the bound Ca. In
515:
The A domain serves as a built-in protein phosphatase that functions to dephosphorylate the phosphorylated P domain. The A domain is the smallest of the three cytoplasmic domains. It consists of a distorted jellyroll structure and two short helices. It is the actuator domain modulating the occlusion
397:
P-type ATPases have a single catalytic subunit of 70 - 140 kDa. The catalytic subunit hydrolyzes ATP, contains the aspartyl phosphorylation site and binding sites for the transported ligand(s) and catalyzes ion transport. Various subfamilies of P-type ATPases also need additional subunits for proper
2914:
Di Fonzo, A; Chien, H. F; Socal, M; Giraudo, S; Tassorelli, C; Iliceto, G; Fabbrini, G; Marconi, R; Fincati, E; Abbruzzese, G; Marini, P; Squitieri, F; Horstink, M. W; Montagna, P; Libera, A. D; Stocchi, F; Goldwurm, S; Ferreira, J. J; Meco, G; Martignoni, E; Lopiano, L; Jardim, L. B; Oostra, B. A;
1341:
Chan et al., (2010) conducted an equivalent but more extensive analysis of the P-type ATPase Superfamily in Prokaryotes and compared them with those from Eukaryotes. While some families are represented in both types of organisms, others are found only in one of the other type. The primary functions
506:
The N domain serves as a built-in protein kinase that functions to phosphorylate the P domain. The N domain is inserted between the two segments of the P domain, and is formed of a seven-strand antiparallel β-sheet between two helix bundles. This domain contains the ATP-binding pocket, pointing out
462:
The P domain contains the canonical aspartic acid residue phosphorylated (in a conserved DKTGT motif; the 'D' is the one letter abbreviation of the amino acid aspartate) during the reaction cycle. It is composed of two parts widely separated in sequence. These two parts assemble into a seven-strand
929:
P state. During this transition, the transmembrane Ca-binding residues are forced apart, destroying the high-affinity binding site. This is in agreement with the general model form substrate translocation, showing that energy in primary transport is not used to bind the substrate but to release it
745:
of tubular crystals, which revealed the overall architecture and domain organization of the molecule. They localized its N-terminal MBD within the cytoplasmic domains that use ATP hydrolysis to drive the transport cycle and built a pseudoatomic model by fitting existing crystallographic structures
945:
Xu et al. proposed how Ca binding induces conformational changes in TMS 4 and 5 in the membrane domain (M) that in turn induce rotation of the phosphorylation domain (P). The nucleotide binding (N) and β-sheet (β) domains are highly mobile, with N flexibly linked to P, and β flexibly linked to M.
2870:
Ramirez, A; Heimbach, A; Gründemann, J; Stiller, B; Hampshire, D; Cid, L. P; Goebel, I; Mubaidin, A. F; Wriekat, A. L; Roeper, J; Al-Din, A; Hillmer, A. M; Karsak, M; Liss, B; Woods, C. G; Behrens, M. I; Kubisch, C (2006). "Hereditary parkinsonism with dementia is caused by mutations in ATP13A2,
449:
Common for all P-type ATPases is a core of 6 transmembrane-spanning segments (also called the 'transport (T) domain'; M1-M6 in SERCA), that harbors the binding sites for the translocated ligand(s). The ligand(s) enter through a half-channel to the binding site and leave on the other side of the
453:
Varying among P-type ATPase is the additional number of transmembrane-spanning segments (also called the 'support (S) domain', which between subfamilies ranges from 2 to 6. Extra transmembrane-segments likely provides structural support for the T domain and can also have specialized functions.
1118:
has been determined with two rubidium ions bound in an occluded state in the transmembrane part of the α-subunit. Several of the residues forming the cavity for rubidium/potassium occlusion in the Na/K-ATPase are homologous to those binding calcium in the Ca-ATPase of the sarco(endo)plasmic
987:
dephosphorylation and suggest a direct participation of the side chains of the TGES loop in the control and facilitation of the insertion of the loop in the catalytic site. The interactions of the TGES loop furthermore seem to facilitate its disengagement from the catalytic site during the
933:
As the Ca dissociate to the luminal side, the cation binding sites are neutralised by proton binding, which makes a closure of the transmembrane segments favourable. This closure is coupled to a downward rotation of the A domain and a movement of the P domain, which then leads to the
619:
ATP hydrolysis occurs in the cytoplasmic headpiece at the interface between domain N and P. Two Mg-ion sites form part of the active site. ATP hydrolysis is tightly coupled to translocation of the transported ligand(s) through the membrane, more than 40 Å away, by the A domain.
924:
This then allows the A domain to rotate toward the phosphorylation site, making a firm association with both the P and the N domains. This movement of the A domain exerts a downward push on M3-M4 and a drag on M1-M2, forcing the pump to open at the luminal side and forming the
1070:
to autoinhibitory built-in domains situated at either the carboxy-terminal (animals) or amino-terminal (plants) end of the pump protein. In the cell, they are situated in the plasma membrane (animals and plants) and the internal membranes (plants).
596:, it has low affinity of the exported substrate and high affinity for the imported substrate. Four major enzyme states form the cornerstones in the reaction cycle. Several additional reaction intermediates occur interposed. These are termed E 1350:
Many P-type ATPase families are found exclusively in prokaryotes (e.g. Kdp-type K uptake ATPases (type III) and all prokaryotic functionally uncharacterized P-type ATPase (FUPA) families), while others are restricted to eukaryotes (e.g.
941:
The P domain is dephosphorylated by the A domain, and the cycle completes when the phosphate is released from the enzyme, stimulated by the newly bound ATP, while a cytoplasmic pathway opens to exchange the protons for two new Ca ions.
921:~P state becomes formed through a kinase reaction, where the P domain becomes phosphorylated, producing ADP. The cleavage of the β-phosphodiester bond releases the gamma-phosphate from ADP and unleashes the N domain from the P domain. 2538:
Morth, J. Preben; Pedersen, Bjørn P.; Toustrup-Jensen, Mads S.; Sørensen, Thomas L.-M.; Petersen, Janne; Andersen, Jens Peter; Vilsen, Bente; Nissen, Poul (2007-12-13). "Crystal structure of the sodium-potassium pump".
2240:
Meng, Dan; Bruschweiler-Li, Lei; Zhang, Fengli; Brüschweiler, Rafael (2015-08-18). "Modulation and Functional Role of the Orientations of the N- and P-Domains of Cu+ -Transporting ATPase along the Ion Transport Cycle".
532:, which, in the presence of Ca, activates P2B ATPases by neutralizing the terminal constraint. The P3A plasma membrane proton pumps have a C-terminal regulatory domain, which, when unphosphorylated, inhibits pumping. 857:
section with two Ca-binding sites. The cytoplasmic section consists of three cytoplasmic domains, designated the P, N, and A domains, containing over half the mass of the protein. The transmembrane section has ten
429:
section with binding sites for the transported ligand(s). The cytoplasmic section consists of three cytoplasmic domains, designated the P, N, and A domains, containing over half the mass of the protein.
528:
that have been found to be involved in regulation. The P2B Ca ATPases have autoinbitory domains in their amino-terminal (plants) or carboxy-terminal (animals) regions, which contain binding sites for
637:
analysis grouped the proteins independent of the organism from which they are isolated and showed that the diversification of the P-type ATPase family occurred prior to the separation of
544:
to drive transport. They form a high-energy aspartyl-phosphoanhydride intermediate in the reaction cycle, and they interconvert between at least two different conformations, denoted by E
717:
binding to transmembrane metal-binding sites (TM-MBS) in Cu-ATPases is required for enzyme phosphorylation and subsequent transport. However, Cu does not access Cu-ATPases in a free (
816:(also referred to as SERCA). These pumps have two Ca ion binding sites and are often regulated by inhibitory accessory proteins having a single trans-membrane spanning segment (e.g. 770:
P2 ATPases (or Type II ATPases) are split into four groups. Topological type II ATPases (specific for Na,K, H Ca, Mg and phospholipids) predominate in eukaryotes (approx. twofold).
1123:
of the α-subunit is contained within a pocket between transmembrane helices and seems to be a novel regulatory element controlling sodium affinity, possibly influenced by the
3923: 2961:
Chan, Henry; Babayan, Vartan; Blyumin, Elya; Gandhi, Charmy; Hak, Kunal; Harake, Danielle; Kumar, Kris; Lee, Perry; Li, Tze T. (2010-01-01). "The p-type ATPase superfamily".
969:
states. Anthonisen et al. (2006) characterized the kinetics of the partial reaction steps of the transport cycle and the binding of the phosphoryl analogs BeF, AlF, MgF, and
657:
P1 ATPases (or Type I ATPases) consists of the transition/heavy metal ATPases. Topological type I (heavy metal) P-type ATPases predominate in prokaryotes (approx. tenfold).
973:
in mutants with alterations to conserved TGES loop residues. The data provide functional evidence supporting a role of Glu in activating the water molecule involved in the
946:
Modeling of the fungal H ATPase, based on the structures of the Ca pump, suggested a comparable 70º rotation of N relative to P to deliver ATP to the phosphorylation site.
1342:
of prokaryotic P-type ATPases appear to be protection from environmental stress conditions. Only about half of the P-type ATPase families are functionally characterized.
1312:
provides a representative list of members of the P-ATPase superfamily, which as of early 2016 consisting of 20 families. Members of the P-ATPase superfamily are found in
840:(also referred to as SPCA). These pumps have a single Ca ion binding site and are located in secretory vesicles (animals) or the vacuolar membrane (fungi). (TC# 3.A.3.2) 2675:
Pedersen, Bjørn P.; Buch-Pedersen, Morten J.; Preben Morth, J.; Palmgren, Michael G.; Nissen, Poul (2007-12-13). "Crystal structure of the plasma membrane proton pump".
2006:
Chan, Henry; Babayan, Vartan; Blyumin, Elya; Gandhi, Charmy; Hak, Kunal; Harake, Danielle; Kumar, Kris; Lee, Perry; Li, Tze T. (2010). "The P-Type ATPase Superfamily".
183: 633:
ATPases in all major prokaryotic phyla for which complete genome sequence data were available and compared the results with those for eukaryotic P-type ATPases. The
127: 115: 470:
The folding pattern and the locations of the critical amino acids for phosphorylation in P-type ATPases has the haloacid dehalogenase fold characteristic of the
2915:
Barbosa, E. R; Italian Parkinson Genetics Network; Bonifati, V (2007). "ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease".
3717: 560:
notation stems from the initial studies on this family of enzymes made on the Na/K-ATPase, where the sodium form and the potassium form are referred to as E
524:
Some members of the P-type ATPase family have additional regulatory (R) domains fused to the pump. Heavy metal P1B pumps can have several N- and C-terminal
930:
again from the buried counter ions. At the same time the N domain becomes exposed to the cytosol, ready for ATP exchange at the nucleotide-binding site.
1938: 4616: 1300:
P5B ATPases (or Type VB) are found in the lysosomal membrane of animals. Mutations in these pumps are linked to a variety of neurological diseases.
3916: 4146: 2781:"Intracellular targeting signals and lipid specificity determinants of the ALA/ALIS P4-ATPase complex reside in the catalytic ALA alpha-subunit" 1733:
Toyoshima C, Nakasako M, Nomura H, Ogawa H (June 2000). "Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution".
83: 4115: 3482: 1416: 837: 791: 3847: 1308:
In addition to the subfamilies of P-type ATPases listed above, several prokaryotic families of unknown function have been identified. The
5121: 3096: 2301:
Xu, Chen; Rice, William J.; He, Wanzhong; Stokes, David L. (2002-02-08). "A structural model for the catalytic cycle of Ca(2+)-ATPase".
3478: 3909: 669:). They are atypical P-type ATPases because, unlike other P-type ATPases, they function as part of a heterotetrameric complex (called 471: 4815: 1166:
P2D ATPases (or Type IID) include a small number of Na (and K) exporting ATPases found in fungi and mosses. (Fungal K transporters;
3710: 3071: 746:
into the cryoelectron microscopy maps for CopA. The results also similarly suggested a Cu-dependent regulatory role for the MBD.
2284: 913:
this occluded state, the Ca ions are buried in a proteinaceous environment with no access to either side of the membrane. The Ca
4706: 1883:
Olesen C, Picard M, Winther AM, et al. (December 2007). "The structural basis of calcium transport by the calcium pump".
4701: 3049: 474:, as predicted by sequence homology. The HAD superfamily functions on the common theme of an aspartate ester formation by an 4971: 203: 4723: 3867: 1363:, but rarely between most eukaryotic kingdoms, and even more rarely between eukaryotes and prokaryotes. In some bacterial 313:, absorption of nutrient in the intestine and other physiological processes. Prominent examples of P-type ATPases are the 5086: 2734:
Lenoir G, Williamson P, Holthuis JC (December 2007). "On the origin of lipid asymmetry: the flip side of ion transport".
4771: 4088: 1430: 1072: 1063: 1045: 5126: 4693: 3703: 2829: 2118:"Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites" 2779:
Lopez-Marques RL, Poulsen LR, Hanisch S, Meffert K, Buch-Pedersen MJ, Jakobsen MK, Pomorski TG, Palmgren MG (2010).
1599: 1199: 1193: 1187: 326: 3815: 3080: 1829:
Sørensen TL, Møller JV, Nissen P (June 2004). "Phosphoryl transfer and calcium ion occlusion in the calcium pump".
4956: 1671:
Pedersen PL, Carafoli E (1987). "Ion motive ATPases. I. Ubiquity, properties, and significance to cell function".
5072: 5059: 5046: 5033: 5020: 5007: 4994: 4752: 4293: 4191: 4016: 4012: 3989: 3962: 3949: 3936: 3685: 3445: 3440: 2598: 2524: 1589: 1490: 1104: 1094: 318: 4966: 1698:
SKOU JC (February 1957). "The influence of some cations on an adenosine triphosphatase from peripheral nerves".
4920: 4863: 4307: 4002: 3967: 3940: 3810: 1356: 1259: 897: 742: 2058:"Bioinformatic Characterization of P-Type ATPases Encoded Within the Fully Sequenced Genomes of 26 Eukaryotes" 286:
Most members of this transporter superfamily catalyze cation uptake and/or efflux, however one subfamily, the
267:(ATP). In addition, they all appear to interconvert between at least two different conformations, denoted by E 191: 2613: 2353: 382:
isolated in 1957. The Na/K-ATPase was only the first member of a large and still-growing protein family (see
4868: 4677: 4640: 3979: 1982: 1594: 1203: 372: 4407: 4047: 3538: 1220:
P3B ATPases (or Type IIIB) are presumed Mg-ATPases found in eubacteria and plants. Fungal H transporters (
885: 825: 694: 682: 541: 264: 592:, the pump has high affinity for the exported substrate and low affinity for the imported substrate. In E 4889: 4808: 4537: 4445: 3777: 3762: 1332: 1283: 859: 843:
Crystal structures of Sarcoplasimc/endoplasmic reticulum ATP driven calcium pumps can be found in RCSB.
829: 491: 443: 403: 4961: 877:
showing that Ca binding induces major changes in all three cytoplasmic domains relative to each other.
187: 3064: 2684: 2625: 2548: 2365: 2129: 1950: 1892: 1838: 1742: 649:. This underlines the significance of this protein family for cell survival under stress conditions. 96: 3573: 386: 5131: 4925: 4742: 3736: 1255: 722: 379: 139: 711:). They are key elements for metal resistance and metal homeostasis in a wide range of organisms. 4858: 4757: 4323: 3901: 3756: 3726: 2994: 2940: 2896: 2716: 2657: 2580: 2454: 2397: 2334: 2031: 1974: 1916: 1862: 1766: 1251: 1124: 1066:
that transport Ca. These pumps have a single Ca ion binding site and are regulated by binding of
952:
Crystal structures have shown that the conserved TGES loop of the Ca-ATPase is isolated in the Ca
407: 812:
that transport Ca. P2A ATPases are split into two groups. Members of the first group are called
576:
schema has been proven to work, but there exist more than two major conformational states. The E
5116: 3997: 3744: 3035: 2986: 2978: 2932: 2888: 2852: 2810: 2761: 2708: 2700: 2649: 2641: 2572: 2564: 2506: 2498: 2446: 2438: 2389: 2381: 2326: 2318: 2266: 2258: 2222: 2204: 2165: 2147: 2095: 2077: 2023: 1966: 1908: 1854: 1819: 1801: 1758: 1715: 1653: 1359:
has occurred frequently among bacteria and archaea, which have similar distributions of these
1325: 1132: 1010: 178: 3672: 3667: 3652: 3340: 2417:"The dimeric form of Ca2+-ATPase is involved in Ca2+ transport in the sarcoplasmic reticulum" 1797: 1577: 1573: 1561: 670: 4904: 4899: 4873: 4801: 4387: 4333: 4315: 4181: 4171: 4125: 3787: 3752: 3636: 3630: 3625: 3603: 3593: 3583: 3550: 3432: 3427: 3417: 3198: 3138: 3025: 2970: 2924: 2880: 2844: 2800: 2792: 2751: 2743: 2692: 2633: 2556: 2488: 2428: 2373: 2310: 2250: 2212: 2196: 2155: 2137: 2085: 2069: 2015: 1958: 1900: 1846: 1793: 1750: 1707: 1680: 1645: 1547: 1543: 1539: 1523: 1515: 1507: 1484: 1476: 1424: 1215: 306: 252: 4200: 3614: 3454: 3449: 1531: 1270:
P5 ATPases (or Type V ATPases) have unknown specificity. This large group is found only in
170: 4951: 4935: 4848: 4734: 4623: 4437: 4137: 3957: 3562: 3388: 3084: 3057: 1649: 1452: 1202:
is best characterized in plants and yeast. It maintains the level of intracellular pH and
1115: 1100: 1088: 893: 314: 256: 2688: 2629: 2552: 2369: 2133: 1954: 1896: 1842: 1746: 5100: 4989: 4930: 4057: 3486: 3470: 2928: 2805: 2780: 2217: 2184: 2160: 2117: 2090: 2057: 1372: 1057: 874: 809: 803: 376: 310: 25: 2477:"Mutational analysis of the conserved TGES loop of sarcoplasmic reticulum Ca2+-ATPase" 734: 120: 5110: 4894: 4853: 4601: 3888: 3842: 3566: 1711: 1684: 1247: 854: 817: 754: 730: 464: 426: 295: 88: 2944: 2661: 2401: 2185:"Structure of a copper pump suggests a regulatory role for its metal-binding domain" 1978: 1866: 1630: 949:
One report suggests that this sarcoplasmic reticulum (SR) Ca ATPase is homodimeric.
673:), where the actual K transport is mediated by another subcomponent of the complex. 52: 4843: 4586: 4559: 4488: 4481: 4464: 4459: 4433: 3872: 3852: 3105: 3092: 2998: 2900: 2720: 2584: 2035: 1920: 1770: 1368: 1309: 1225: 1221: 1167: 1108: 1076: 1051: 797: 708: 704: 666: 634: 629: 483: 475: 291: 166: 2614:"Structure, Mechanism, and Regulation of the Neurospora Plasma Membrane H+-ATPase" 2475:
Anthonisen, Anne Nyholm; Clausen, Johannes D.; Andersen, Jens Peter (2006-10-20).
2458: 2354:"Structure, mechanism, and regulation of the Neurospora plasma membrane H+-ATPase" 2338: 144: 132: 3030: 3013: 2848: 280: 108: 64: 5067: 5002: 4838: 4682: 3862: 3857: 3834: 3772: 2254: 889: 850: 422: 299: 5095: 2747: 2122:
Proceedings of the National Academy of Sciences of the United States of America
4667: 4356: 3882: 3805: 3014:"Sodium or potassium efflux ATPase: A fungal, bryophyte, and protozoal ATPase" 2200: 2073: 1271: 1120: 1067: 821: 700: 638: 529: 525: 383: 244: 2982: 2704: 2645: 2568: 2502: 2442: 2385: 2322: 2262: 2208: 2151: 2081: 5041: 5015: 4373: 3932: 3800: 3795: 2796: 2637: 2377: 2142: 1850: 1383:
Human genes encoding P-type ATPases or P-type ATPase-like proteins include:
1335:
membranes. In prokaryotes, they are localized to the cytoplasmic membranes.
1321: 901: 646: 260: 3039: 2990: 2936: 2892: 2856: 2814: 2765: 2712: 2653: 2576: 2510: 2493: 2476: 2450: 2393: 2330: 2314: 2270: 2226: 2169: 2099: 2027: 1912: 1858: 1805: 1762: 1719: 1657: 1970: 1784:
Stokes DL, Green NM (2003). "Structure and function of the calcium pump".
1282:
P5A ATPases (or Type VA) are involved in regulation of homeostasis in the
92: 3546: 3345: 3335: 3330: 3315: 3310: 3305: 3295: 3290: 3285: 3275: 3270: 3260: 3255: 3250: 3245: 3226: 3218: 3114: 2828:
Sørensen DM, Holen HW, Holemans T, Vangheluwe P, Palmgren MG (May 2014).
1609: 1503: 1352: 1313: 1243: 1237: 970: 287: 236: 232: 59: 2696: 2560: 1904: 1008:
Crystal Structures of Calcium ATPase are available in RCSB and include:
4778: 4747: 4525: 4520: 4279: 4269: 4244: 4239: 3974: 3825: 3767: 3662: 3657: 3325: 3320: 3300: 3280: 3265: 3240: 3235: 3230: 2433: 2416: 1962: 1939:"Evolution of substrate specificities in the P-type ATPase superfamily" 1569: 1565: 1317: 1295: 718: 642: 363:
where the ligand can be either a metal ion or a phospholipid molecule.
240: 76: 71: 2974: 2756: 2019: 1823: 1328:
is usually in accordance with specificity for the transported ion(s).
1154: 1148: 1142: 1136: 1032: 1026: 1020: 1014: 5054: 4824: 4655: 4297: 4274: 4264: 4234: 4229: 4224: 4219: 4176: 4166: 4161: 4156: 4151: 4120: 4108: 4103: 4098: 4093: 4081: 4076: 4071: 4020: 3695: 3646: 3641: 3620: 3598: 3588: 3525: 3520: 3515: 3510: 3505: 3500: 3495: 3490: 3462: 3422: 3412: 3407: 3402: 3397: 3392: 3362: 3352: 3188: 3168: 3163: 3158: 3153: 3133: 3123: 3088: 1754: 1555: 1551: 1535: 1519: 1511: 1497: 1480: 1472: 1468: 1464: 1460: 1456: 1446: 1442: 1438: 1434: 1420: 1410: 1406: 1402: 1364: 1360: 785: 585: 411: 248: 198: 20: 2884: 938:-P* occluded state. Meanwhile, the N domain exchanges ADP for ATP. 283:) which, as of early 2016, includes 20 different protein families. 5028: 4711: 4650: 4633: 4628: 4476: 4454: 4420: 4415: 4400: 4378: 4366: 4361: 4351: 4346: 4341: 4066: 4042: 3609: 3533: 3474: 3208: 3203: 3193: 3183: 3178: 3173: 3148: 3143: 3128: 1604: 1527: 1398: 1392: 1388: 881: 846: 833: 813: 779: 762:
of copper-transporting P-type ATPase functionhave been described.
714: 699:
P1B ATPases (or Type IB ATPases) are involved in transport of the
688: 463:
parallel β-sheet with eight short associated a-helices, forming a
415: 399: 322: 1114:
The X-ray crystal structure at 3.5 Å resolution of the pig renal
4716: 4672: 4660: 4645: 4611: 4606: 4591: 4574: 4569: 4564: 4552: 4547: 4542: 4532: 4508: 4503: 4498: 4493: 4395: 3577: 2612:
Kühlbrandt, Werner; Zeelen, Johan; Dietrich, Jens (2002-09-06).
2352:
Kühlbrandt, Werner; Zeelen, Johan; Dietrich, Jens (2002-09-06).
2183:
Wu, Chen-Chou; Rice, William J.; Stokes, David L. (2008-06-01).
160: 103: 47: 4797: 3905: 3699: 3053: 1338:
P-type ATPases from 26 eukaryotic species were analyzed later.
4766: 4762: 836:
is a type IIA pump. The second group of P2A ATPases is called
1178:
P3 ATPases (or Type III ATPases) are split into two groups.
255:
named based upon their ability to catalyze auto- (or self-)
2116:
González-Guerrero, Manuel; Argüello, José M. (2008-04-22).
1331:
In eukaryotes, they are present in the plasma membranes or
4793: 490:
is clearly observed in the solved structure of SERCA with
1083:
P2C ATPases (sodium/potassium and proton/potassium pumps)
421:
The catalytic subunit of P-type ATPases is composed of a
418:
is representative for the superfamily of P-type ATPases.
3012:
Rodríguez-Navarro, Alonso; Benito, Begoña (2010-10-01).
2830:"Towards defining the substrate of orphan P5A-ATPases" 1130:
Crystal Structures are available in RCSB and include:
1099:
P2C ATPases (or Type IIC) include the closely related
5084: 2415:
Ushimaru, Makoto; Fukushima, Yoshihiro (2008-09-15).
414:. It is generally acknowledged that the structure of 962:
state but becomes inserted in the catalytic site in
4980: 4944: 4913: 4882: 4831: 4732: 4691: 4431: 4305: 4292: 4257: 4209: 4190: 4136: 4056: 4035: 4028: 4011: 3988: 3948: 3881: 3833: 3824: 3786: 3743: 3377: 3361: 3217: 3113: 3104: 2963:
Journal of Molecular Microbiology and Biotechnology
2056:Thever, Mark D.; Jr, Milton H. Saier (2009-06-23). 2008:
Journal of Molecular Microbiology and Biotechnology
665:
P1A ATPases (or Type IA) are involved in K import (
197: 177: 159: 154: 138: 126: 114: 102: 82: 70: 58: 46: 38: 33: 3018:Biochimica et Biophysica Acta (BBA) - Biomembranes 568:, respectively, in the "Post-Albers scheme". The E 263:residue within the pump and their energy source, 900:, and to countertransport 1-3 protons into the 540:All P-type ATPases use the energy derived from 337:The generalized reaction for P-type ATPases is 305:In humans, P-type ATPases serve as a basis for 1196:from prokaryotes, protists, plants and fungi. 231:, are a large group of evolutionarily related 4809: 3917: 3711: 3065: 8: 2871:encoding a lysosomal type 5 P-type ATPase". 584:notation highlights the selectivity of the 371:The first P-type ATPase discovered was the 4816: 4802: 4794: 4302: 4032: 4025: 3924: 3910: 3902: 3830: 3735:Mechanisms for chemical transport through 3718: 3704: 3696: 3110: 3072: 3058: 3050: 151: 19: 3461:3.A.3.1.4: H/K transporting, nongastric: 3029: 2804: 2755: 2492: 2432: 2216: 2159: 2141: 2089: 1932: 1930: 733:), to the corresponding Cu-ATPase, CopA ( 298:to maintain the asymmetric nature of the 1937:Axelsen KB, Palmgren MG (January 1998). 1878: 1876: 1798:10.1146/annurev.biophys.32.110601.142433 1274:and is further divided into two groups. 888:is used to transport 2 Ca-ions from the 814:sarco/endoplasmatic reticulum Ca-ATPases 5091: 1621: 1605:Sarco/endoplasmatic reticulum Ca-ATPase 1192:P3A ATPases (or Type IIIA) contain the 865:Structures are available for both the E 824:. In the cell, they are located in the 472:haloacid dehalogenase (HAD) superfamily 450:membrane through another half-channel. 1355:and all 13 eukaryotic FUPA families). 808:P2A ATPases (or Type IIA ATPases) are 703:: Cu, Ag, Cu, Zn, Cd, Pb and Co (TC#s 507:toward the solvent near the P-domain. 311:secretion and absorption in the kidney 15: 2956: 2954: 2470: 2468: 2296: 2294: 2111: 2109: 2051: 2049: 2047: 2045: 1650:10.1146/annurev.biophys.093008.131331 7: 3848:Non-specific, adsorptive pinocytosis 2001: 1999: 1242:P4 ATPases (or Type IV ATPases) are 277:P-type ATPase (P-ATPase) Superfamily 2481:The Journal of Biological Chemistry 1310:Transporter Classification Database 1304:Further phylogenetic classification 1232:P4 ATPases (phospholipid flippases) 1075:(PMCA) of animals is a P2B ATPase ( 2929:10.1212/01.wnl.0000260963.08711.08 235:and lipid pumps that are found in 14: 3106:F-, V-, and A-type ATPase (3.A.2) 5094: 329:(H-ATPase) of plants and fungi. 275:. P-type ATPases fall under the 3122:H transporting, mitochondrial: 677:P1B ATPases (heavy metal pumps) 1786:Annu Rev Biophys Biomol Struct 1673:Trends in Biochemical Sciences 1629:Palmgren MG, Nissen P (2011). 1062:P2B (or Type IIB ATPases) are 1: 3868:Receptor-mediated endocytosis 1496:P2C: H/K ATPase, nongastric: 1246:involved in the transport of 1210:P3B ATPases (magnesium pumps) 792:Secretory Pathway Ca²⁺ ATPase 661:P1A ATPases (potassium pumps) 502:Nucleotide binding (N) domain 259:(hence P) of a key conserved 155:Available protein structures: 3031:10.1016/j.bbamem.2010.07.009 2849:10.1016/j.bbagen.2014.05.008 2303:Journal of Molecular Biology 1712:10.1016/0006-3002(57)90343-8 1685:10.1016/0968-0004(87)90071-5 838:secretory pathway Ca-ATPases 404:sarco(endo)plasmic reticulum 4694:Protein-synthesizing GTPase 2255:10.1021/acs.biochem.5b00420 2062:Journal of Membrane Biology 1417:secretory pathway Ca-ATPase 1046:Plasma membrane Ca2+ ATPase 1040:P2B ATPases (calcium pumps) 774:P2A ATPases (calcium pumps) 526:heavy metal-binding domains 438:The transmembrane section ( 327:plasma membrane proton pump 5148: 5122:Integral membrane proteins 3816:Secondary active transport 3532:3.A.3.5: Cu transporting: 3081:Membrane transport protein 2748:10.1016/j.cbpa.2007.09.008 1489:P2C: H/K ATPase, gastric: 1293: 1235: 1213: 1185: 1182:P3A ATPases (proton pumps) 1162:P2D ATPases (sodium pumps) 1092: 1086: 1055: 1049: 1043: 801: 795: 789: 783: 777: 692: 686: 680: 458:Phosphorylation (P) domain 333:General transport reaction 294:) is involved in flipping 4972:Michaelis–Menten kinetics 4753:Guanylate-binding protein 3937:acid anhydride hydrolases 3733: 3681: 3227:H transporting, lysosomal 2201:10.1016/j.str.2008.02.025 2074:10.1007/s00232-009-9176-2 1194:plasma membrane H-ATPases 1188:Plasma membrane H+-ATPase 1095:Hydrogen potassium ATPase 1073:Plasma membrane Ca-ATPase 721:) form but is bound to a 309:, relaxation of muscles, 150: 18: 4864:Diffusion-limited enzyme 4308:Heterotrimeric G protein 4003:Phosphoadenylylsulfatase 3811:Primary active transport 1600:Plasma membrane H-ATPase 1357:Horizontal gene transfer 1346:Horizontal Gene Transfer 1260:phosphatidylethanolamine 1200:Plasma membrane H-ATPase 898:sarcoplasmatic reticulum 729:Cu-chaperone, CopZ (see 725:. The delivery of Cu by 3980:Thiamine-triphosphatase 2797:10.1091/mbc.E09-08-0656 2638:10.1126/science.1072574 2421:The Biochemical Journal 2378:10.1126/science.1072574 2143:10.1073/pnas.0711446105 1851:10.1126/science.1099366 1204:transmembrane potential 1158:​, among others. 1036:​, among others. 743:cryoelectron microscopy 2837:Biochim. Biophys. Acta 2494:10.1074/jbc.M605194200 2315:10.1006/jmbi.2001.5330 1700:Biochim. Biophys. Acta 1353:phospholipid flippases 751:Archaeoglobus fulgidus 739:Archaeoglobus fulgidus 727:Archaeoglobus fulgidus 695:Wilson disease protein 265:adenosine triphosphate 4957:Eadie–Hofstee diagram 4890:Allosteric regulation 4735:Polymerization motors 4446:Rho family of GTPases 3763:Facilitated diffusion 1333:endoplasmic reticular 1284:endoplasmic reticulum 860:transmembrane helices 683:Zn2+-exporting ATPase 520:Regulatory (R) domain 444:transmembrane helices 387:Prosite motif PS00154 319:proton-potassium pump 315:sodium-potassium pump 251:are α-helical bundle 4967:Lineweaver–Burk plot 3737:biological membranes 1324:. Clustering on the 1107:from animal cells. ( 442:) typically has ten 348:(in) + ATP → nLigand 325:(Ca-ATPase) and the 253:primary transporters 4743:dynamin superfamily 3635:Class VI, type 11: 2736:Curr Opin Chem Biol 2697:10.1038/nature06417 2689:2007Natur.450.1111P 2683:(7172): 1111–1114. 2630:2002Sci...297.1692K 2624:(5587): 1692–1696. 2561:10.1038/nature06419 2553:2007Natur.450.1043M 2547:(7172): 1043–1049. 2487:(42): 31572–31582. 2370:2002Sci...297.1692K 2364:(5587): 1692–1696. 2134:2008PNAS..105.5992G 1955:1998JMolE..46...84A 1905:10.1038/nature06418 1897:2007Natur.450.1036O 1843:2004Sci...304.1672S 1747:2000Natur.405..647T 1256:phosphatidylcholine 904:. Starting in the E 511:Actuator (A) domain 380:Jens Christian Skou 317:(Na/K-ATPase), the 5127:Transport proteins 4926:Enzyme superfamily 4859:Enzyme promiscuity 3757:mediated transport 3727:Membrane transport 3619:Class V, type 10: 3608:Class II, type 9: 2434:10.1042/BJ20071701 1963:10.1007/PL00006286 1638:Annu. Rev. Biophys 1252:phosphatidylserine 1125:membrane potential 408:fast twitch muscle 321:(H/K-ATPase), the 5082: 5081: 4791: 4790: 4787: 4786: 4288: 4287: 4253: 4252: 3998:Adenylylsulfatase 3899: 3898: 3895: 3894: 3745:Passive transport 3693: 3692: 3582:Class I, type 8: 3389:Na/K transporting 3373: 3372: 3024:(10): 1841–1853. 2975:10.1159/000319588 2249:(32): 5095–5102. 2128:(16): 5992–5997. 2020:10.1159/000319588 1891:(7172): 1036–42. 1326:phylogenetic tree 849:is composed of a 723:chaperone protein 213: 212: 209: 208: 204:structure summary 5139: 5099: 5098: 5090: 4962:Hanes–Woolf plot 4905:Enzyme activator 4900:Enzyme inhibitor 4874:Enzyme catalysis 4818: 4811: 4804: 4795: 4303: 4033: 4026: 3926: 3919: 3912: 3903: 3831: 3788:Active transport 3753:Simple diffusion 3720: 3713: 3706: 3697: 3686:ATPase disorders 3557:Other/ungrouped: 3111: 3074: 3067: 3060: 3051: 3044: 3043: 3033: 3009: 3003: 3002: 2958: 2949: 2948: 2911: 2905: 2904: 2867: 2861: 2860: 2834: 2825: 2819: 2818: 2808: 2776: 2770: 2769: 2759: 2731: 2725: 2724: 2672: 2666: 2665: 2609: 2603: 2602: 2595: 2589: 2588: 2535: 2529: 2528: 2521: 2515: 2514: 2496: 2472: 2463: 2462: 2436: 2412: 2406: 2405: 2349: 2343: 2342: 2298: 2289: 2288: 2281: 2275: 2274: 2237: 2231: 2230: 2220: 2180: 2174: 2173: 2163: 2145: 2113: 2104: 2103: 2093: 2053: 2040: 2039: 2003: 1994: 1993: 1991: 1990: 1981:. Archived from 1934: 1925: 1924: 1880: 1871: 1870: 1837:(5677): 1672–5. 1826: 1816: 1810: 1809: 1781: 1775: 1774: 1755:10.1038/35015017 1741:(6787): 647–55. 1730: 1724: 1723: 1695: 1689: 1688: 1668: 1662: 1661: 1635: 1631:"P-type ATPases" 1626: 1387:P1B: Cu ATPase: 1216:Magnesium-ATPase 1157: 1151: 1145: 1139: 1121:carboxy terminus 1035: 1029: 1023: 1017: 759:Escherichia coli 701:soft Lewis acids 482:mechanism. This 434:Membrane section 219:, also known as 152: 23: 16: 5147: 5146: 5142: 5141: 5140: 5138: 5137: 5136: 5107: 5106: 5105: 5093: 5085: 5083: 5078: 4990:Oxidoreductases 4976: 4952:Enzyme kinetics 4940: 4936:List of enzymes 4909: 4878: 4849:Catalytic triad 4827: 4822: 4792: 4783: 4728: 4687: 4438:Ras superfamily 4427: 4411: 4391: 4337: 4327: 4319: 4284: 4249: 4205: 4186: 4132: 4089:Plasma membrane 4052: 4007: 3984: 3958:Pyrophosphatase 3944: 3930: 3900: 3891: 3877: 3820: 3782: 3739: 3729: 3724: 3694: 3689: 3677: 3574:Mg transporting 3487:Ca transporting 3369: 3368:found in Archea 3357: 3213: 3100: 3078: 3048: 3047: 3011: 3010: 3006: 2960: 2959: 2952: 2923:(19): 1557–62. 2913: 2912: 2908: 2879:(10): 1184–91. 2873:Nature Genetics 2869: 2868: 2864: 2832: 2827: 2826: 2822: 2778: 2777: 2773: 2733: 2732: 2728: 2674: 2673: 2669: 2611: 2610: 2606: 2597: 2596: 2592: 2537: 2536: 2532: 2523: 2522: 2518: 2474: 2473: 2466: 2414: 2413: 2409: 2351: 2350: 2346: 2300: 2299: 2292: 2283: 2282: 2278: 2239: 2238: 2234: 2182: 2181: 2177: 2115: 2114: 2107: 2055: 2054: 2043: 2005: 2004: 1997: 1988: 1986: 1936: 1935: 1928: 1882: 1881: 1874: 1828: 1818: 1817: 1813: 1783: 1782: 1778: 1732: 1731: 1727: 1697: 1696: 1692: 1670: 1669: 1665: 1633: 1628: 1627: 1623: 1618: 1586: 1399:SERCA Ca ATPase 1381: 1348: 1306: 1298: 1292: 1280: 1268: 1240: 1234: 1218: 1212: 1190: 1184: 1176: 1164: 1153: 1147: 1141: 1131: 1119:reticulum. The 1097: 1091: 1085: 1060: 1054: 1048: 1042: 1031: 1025: 1019: 1009: 1004: 998: 994: 986: 979: 968: 961: 955: 937: 928: 920: 916: 911: 907: 880:In the case of 872: 868: 806: 800: 794: 788: 782: 776: 768: 697: 691: 685: 679: 663: 655: 626: 615: 611: 607: 603: 599: 595: 591: 583: 579: 575: 571: 567: 563: 559: 555: 551: 547: 538: 522: 513: 504: 497: 487: 479: 460: 436: 395: 369: 359: 356:(out) + ADP + P 355: 351: 347: 344:(out) + mLigand 343: 335: 274: 270: 257:phosphorylation 228: 224: 116:OPM superfamily 29: 12: 11: 5: 5145: 5143: 5135: 5134: 5129: 5124: 5119: 5109: 5108: 5104: 5103: 5080: 5079: 5077: 5076: 5063: 5050: 5037: 5024: 5011: 4998: 4984: 4982: 4978: 4977: 4975: 4974: 4969: 4964: 4959: 4954: 4948: 4946: 4942: 4941: 4939: 4938: 4933: 4928: 4923: 4917: 4915: 4914:Classification 4911: 4910: 4908: 4907: 4902: 4897: 4892: 4886: 4884: 4880: 4879: 4877: 4876: 4871: 4866: 4861: 4856: 4851: 4846: 4841: 4835: 4833: 4829: 4828: 4823: 4821: 4820: 4813: 4806: 4798: 4789: 4788: 4785: 4784: 4782: 4781: 4776: 4775: 4774: 4769: 4760: 4755: 4750: 4739: 4737: 4730: 4729: 4727: 4726: 4721: 4720: 4719: 4714: 4709: 4698: 4696: 4689: 4688: 4686: 4685: 4680: 4675: 4670: 4665: 4664: 4663: 4658: 4653: 4648: 4638: 4637: 4636: 4631: 4621: 4620: 4619: 4614: 4609: 4597: 4596: 4595: 4594: 4589: 4579: 4578: 4577: 4572: 4567: 4557: 4556: 4555: 4550: 4545: 4535: 4530: 4529: 4528: 4523: 4513: 4512: 4511: 4506: 4501: 4496: 4486: 4485: 4484: 4479: 4469: 4468: 4467: 4462: 4457: 4442: 4440: 4429: 4428: 4426: 4425: 4424: 4423: 4418: 4409: 4405: 4404: 4403: 4398: 4389: 4385: 4384: 4383: 4382: 4381: 4371: 4370: 4369: 4364: 4354: 4349: 4344: 4335: 4331: 4330: 4329: 4325: 4317: 4312: 4310: 4300: 4290: 4289: 4286: 4285: 4283: 4282: 4277: 4272: 4267: 4261: 4259: 4255: 4254: 4251: 4250: 4248: 4247: 4242: 4237: 4232: 4227: 4222: 4216: 4214: 4207: 4206: 4204: 4203: 4197: 4195: 4188: 4187: 4185: 4184: 4179: 4174: 4169: 4164: 4159: 4154: 4149: 4143: 4141: 4134: 4133: 4131: 4130: 4129: 4128: 4123: 4113: 4112: 4111: 4106: 4101: 4096: 4086: 4085: 4084: 4079: 4074: 4063: 4061: 4054: 4053: 4051: 4050: 4045: 4039: 4037: 4036:Cu++ (3.6.3.4) 4030: 4023: 4009: 4008: 4006: 4005: 4000: 3994: 3992: 3986: 3985: 3983: 3982: 3977: 3972: 3971: 3970: 3965: 3954: 3952: 3946: 3945: 3931: 3929: 3928: 3921: 3914: 3906: 3897: 3896: 3893: 3892: 3887: 3885: 3879: 3878: 3876: 3875: 3870: 3865: 3860: 3855: 3850: 3845: 3839: 3837: 3828: 3822: 3821: 3819: 3818: 3813: 3808: 3803: 3798: 3792: 3790: 3784: 3783: 3781: 3780: 3775: 3770: 3765: 3760: 3749: 3747: 3741: 3740: 3734: 3731: 3730: 3725: 3723: 3722: 3715: 3708: 3700: 3691: 3690: 3682: 3679: 3678: 3676: 3675: 3670: 3665: 3660: 3655: 3649: 3644: 3639: 3633: 3628: 3623: 3617: 3612: 3606: 3601: 3596: 3591: 3586: 3580: 3570: 3569: 3559: 3558: 3554: 3553: 3542: 3541: 3536: 3529: 3528: 3523: 3518: 3513: 3508: 3503: 3498: 3493: 3466: 3465: 3458: 3457: 3452: 3446:H/K exchanging 3443: 3436: 3435: 3430: 3425: 3420: 3415: 3410: 3405: 3400: 3395: 3384: 3382: 3375: 3374: 3371: 3370: 3367: 3365: 3359: 3358: 3356: 3355: 3349: 3348: 3343: 3338: 3333: 3328: 3323: 3318: 3313: 3308: 3303: 3298: 3293: 3288: 3283: 3278: 3273: 3268: 3263: 3258: 3253: 3248: 3243: 3238: 3233: 3223: 3221: 3215: 3214: 3212: 3211: 3206: 3201: 3196: 3191: 3186: 3181: 3176: 3171: 3166: 3161: 3156: 3151: 3146: 3141: 3136: 3131: 3126: 3119: 3117: 3108: 3102: 3101: 3079: 3077: 3076: 3069: 3062: 3054: 3046: 3045: 3004: 2969:(1–2): 5–104. 2950: 2906: 2885:10.1038/ng1884 2862: 2820: 2791:(5): 791–801. 2771: 2726: 2667: 2604: 2590: 2530: 2516: 2464: 2427:(3): 357–361. 2407: 2344: 2309:(1): 201–211. 2290: 2276: 2232: 2195:(6): 976–985. 2175: 2105: 2068:(3): 115–130. 2041: 2014:(1–2): 5–104. 1995: 1926: 1872: 1811: 1776: 1725: 1706:(2): 394–401. 1690: 1663: 1620: 1619: 1617: 1614: 1613: 1612: 1607: 1602: 1597: 1592: 1585: 1582: 1581: 1580: 1558: 1500: 1494: 1487: 1449: 1427: 1413: 1395: 1380: 1377: 1373:Fusobacteriota 1347: 1344: 1305: 1302: 1294:Main article: 1291: 1288: 1279: 1276: 1267: 1264: 1236:Main article: 1233: 1230: 1214:Main article: 1211: 1208: 1186:Main article: 1183: 1180: 1175: 1172: 1163: 1160: 1093:Main article: 1087:Main article: 1084: 1081: 1058:Calcium ATPase 1056:Main article: 1050:Main article: 1044:Main article: 1041: 1038: 1002: 996: 992: 984: 977: 966: 959: 953: 935: 926: 918: 914: 909: 905: 884:, energy from 873:states of the 870: 866: 853:section and a 804:Calcium ATPase 802:Main article: 796:Main article: 790:Main article: 784:Main article: 778:Main article: 775: 772: 767: 764: 735:TC# 3.A.3.5.30 693:Main article: 687:Main article: 681:Main article: 678: 675: 662: 659: 654: 651: 625: 624:Classification 622: 613: 609: 605: 601: 597: 593: 589: 581: 577: 573: 569: 565: 561: 557: 553: 549: 545: 537: 534: 521: 518: 512: 509: 503: 500: 495: 485: 477: 459: 456: 435: 432: 425:section and a 394: 391: 377:Nobel laureate 368: 365: 357: 353: 352:(in) + mLigand 349: 345: 341: 334: 331: 307:nerve impulses 272: 268: 226: 222: 217:P-type ATPases 211: 210: 207: 206: 201: 195: 194: 181: 175: 174: 164: 157: 156: 148: 147: 142: 136: 135: 130: 124: 123: 118: 112: 111: 106: 100: 99: 86: 80: 79: 74: 68: 67: 62: 56: 55: 50: 44: 43: 40: 36: 35: 31: 30: 26:Calcium ATPase 24: 13: 10: 9: 6: 4: 3: 2: 5144: 5133: 5130: 5128: 5125: 5123: 5120: 5118: 5115: 5114: 5112: 5102: 5097: 5092: 5088: 5074: 5070: 5069: 5064: 5061: 5057: 5056: 5051: 5048: 5044: 5043: 5038: 5035: 5031: 5030: 5025: 5022: 5018: 5017: 5012: 5009: 5005: 5004: 4999: 4996: 4992: 4991: 4986: 4985: 4983: 4979: 4973: 4970: 4968: 4965: 4963: 4960: 4958: 4955: 4953: 4950: 4949: 4947: 4943: 4937: 4934: 4932: 4931:Enzyme family 4929: 4927: 4924: 4922: 4919: 4918: 4916: 4912: 4906: 4903: 4901: 4898: 4896: 4895:Cooperativity 4893: 4891: 4888: 4887: 4885: 4881: 4875: 4872: 4870: 4867: 4865: 4862: 4860: 4857: 4855: 4854:Oxyanion hole 4852: 4850: 4847: 4845: 4842: 4840: 4837: 4836: 4834: 4830: 4826: 4819: 4814: 4812: 4807: 4805: 4800: 4799: 4796: 4780: 4777: 4773: 4770: 4768: 4764: 4761: 4759: 4756: 4754: 4751: 4749: 4746: 4745: 4744: 4741: 4740: 4738: 4736: 4731: 4725: 4722: 4718: 4715: 4713: 4710: 4708: 4705: 4704: 4703: 4700: 4699: 4697: 4695: 4690: 4684: 4681: 4679: 4676: 4674: 4671: 4669: 4666: 4662: 4659: 4657: 4654: 4652: 4649: 4647: 4644: 4643: 4642: 4639: 4635: 4632: 4630: 4627: 4626: 4625: 4622: 4618: 4615: 4613: 4610: 4608: 4605: 4604: 4603: 4599: 4598: 4593: 4590: 4588: 4585: 4584: 4583: 4580: 4576: 4573: 4571: 4568: 4566: 4563: 4562: 4561: 4558: 4554: 4551: 4549: 4546: 4544: 4541: 4540: 4539: 4536: 4534: 4531: 4527: 4524: 4522: 4519: 4518: 4517: 4514: 4510: 4507: 4505: 4502: 4500: 4497: 4495: 4492: 4491: 4490: 4487: 4483: 4480: 4478: 4475: 4474: 4473: 4470: 4466: 4463: 4461: 4458: 4456: 4453: 4452: 4451: 4447: 4444: 4443: 4441: 4439: 4435: 4430: 4422: 4419: 4417: 4414: 4413: 4412: 4406: 4402: 4399: 4397: 4394: 4393: 4392: 4386: 4380: 4377: 4376: 4375: 4372: 4368: 4365: 4363: 4360: 4359: 4358: 4355: 4353: 4350: 4348: 4345: 4343: 4340: 4339: 4338: 4332: 4328: 4322: 4321: 4320: 4314: 4313: 4311: 4309: 4304: 4301: 4299: 4295: 4291: 4281: 4278: 4276: 4273: 4271: 4268: 4266: 4263: 4262: 4260: 4256: 4246: 4243: 4241: 4238: 4236: 4233: 4231: 4228: 4226: 4223: 4221: 4218: 4217: 4215: 4213: 4212:P-type ATPase 4208: 4202: 4199: 4198: 4196: 4193: 4189: 4183: 4180: 4178: 4175: 4173: 4170: 4168: 4165: 4163: 4160: 4158: 4155: 4153: 4150: 4148: 4145: 4144: 4142: 4139: 4135: 4127: 4124: 4122: 4119: 4118: 4117: 4114: 4110: 4107: 4105: 4102: 4100: 4097: 4095: 4092: 4091: 4090: 4087: 4083: 4080: 4078: 4075: 4073: 4070: 4069: 4068: 4065: 4064: 4062: 4059: 4055: 4049: 4046: 4044: 4041: 4040: 4038: 4034: 4031: 4027: 4024: 4022: 4018: 4014: 4010: 4004: 4001: 3999: 3996: 3995: 3993: 3991: 3987: 3981: 3978: 3976: 3973: 3969: 3966: 3964: 3961: 3960: 3959: 3956: 3955: 3953: 3951: 3947: 3942: 3938: 3934: 3927: 3922: 3920: 3915: 3913: 3908: 3907: 3904: 3890: 3889:Degranulation 3886: 3884: 3880: 3874: 3871: 3869: 3866: 3864: 3861: 3859: 3856: 3854: 3851: 3849: 3846: 3844: 3843:Efferocytosis 3841: 3840: 3838: 3836: 3832: 3829: 3827: 3823: 3817: 3814: 3812: 3809: 3807: 3804: 3802: 3799: 3797: 3794: 3793: 3791: 3789: 3785: 3779: 3776: 3774: 3771: 3769: 3766: 3764: 3761: 3758: 3754: 3751: 3750: 3748: 3746: 3742: 3738: 3732: 3728: 3721: 3716: 3714: 3709: 3707: 3702: 3701: 3698: 3688: 3687: 3680: 3674: 3671: 3669: 3666: 3664: 3661: 3659: 3656: 3654: 3650: 3648: 3645: 3643: 3640: 3638: 3634: 3632: 3629: 3627: 3624: 3622: 3618: 3616: 3613: 3611: 3607: 3605: 3602: 3600: 3597: 3595: 3592: 3590: 3587: 3585: 3581: 3579: 3575: 3572: 3571: 3568: 3564: 3561: 3560: 3556: 3555: 3552: 3548: 3544: 3543: 3540: 3537: 3535: 3531: 3530: 3527: 3524: 3522: 3519: 3517: 3514: 3512: 3509: 3507: 3504: 3502: 3499: 3497: 3494: 3492: 3488: 3484: 3480: 3476: 3472: 3468: 3467: 3464: 3460: 3459: 3456: 3453: 3451: 3447: 3444: 3442: 3438: 3437: 3434: 3431: 3429: 3426: 3424: 3421: 3419: 3416: 3414: 3411: 3409: 3406: 3404: 3401: 3399: 3396: 3394: 3390: 3386: 3385: 3383: 3380: 3379:P-type ATPase 3376: 3366: 3364: 3360: 3354: 3351: 3350: 3347: 3344: 3342: 3339: 3337: 3334: 3332: 3329: 3327: 3324: 3322: 3319: 3317: 3314: 3312: 3309: 3307: 3304: 3302: 3299: 3297: 3294: 3292: 3289: 3287: 3284: 3282: 3279: 3277: 3274: 3272: 3269: 3267: 3264: 3262: 3259: 3257: 3254: 3252: 3249: 3247: 3244: 3242: 3239: 3237: 3234: 3232: 3228: 3225: 3224: 3222: 3220: 3216: 3210: 3207: 3205: 3202: 3200: 3197: 3195: 3192: 3190: 3187: 3185: 3182: 3180: 3177: 3175: 3172: 3170: 3167: 3165: 3162: 3160: 3157: 3155: 3152: 3150: 3147: 3145: 3142: 3140: 3137: 3135: 3132: 3130: 3127: 3125: 3121: 3120: 3118: 3116: 3112: 3109: 3107: 3103: 3098: 3094: 3090: 3086: 3082: 3075: 3070: 3068: 3063: 3061: 3056: 3055: 3052: 3041: 3037: 3032: 3027: 3023: 3019: 3015: 3008: 3005: 3000: 2996: 2992: 2988: 2984: 2980: 2976: 2972: 2968: 2964: 2957: 2955: 2951: 2946: 2942: 2938: 2934: 2930: 2926: 2922: 2918: 2910: 2907: 2902: 2898: 2894: 2890: 2886: 2882: 2878: 2874: 2866: 2863: 2858: 2854: 2850: 2846: 2843:(3): 524–35. 2842: 2838: 2831: 2824: 2821: 2816: 2812: 2807: 2802: 2798: 2794: 2790: 2786: 2785:Mol Biol Cell 2782: 2775: 2772: 2767: 2763: 2758: 2753: 2749: 2745: 2742:(6): 654–61. 2741: 2737: 2730: 2727: 2722: 2718: 2714: 2710: 2706: 2702: 2698: 2694: 2690: 2686: 2682: 2678: 2671: 2668: 2663: 2659: 2655: 2651: 2647: 2643: 2639: 2635: 2631: 2627: 2623: 2619: 2615: 2608: 2605: 2600: 2594: 2591: 2586: 2582: 2578: 2574: 2570: 2566: 2562: 2558: 2554: 2550: 2546: 2542: 2534: 2531: 2526: 2520: 2517: 2512: 2508: 2504: 2500: 2495: 2490: 2486: 2482: 2478: 2471: 2469: 2465: 2460: 2456: 2452: 2448: 2444: 2440: 2435: 2430: 2426: 2422: 2418: 2411: 2408: 2403: 2399: 2395: 2391: 2387: 2383: 2379: 2375: 2371: 2367: 2363: 2359: 2355: 2348: 2345: 2340: 2336: 2332: 2328: 2324: 2320: 2316: 2312: 2308: 2304: 2297: 2295: 2291: 2286: 2280: 2277: 2272: 2268: 2264: 2260: 2256: 2252: 2248: 2244: 2236: 2233: 2228: 2224: 2219: 2214: 2210: 2206: 2202: 2198: 2194: 2190: 2186: 2179: 2176: 2171: 2167: 2162: 2157: 2153: 2149: 2144: 2139: 2135: 2131: 2127: 2123: 2119: 2112: 2110: 2106: 2101: 2097: 2092: 2087: 2083: 2079: 2075: 2071: 2067: 2063: 2059: 2052: 2050: 2048: 2046: 2042: 2037: 2033: 2029: 2025: 2021: 2017: 2013: 2009: 2002: 2000: 1996: 1985:on 2000-09-15 1984: 1980: 1976: 1972: 1968: 1964: 1960: 1956: 1952: 1949:(1): 84–101. 1948: 1944: 1940: 1933: 1931: 1927: 1922: 1918: 1914: 1910: 1906: 1902: 1898: 1894: 1890: 1886: 1879: 1877: 1873: 1868: 1864: 1860: 1856: 1852: 1848: 1844: 1840: 1836: 1832: 1825: 1821: 1815: 1812: 1807: 1803: 1799: 1795: 1791: 1787: 1780: 1777: 1772: 1768: 1764: 1760: 1756: 1752: 1748: 1744: 1740: 1736: 1729: 1726: 1721: 1717: 1713: 1709: 1705: 1701: 1694: 1691: 1686: 1682: 1678: 1674: 1667: 1664: 1659: 1655: 1651: 1647: 1643: 1639: 1632: 1625: 1622: 1615: 1611: 1608: 1606: 1603: 1601: 1598: 1596: 1593: 1591: 1588: 1587: 1583: 1579: 1575: 1571: 1567: 1563: 1559: 1557: 1553: 1549: 1545: 1541: 1537: 1533: 1529: 1525: 1521: 1517: 1513: 1509: 1505: 1501: 1499: 1495: 1492: 1488: 1486: 1482: 1478: 1474: 1470: 1466: 1462: 1458: 1454: 1450: 1448: 1444: 1440: 1436: 1432: 1428: 1426: 1422: 1418: 1414: 1412: 1408: 1404: 1400: 1396: 1394: 1390: 1386: 1385: 1384: 1378: 1376: 1374: 1370: 1366: 1362: 1358: 1354: 1345: 1343: 1339: 1336: 1334: 1329: 1327: 1323: 1319: 1315: 1311: 1303: 1301: 1297: 1289: 1287: 1285: 1277: 1275: 1273: 1265: 1263: 1261: 1257: 1253: 1249: 1248:phospholipids 1245: 1239: 1231: 1229: 1227: 1223: 1217: 1209: 1207: 1205: 1201: 1197: 1195: 1189: 1181: 1179: 1173: 1171: 1169: 1161: 1159: 1156: 1150: 1144: 1138: 1134: 1128: 1126: 1122: 1117: 1112: 1110: 1106: 1102: 1096: 1090: 1089:Na+/K+-ATPase 1082: 1080: 1078: 1074: 1069: 1065: 1059: 1053: 1047: 1039: 1037: 1034: 1028: 1022: 1016: 1012: 1006: 1001: 991: 983: 976: 972: 965: 958: 950: 947: 943: 939: 931: 922: 903: 899: 895: 891: 887: 883: 878: 876: 863: 861: 856: 855:transmembrane 852: 848: 844: 841: 839: 835: 831: 830:endoplasmatic 827: 823: 819: 818:phospholamban 815: 811: 805: 799: 793: 787: 781: 773: 771: 765: 763: 760: 756: 755:TC# 3.A.3.5.7 752: 747: 744: 740: 736: 732: 731:TC# 3.A.3.5.7 728: 724: 720: 716: 712: 710: 706: 702: 696: 690: 684: 676: 674: 672: 668: 660: 658: 652: 650: 648: 644: 640: 636: 631: 623: 621: 617: 587: 543: 535: 533: 531: 527: 519: 517: 510: 508: 501: 499: 493: 489: 481: 473: 468: 466: 465:Rossmann fold 457: 455: 451: 447: 445: 441: 433: 431: 428: 427:transmembrane 424: 419: 417: 413: 409: 406:Ca-ATPase of 405: 401: 392: 390: 388: 385: 381: 378: 374: 366: 364: 361: 338: 332: 330: 328: 324: 320: 316: 312: 308: 303: 301: 297: 296:phospholipids 293: 289: 284: 282: 278: 266: 262: 258: 254: 250: 246: 242: 238: 234: 230: 218: 205: 202: 200: 196: 193: 189: 185: 182: 180: 176: 172: 168: 165: 162: 158: 153: 149: 146: 143: 141: 137: 134: 131: 129: 125: 122: 119: 117: 113: 110: 107: 105: 101: 98: 94: 90: 87: 85: 81: 78: 75: 73: 69: 66: 63: 61: 57: 54: 51: 49: 45: 41: 37: 32: 28:, E2-Pi state 27: 22: 17: 5068:Translocases 5065: 5052: 5039: 5026: 5013: 5003:Transferases 5000: 4987: 4844:Binding site 4581: 4515: 4471: 4449: 4434:Small GTPase 4211: 4048:Wilson/ATP7B 4043:Menkes/ATP7A 3873:Transcytosis 3853:Phagocytosis 3683: 3378: 3093:ATP synthase 3021: 3017: 3007: 2966: 2962: 2920: 2916: 2909: 2876: 2872: 2865: 2840: 2836: 2823: 2788: 2784: 2774: 2739: 2735: 2729: 2680: 2676: 2670: 2621: 2617: 2607: 2593: 2544: 2540: 2533: 2519: 2484: 2480: 2424: 2420: 2410: 2361: 2357: 2347: 2306: 2302: 2279: 2246: 2243:Biochemistry 2242: 2235: 2192: 2188: 2178: 2125: 2121: 2065: 2061: 2011: 2007: 1987:. Retrieved 1983:the original 1946: 1943:J. Mol. Evol 1942: 1888: 1884: 1834: 1830: 1814: 1789: 1785: 1779: 1738: 1734: 1728: 1703: 1699: 1693: 1676: 1672: 1666: 1641: 1637: 1624: 1595:Na/ K-ATPase 1382: 1369:Bacteroidota 1349: 1340: 1337: 1330: 1307: 1299: 1281: 1269: 1241: 1219: 1198: 1191: 1177: 1165: 1129: 1113: 1098: 1061: 1052:Calcium pump 1007: 1005:transition. 999: 989: 981: 974: 963: 956: 951: 948: 944: 940: 932: 923: 892:side to the 879: 864: 845: 842: 826:sarcoplasmic 807: 798:Calcium pump 769: 758: 750: 748: 738: 726: 713: 698: 664: 656: 635:phylogenetic 630:phylogenetic 627: 618: 539: 523: 514: 505: 469: 461: 452: 448: 439: 437: 420: 396: 370: 362: 339: 336: 323:calcium pump 304: 285: 276: 220: 216: 214: 42:E1-E2_ATPase 4839:Active site 4758:Mitofusin-1 4733:3.6.5.5-6: 4702:Prokaryotic 3863:Potocytosis 3858:Pinocytosis 3835:Endocytosis 3545:3.A.3.8.8: 3439:3.A.3.1.2: 3387:3.A.3.1.1: 1590:H/ K-ATPase 1453:Na/K ATPase 1379:Human genes 1290:P5B ATPases 1278:P5A ATPases 1226:TC# 3.A.3.4 1222:TC# 3.A.3.3 1168:TC# 3.A.3.9 1116:Na/K-ATPase 1109:TC# 3.A.3.1 1105:H/K ATPases 1077:TC# 3.A.3.2 890:cytoplasmic 851:cytoplasmic 832:reticulum. 667:TC# 3.A.3.7 423:cytoplasmic 410:from adult 373:Na/K-ATPase 300:biomembrane 292:TC# 3.A.3.8 128:OPM protein 34:Identifiers 5132:Physiology 5111:Categories 5042:Isomerases 5016:Hydrolases 4883:Regulation 4724:Eukaryotic 4357:Transducin 4194:(3.6.3.10) 3933:Hydrolases 3883:Exocytosis 3806:Antiporter 3219:H (V-type) 3115:H (F-type) 3097:TC 3A2-3A3 2757:1874/26974 2599:"Rcsb Pdb" 2525:"Rcsb Pdb" 2285:"Rcsb Pdb" 1989:2009-06-10 1792:: 445–68. 1679:: 146–50. 1644:: 243–66. 1616:References 1322:eukaryotes 1272:eukaryotes 1266:P5 ATPases 1250:, such as 1224:) and Mg ( 1174:P3 ATPases 1068:calmodulin 1064:Ca ATPases 822:sarcolipin 810:Ca ATPases 766:P2 ATPases 653:P1 ATPases 639:eubacteria 608:-P*, and E 530:calmodulin 488:2 reaction 480:2 reaction 384:Swiss-Prot 245:eukaryotes 167:structures 140:Membranome 4921:EC number 4692:3.6.5.3: 4432:3.6.5.2: 4374:Gustducin 4306:3.6.5.1: 4140:(3.6.3.9) 4060:(3.6.3.8) 3963:Inorganic 3801:Symporter 3796:Uniporter 3684:see also 3651:type 13: 3469:3.A.3.2: 3085:ion pumps 2983:1660-2412 2917:Neurology 2705:0028-0836 2646:0036-8075 2569:1476-4687 2503:0021-9258 2443:1470-8728 2386:1095-9203 2323:0022-2836 2263:1520-4995 2209:0969-2126 2189:Structure 2152:1091-6490 2082:0022-2631 1827:​; 1431:Ca ATPase 1244:flippases 1152:​, 1146:​, 1140:​, 1030:​, 1024:​, 1018:​, 902:cytoplasm 875:Ca ATPase 647:eucaryota 536:Mechanism 393:Structure 367:Discovery 288:flippases 281:TC# 3.A.3 261:aspartate 247:. P-type 77:PDOC00139 65:IPR008250 5117:EC 3.6.3 4945:Kinetics 4869:Cofactor 4832:Activity 3968:Thiamine 3778:Carriers 3773:Channels 3755:(or non- 3547:flippase 3363:A-ATPase 3346:ATP6V0E1 3336:ATP6V0D2 3331:ATP6V0D1 3316:ATP6V0A4 3311:ATP6V0A2 3306:ATP6V0A1 3296:ATP6V1G3 3291:ATP6V1G2 3286:ATP6V1G1 3276:ATP6V1E2 3271:ATP6V1E1 3261:ATP6V1C2 3256:ATP6V1C1 3251:ATP6V1B2 3246:ATP6V1B1 3040:20650263 2991:20962537 2945:24070567 2937:17485642 2893:16964263 2857:24836520 2815:20053675 2766:17981493 2713:18075595 2662:16320388 2654:12169656 2577:18075585 2511:16893884 2451:18471093 2402:16320388 2394:12169656 2331:11829513 2271:26196187 2227:18547529 2170:18417453 2100:19548020 2028:20962537 1979:10238525 1913:18075584 1867:30576015 1859:15192230 1806:12598367 1763:10864315 1720:13412736 1658:21351879 1610:V-ATPase 1584:See also 1504:Flippase 1314:bacteria 1238:Flippase 971:vanadate 719:hydrated 494:plus AlF 440:M domain 375:, which 237:bacteria 184:RCSB PDB 60:InterPro 5101:Biology 5055:Ligases 4825:Enzymes 4779:Tubulin 4748:Dynamin 4600:other: 4280:Katanin 4270:Kinesin 4245:ATP13A3 4240:ATP13A2 3975:Apyrase 3826:Cytosis 3768:Osmosis 3673:ATP13A5 3668:ATP13A4 3663:ATP13A3 3658:ATP13A2 3653:ATP13A1 3381:(3.A.3) 3341:ATP6V0E 3326:ATP6V0C 3321:ATP6V0B 3301:ATP6V1H 3281:ATP6V1F 3266:ATP6V1D 3241:ATP6V1A 3236:ATP6AP2 3231:ATP6AP1 3089:ATPases 2999:7316282 2901:6502952 2806:2828965 2721:4413142 2685:Bibcode 2626:Bibcode 2618:Science 2585:4344526 2549:Bibcode 2366:Bibcode 2358:Science 2218:2705936 2161:2329688 2130:Bibcode 2091:2709905 2036:7316282 1971:9419228 1951:Bibcode 1921:4323780 1893:Bibcode 1839:Bibcode 1831:Science 1771:4316039 1743:Bibcode 1578:ATP13A5 1574:ATP13A4 1570:ATP13A3 1566:ATP13A2 1562:ATP13A1 1361:enzymes 1318:archaea 1296:ATP13A2 896:of the 882:SERCA1a 847:SERCA1a 834:SERCA1a 749:In the 709:3.A.3.6 705:3.A.3.5 671:KdpFABC 643:archaea 552:. The E 416:SERCA1a 400:SERCA1a 340:nLigand 249:ATPases 241:archaea 229:ATPases 72:PROSITE 53:PF00122 5087:Portal 5029:Lyases 4656:ARL13B 4516:RhoBTB 4410:α12/13 4298:GTPase 4275:Myosin 4265:Dynein 4235:ATP12A 4230:ATP11B 4225:ATP10A 4220:ATP8B1 4210:Other 4182:ATP1B4 4177:ATP1B3 4172:ATP1B2 4167:ATP1B1 4162:ATP1A4 4157:ATP1A3 4152:ATP1A2 4147:ATP1A1 4138:Na+/K+ 4126:ATP2C2 4121:ATP2C1 4109:ATP2B4 4104:ATP2B3 4099:ATP2B2 4094:ATP2B1 4082:ATP2A3 4077:ATP2A2 4072:ATP2A1 4021:ATPase 3647:ATP11C 3642:ATP11B 3637:ATP11A 3631:ATP10D 3626:ATP10B 3621:ATP10A 3604:ATP8B4 3599:ATP8B3 3594:ATP8B2 3589:ATP8B1 3584:ATP8A1 3551:ATP8A2 3526:ATP2C1 3521:ATP2B4 3516:ATP2B3 3511:ATP2B2 3506:ATP2B1 3501:ATP2A3 3496:ATP2A2 3491:ATP2A1 3463:ATP12A 3433:ATP1G1 3428:ATP1B4 3423:ATP1B3 3418:ATP1B2 3413:ATP1B1 3408:ATP1A4 3403:ATP1A3 3398:ATP1A2 3393:ATP1A1 3353:TCIRG1 3199:ATP5L2 3189:ATP5J2 3169:ATP5G3 3164:ATP5G2 3159:ATP5G1 3154:ATP5F1 3139:ATP5C2 3134:ATP5C1 3124:ATP5A1 3038:  2997:  2989:  2981:  2943:  2935:  2899:  2891:  2855:  2813:  2803:  2764:  2719:  2711:  2703:  2677:Nature 2660:  2652:  2644:  2583:  2575:  2567:  2541:Nature 2509:  2501:  2459:698714 2457:  2449:  2441:  2400:  2392:  2384:  2339:596014 2337:  2329:  2321:  2269:  2261:  2225:  2215:  2207:  2168:  2158:  2150:  2098:  2088:  2080:  2034:  2026:  1977:  1969:  1919:  1911:  1885:Nature 1865:  1857:  1804:  1769:  1761:  1735:Nature 1718:  1656:  1556:ATP11C 1552:ATP11B 1548:ATP11A 1544:ATP10D 1540:ATP10B 1536:ATP10A 1524:ATP8B4 1520:ATP8B3 1516:ATP8B2 1512:ATP8B1 1508:ATP8A1 1498:ATP12A 1485:ATP1B4 1481:ATP1B3 1477:ATP1B2 1473:ATP1B1 1469:ATP1A4 1465:ATP1A3 1461:ATP1A2 1457:ATP1A1 1447:ATP2B4 1443:ATP2B3 1439:ATP2B2 1435:ATP2B1 1425:ATP2C2 1421:ATP2C1 1411:ATP2A3 1407:ATP2A2 1403:ATP2A1 1367:(e.g. 786:ATP2A1 753:CopA ( 645:, and 588:. In E 586:enzyme 412:rabbit 243:, and 199:PDBsum 173:  163:  97:SUPFAM 39:Symbol 4981:Types 4712:EF-Tu 4651:SAR1B 4634:RAB27 4629:RAB23 4582:RhoDF 4472:RhoUV 4455:CDC42 4450:Cdc42 4436:> 4421:GNA13 4416:GNA12 4401:GNA11 4390:αq/11 4379:GNAT3 4367:GNAT2 4362:GNAT1 4352:GNAI3 4347:GNAI2 4342:GNAI1 4294:3.6.5 4258:3.6.4 4201:ATP4A 4192:H+/K+ 4067:SERCA 4029:3.6.3 4013:3.6.3 3990:3.6.2 3950:3.6.1 3615:ATP9B 3610:ATP9A 3539:ATP7B 3534:ATP7A 3475:SERCA 3455:ATP4B 3450:ATP4A 3209:ATP5S 3204:ATP5O 3194:ATP5L 3184:ATP5J 3179:ATP5I 3174:ATP5H 3149:ATP5E 3144:ATP5D 3129:ATP5B 2995:S2CID 2941:S2CID 2897:S2CID 2833:(PDF) 2717:S2CID 2658:S2CID 2581:S2CID 2455:S2CID 2398:S2CID 2335:S2CID 2032:S2CID 1975:S2CID 1917:S2CID 1863:S2CID 1767:S2CID 1634:(PDF) 1532:ATP9B 1528:ATP9A 1491:ATP4A 1451:P2C: 1429:P2B: 1415:P2A: 1397:P2A: 1393:ATP7B 1389:ATP7A 1365:phyla 894:lumen 869:and E 780:SERCA 715:Metal 689:ATP7A 600:~P, E 564:and E 548:and E 271:and E 109:3.A.3 93:SCOPe 84:SCOP2 5073:list 5066:EC7 5060:list 5053:EC6 5047:list 5040:EC5 5034:list 5027:EC4 5021:list 5014:EC3 5008:list 5001:EC2 4995:list 4988:EC1 4772:OPA1 4765:and 4717:EF-G 4707:IF-2 4673:Rheb 4661:ARL6 4646:ARF6 4617:NRAS 4612:KRAS 4607:HRAS 4592:RhoD 4587:RhoF 4533:RhoH 4509:RhoG 4494:Rac1 4482:RhoV 4477:RhoU 4460:TC10 4396:GNAQ 4116:SPCA 3943:3.6) 3578:ATP3 3563:Na/K 3485:) / 3483:SPCA 3479:PMCA 3036:PMID 3022:1798 2987:PMID 2979:ISSN 2933:PMID 2889:PMID 2853:PMID 2841:1850 2811:PMID 2762:PMID 2709:PMID 2701:ISSN 2650:PMID 2642:ISSN 2573:PMID 2565:ISSN 2507:PMID 2499:ISSN 2447:PMID 2439:ISSN 2390:PMID 2382:ISSN 2327:PMID 2319:ISSN 2267:PMID 2259:ISSN 2223:PMID 2205:ISSN 2166:PMID 2148:ISSN 2096:PMID 2078:ISSN 2024:PMID 1967:PMID 1909:PMID 1855:PMID 1824:1T5T 1802:PMID 1759:PMID 1716:PMID 1654:PMID 1560:P5: 1502:P4: 1371:and 1320:and 1258:and 1155:3WGV 1149:3WGU 1143:4RET 1137:4RES 1103:and 1101:Na/K 1033:2M73 1027:2M7E 1021:2L1W 1015:4AQR 995:→ Ca 980:P → 820:and 707:and 604:P, E 402:, a 215:The 192:PDBj 188:PDBe 171:ECOD 161:Pfam 133:3b9b 104:TCDB 89:1su4 48:Pfam 4767:MX2 4763:MX1 4683:RGK 4678:Rap 4668:Ran 4641:Arf 4624:Rab 4602:Ras 4560:Rnd 4538:Rho 4489:Rac 4465:TCL 4326:olf 4058:Ca+ 3441:H/K 3026:doi 2971:doi 2925:doi 2881:doi 2845:doi 2801:PMC 2793:doi 2752:hdl 2744:doi 2693:doi 2681:450 2634:doi 2622:297 2557:doi 2545:450 2489:doi 2485:281 2429:doi 2425:414 2374:doi 2362:297 2311:doi 2307:316 2251:doi 2213:PMC 2197:doi 2156:PMC 2138:doi 2126:105 2086:PMC 2070:doi 2066:229 2016:doi 1959:doi 1901:doi 1889:450 1847:doi 1835:304 1820:PDB 1794:doi 1751:doi 1739:405 1708:doi 1681:doi 1646:doi 1133:PDB 1011:PDB 886:ATP 828:or 741:by 542:ATP 492:ADP 389:). 290:, ( 233:ion 179:PDB 145:224 5113:: 4448:: 4336:αi 4318:αs 4296:: 4019:: 3941:EC 3935:: 3576:: 3565:– 3549:: 3489:: 3481:, 3477:, 3471:Ca 3448:: 3391:: 3229:: 3091:/ 3087:, 3083:: 3034:. 3020:. 3016:. 2993:. 2985:. 2977:. 2967:19 2965:. 2953:^ 2939:. 2931:. 2921:68 2919:. 2895:. 2887:. 2877:38 2875:. 2851:. 2839:. 2835:. 2809:. 2799:. 2789:21 2787:. 2783:. 2760:. 2750:. 2740:11 2738:. 2715:. 2707:. 2699:. 2691:. 2679:. 2656:. 2648:. 2640:. 2632:. 2620:. 2616:. 2579:. 2571:. 2563:. 2555:. 2543:. 2505:. 2497:. 2483:. 2479:. 2467:^ 2453:. 2445:. 2437:. 2423:. 2419:. 2396:. 2388:. 2380:. 2372:. 2360:. 2356:. 2333:. 2325:. 2317:. 2305:. 2293:^ 2265:. 2257:. 2247:54 2245:. 2221:. 2211:. 2203:. 2193:16 2191:. 2187:. 2164:. 2154:. 2146:. 2136:. 2124:. 2120:. 2108:^ 2094:. 2084:. 2076:. 2064:. 2060:. 2044:^ 2030:. 2022:. 2012:19 2010:. 1998:^ 1973:. 1965:. 1957:. 1947:46 1945:. 1941:. 1929:^ 1915:. 1907:. 1899:. 1887:. 1875:^ 1861:. 1853:. 1845:. 1833:. 1822:: 1800:. 1790:32 1788:. 1765:. 1757:. 1749:. 1737:. 1714:. 1704:23 1702:. 1677:12 1675:. 1652:. 1642:40 1640:. 1636:. 1576:, 1572:, 1568:, 1564:, 1554:, 1550:, 1546:, 1542:, 1538:, 1534:, 1530:, 1526:, 1522:, 1518:, 1514:, 1510:, 1506:: 1483:, 1479:, 1475:, 1471:, 1467:, 1463:, 1459:, 1455:: 1445:, 1441:, 1437:, 1433:: 1423:, 1419:: 1409:, 1405:, 1401:: 1391:, 1316:, 1286:. 1262:. 1254:, 1228:) 1170:) 1135:: 1127:. 1111:) 1079:) 1013:: 908:/E 641:, 628:A 616:. 612:/E 580:-E 572:-E 556:-E 498:. 467:. 360:. 302:. 239:, 225:-E 190:; 186:; 169:/ 121:22 95:/ 91:/ 5089:: 5075:) 5071:( 5062:) 5058:( 5049:) 5045:( 5036:) 5032:( 5023:) 5019:( 5010:) 5006:( 4997:) 4993:( 4817:e 4810:t 4803:v 4575:3 4570:2 4565:1 4553:C 4548:B 4543:A 4526:2 4521:1 4504:3 4499:2 4408:G 4388:G 4334:G 4324:G 4316:G 4017:4 4015:- 3939:( 3925:e 3918:t 3911:v 3759:) 3719:e 3712:t 3705:v 3567:H 3473:( 3099:) 3095:( 3073:e 3066:t 3059:v 3042:. 3028:: 3001:. 2973:: 2947:. 2927:: 2903:. 2883:: 2859:. 2847:: 2817:. 2795:: 2768:. 2754:: 2746:: 2723:. 2695:: 2687:: 2664:. 2636:: 2628:: 2601:. 2587:. 2559:: 2551:: 2527:. 2513:. 2491:: 2461:. 2431:: 2404:. 2376:: 2368:: 2341:. 2313:: 2287:. 2273:. 2253:: 2229:. 2199:: 2172:. 2140:: 2132:: 2102:. 2072:: 2038:. 2018:: 1992:. 1961:: 1953:: 1923:. 1903:: 1895:: 1869:. 1849:: 1841:: 1808:. 1796:: 1773:. 1753:: 1745:: 1722:. 1710:: 1687:. 1683:: 1660:. 1648:: 1493:; 1003:1 1000:E 997:2 993:2 990:E 985:2 982:E 978:2 975:E 967:2 964:E 960:1 957:E 954:2 936:2 934:E 927:2 925:E 919:1 917:E 915:2 910:2 906:1 871:2 867:1 614:2 610:1 606:2 602:2 598:1 594:2 590:1 582:2 578:1 574:2 570:1 566:2 562:1 558:2 554:1 550:2 546:1 496:4 486:N 484:S 478:N 476:S 358:i 354:2 350:1 346:2 342:1 279:( 273:2 269:1 227:2 223:1 221:E

Index


Calcium ATPase
Pfam
PF00122
InterPro
IPR008250
PROSITE
PDOC00139
SCOP2
1su4
SCOPe
SUPFAM
TCDB
3.A.3
OPM superfamily
22
OPM protein
3b9b
Membranome
224
Pfam
structures
ECOD
PDB
RCSB PDB
PDBe
PDBj
PDBsum
structure summary
ion

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.