Knowledge (XXG)

Polythiophene

Source 📝

604: 708: 651: 448: 36: 48: 415: 782: 666: 28: 756: 436:. Although only poorly processable, "the expected high temperature stability and potentially very high electrical conductivity of PT films (if made) still make it a highly desirable material." Nonetheless, intense interest has focused on soluble polythiophenes, which usually translates to polymers derived from 3-alkylthiophenes, which give the so-called polyalkylthiophenes (PATs). 686:
with approximately 94% H–T content. Precipitation of ferric chloride in situ (in order to maximize the surface area of the catalyst) produced significantly higher yields and monomer conversions than adding monomer directly to crystalline catalyst. Higher molecular weights were reported when dry air was bubbled through the reaction mixture during polymerization. Exhaustive
486:
strong thermochromic effects, the absorbance spectra of the regioirregular polymers did not change significantly at elevated temperatures. Finally, Fluorescence absorption and emission maxima of poly(3-hexylthiophene)s occur at increasingly lower wavelengths (higher energy) with increasing HH dyad content. The difference between absorption and emission maxima, the
59: 773:
accepted for electrochemical polymerization was more likely. Given the difficulties of studying a system with a heterogeneous, strongly oxidizing catalyst that produces difficult to characterize rigid-rod polymers, the mechanism of oxidative polymerization is by no means decided. The radical cation mechanism is generally accepted.
166:
oxidant is used to convert PTs (and other conducting polymers) into the optimally conductive state. Thus about one of every five rings is oxidized. Many different oxidants are used. Because of the redox reaction, the conductive form of polythiophene is a salt. An idealized stoichiometry is shown using the oxidant PF
685:
This method has proven to be extremely popular; antistatic coatings are prepared on a commercial scale using ferric chloride. In addition to ferric chloride, other oxidizing agents have been reported. Slow addition of ferric chloride to the monomer solution produced poly(3-(4-octylphenyl)thiophene)s
642:
Chemical synthesis offers two advantages compared with electrochemical synthesis of PTs: a greater selection of monomers, and, using the proper catalysts, the ability to synthesize perfectly regioregular substituted PTs. PTs were chemically synthesized by accident more than a century ago. Chemical
485:
formed "crystalline, flexible, and bronze-colored films with a metallic luster". On the other hand, the corresponding regiorandom polymers produced "amorphous and orange-colored films". Comparison of the thermochromic properties of the Rieke PATs showed that, while the regioregular polymers showed
165:
PT is an ordinary organic polymer, being a red solid that is poorly soluble in most solvents. Upon treatment with oxidizing agents (electron-acceptors) however, the material takes on a dark color and becomes electrically conductive. Oxidation is referred to as "doping". Around 0.2 equivalent of
772:
studied the oligomerization of 3-(alkylsulfanyl)thiophenes, and concluded from their quantum mechanical calculations, and considerations of the enhanced stability of the radical cation when delocalized over a planar conjugated oligomer, that a radical cation mechanism analogous to that generally
2707:
Zhu, Lishan; Wehmeyer, Richard M.; Rieke, Reuben D. (1991). "The direct formation of functionalized alkyl(aryl)zinc halides by oxidative addition of highly reactive zinc with organic halides and their reactions with acid chlorides, α,β-unsaturated ketones, and allylic, aryl, and vinyl halides".
385:
Shifts in PT absorption bands due to changes in temperature result from a conformational transition from a coplanar, rodlike structure at lower temperatures to a nonplanar, coiled structure at elevated temperatures. For example, poly(3-(octyloxy)-4-methylthiophene) undergoes a color change from
480:
Regioregularity affects the properties of PTs. A regiorandom copolymer of 3-methylthiophene and 3-butylthiophene possessed a conductivity of 50 S/cm, whereas a more regioregular copolymer with a 2:1 ratio of HT to HH couplings had a higher conductivity of 140 S/cm. Films of regioregular
690:
after polymerization with polar solvents was found to effectively fractionate the polymer and remove residual catalyst before NMR spectroscopy. Using a lower ratio of catalyst to monomer (2:1, rather than 4:1) may increase the regioregularity of poly(3-dodecylthiophene)s. Andreani
394:
PTs exhibit an isosbestic point: highly regioregular poly(3-alkylthiophene)s (PATs) show a continuous blue-shift with increasing temperature if the side chains are short enough so that they do not melt and interconvert between crystalline and disordered phases at low temperatures.
357:
estimated that the effective conjugation extended over 11 repeat units, while later studies increased this estimate to 20 units. Using the absorbance and emission profile of discrete conjugated oligo(3-hexylthiophene)s prepared through polymerization and separation, Lawrence
869:
of the materials, combined with their processing and material properties common to polymeric materials. Dynamic applications utilize changes in the conductive and optical properties, resulting either from application of electric potentials or from environmental stimuli.
699:
rather than chloroform, which they attributed to the stability of the radical species in carbon tetrachloride. Higher-quality catalyst, added at a slower rate and at reduced temperature, was shown to produce high molecular weight PATs with no insoluble polymer residue.
575:. Electrochemical polymerization is convenient, since the polymer does not need to be isolated and purified, but it can produce polymers with undesirable alpha-beta linkages and varying degrees of regioregularity. The stoichiometry of the electropolymerization is: 310:
The extended π-systems of conjugated PTs produce some of the most interesting properties of these materials—their optical properties. As an approximation, the conjugated backbone can be considered as a real-world example of the "electron-in-a-box" solution to the
618:
Electron-donating substituents lower the oxidation potential, whereas electron-withdrawing groups increase the oxidation potential. Thus, 3-methylthiophene polymerizes in acetonitrile and tetrabutylammonium tetrafluoroborate at a potential of about 1.5 V vs.
121:
along the polymer backbone. Conductivity however is not the only interesting property resulting from electron delocalization. The optical properties of these materials respond to environmental stimuli, with dramatic color shifts in response to changes in
1219:
McCullough, Richard D.; Tristram-Nagle, Stephanie; Williams, Shawn P.; Lowe, Renae D.; Jayaraman, Manikandan (1993). "Self-orienting head-to-tail poly(3-alkylthiophenes): new insights on structure-property relationships in conducting polymers".
1961:
Elsenbaumer, R. L.; Jen, K.-Y.; Miller, G. G.; Eckhardt, H.; Shacklette, L. W.; Jow, R. "Poly (alkylthiophenes) and Poly (substituted heteroaromatic vinylenes): Versatile, Highly Conductive, Processible Polymers with Tunable Properties". In
2735:
Chen, Tian An; Rieke, Reuben D. (1992). "The first regioregular head-to-tail poly(3-hexylthiophene-2,5-diyl) and a regiorandom isopolymer: nickel versus palladium catalysis of 2(5)-bromo-5(2)-(bromozincio)-3-hexylthiophene polymerization".
1616:
Izumi, Tsuyoshi; Kobashi, Seiji; Takimiya, Kazuo; Aso, Yoshio; Otsubo, Tetsuo (2003). "Synthesis and Spectroscopic Properties of a Series of β-Blocked Long Oligothiophenes up to the 96-mer: Revaluation of Effective Conjugation Length".
2311:
Li, L.; Counts, K. E.; Kurosawa, S.; Teja, A. S.; Collard, D. M. (2004). "Tuning the Electronic Structure and Solubility of Conjugated Polymers with Perfluoroalkyl Substituents: Poly(3-perfluorooctylthiophene), the First Supercritical
944:
Arosio, Paolo; Moreno, Margherita; Famulari, Antonino; Raos, Guido; Catellani, Marinella; Valdo Meille, Stefano (2009). "Ordered Stacking of Regioregular Head-to-Tail Polyalkylthiophenes: Insights from the Crystal Structure of Form I′
817:
PEDOT also has been proposed for dynamic applications where a potential is applied to a polymer film. PEDOT-coated windows and mirrors become opaque or reflective upon the application of an electric potential, a manifestation of its
346:; or temporary, resulting from changes in the environment or binding. This twist in the backbone reduces the conjugation length, and the separation between energy levels is increased. This results in a shorter absorption wavelength. 2818:
Fraleoni-Morgera, Alessandro; Della-Casa, Carlo; Lanzi, Massimiliano; Costa-Bizzarri, Paolo (2003). "Investigation on Different Procedures in the Oxidative Copolymerization of a Dye-Functionalized Thiophene with 3-Hexylthiophene".
1545:
Lawrence, Jimmy; Goto, Eisuke; Ren, Jing M.; McDearmon, Brenden; Kim, Dong Sub; Ochiai, Yuto; Clark, Paul G.; Laitar, David; Higashihara, Tomoya (2017-10-04). "A Versatile and Efficient Strategy to Discrete Conjugated Oligomers".
3025:
Barbarella, Giovanna; Zambianchi, Massimo; Di Toro, Rosanna; Colonna, Martino; Iarossi, Dario; Goldoni, Francesca; Bongini, Alessandro (1996). "Regioselective Oligomerization of 3-(Alkylsulfanyl)thiophenes with Ferric Chloride".
2116:
Englebienne, Patrick; Weiland, Mich le (1996). "Synthesis of water-soluble carboxylic and acetic acid-substituted poly(thiophenes) and the application of their photochemical properties in homogeneous competitive immunoassays".
1891:
Barbarella, Giovanna; Bongini, Alessandro; Zambianchi, Massimo (1994). "Regiochemistry and Conformation of Poly(3-hexylthiophene) via the Synthesis and the Spectroscopic Characterization of the Model Configurational Triads".
427:
Polythiophene and its oxidized derivatives have poor processing properties. They are insoluble in ordinary solvents and do not melt readily. For example, doped unsubstituted PTs are only soluble in exotic solvents such as
362:
determined the effective conjugation length of poly(3-hexylthiophene) to be 14 units. The effective conjugation length of polythiophene derivatives depend on the chemical structure of side chains, and thiophene backbones.
3310: 2881:
Andreani, F.; Salatelli, E.; Lanzi, M. (February 1996). "Novel poly(3,3" – and 3',4'-dialkyl- 2,2':5',2" – terthiophene)s by chemical oxidative synthesis: evidence for a new step towards the optimization of this process".
2359:
Murphy, Amanda R.; Fréchet, Jean M. J.; Chang, Paul; Lee, Josephine; Subramanian, Vivek (2004). "Organic Thin Film Transistors from a Soluble Oligothiophene Derivative Containing Thermally Removable Solubilizing Groups".
229:
is formed. The bipolaron moves as a unit along the polymer chain and is responsible for the macroscopically observed conductivity of the material. Conductivity can approach 1000 S/cm. In comparison, the conductivity of
2194:
Jung, S.; Hwang, D.-H.; Zyung, T.; Kim, W. H.; Chittibabu, K. G.; Tripathy, S. K. (1998). "Temperature dependent photoluminescence and electroluminescence properties of polythiophene with hydrogen bonding side chain".
662:. This method produces approximately 100% HT–HT couplings, according to NMR spectroscopy analysis of the diads. 2,5-Dibromo-3-alkylthiophene when treated with highly reactive "Rieke zinc" is an alternative method. 134:, and binding to other molecules. Changes in both color and conductivity are induced by the same mechanism, twisting of the polymer backbone and disrupting conjugation, making conjugated polymers attractive as 2786:
Costa Bizzarri, P.; Andreani, Franco; Della Casa, Carlo; Lanzi, Massimiliano; Salatelli, Elisabetta (1995). "Ester-functionalized poly(3-alkylthienylene)s: substituent effects on the polymerization with
1988:
Andersson, M. R.; Selse, D.; Berggren, M.; Jaervinen, H.; Hjertberg, T.; Inganaes, O.; Wennerstroem, O.; Oesterholm, J.-E. (1994). "Regioselective polymerization of 3-(4-octylphenyl)thiophene with FeCl
809:
properties. The thin layer of PEDOT:PSS is virtually transparent and colorless, prevents electrostatic discharges during film rewinding, and reduces dust buildup on the negatives after processing.
1413:
Abdou, M.S.A.; Holdcroft, Steven (1993). "Oxidation of π-conjugated polymers with gold trichloride: enhanced stability of the electronically conducting state and electroless deposition of Au".
743:), and speculated that the polymerization may occur at the surface of solid ferric chloride. However, this is challenged by the fact that the reaction also proceeds in acetonitrile, which FeCl 1440:
Rudge, Andy; Raistrick, Ian; Gottesfeld, Shimshon; Ferraris, John P. (1994). "A study of the electrochemical properties of conducting polymers for application in electrochemical capacitors".
678:
In contrast to methods that require brominated monomers, the oxidative polymerization of thiophenes using ferric chloride proceeds at room temperature. The approach was reported by Sugimoto
2533:
Roncali, J.; Garreau, R.; Yassar, A.; Marque, P.; Garnier, F.; Lemaire, M. (1987). "Effects of steric factors on the electrosynthesis and properties of conducting poly(3-alkylthiophenes)".
444:
Soluble polymers are derivable from 3-substituted thiophenes where the 3-substituent is butyl or longer. Copolymers also are soluble, e.g., poly(3-methylthiophene-'co'-3'-octylthiophene).
764:
Polymerization of thiophene can be effected by a solution of ferric chloride in acetonitrile. The kinetics of thiophene polymerization also seemed to contradict the predictions of the
2027:
Chen, Tian-An; Wu, Xiaoming; Rieke, Reuben D. (1995). "Regiocontrolled Synthesis of Poly(3-alkylthiophenes) Mediated by Rieke Zinc: Their Characterization and Solid-State Properties".
481:
poly(3-(4-octylphenyl)thiophene) (POPT) with greater than 94% HT content possessed conductivities of 4 S/cm, compared with 0.4 S/cm for regioirregular POPT. PATs prepared using Rieke
3144:
Martina, V; Ionescu, K.; Pigani, L; Terzi, F; Ulrici, A.; Zanardi, C.; Seeber, R (March 2007). "Development of an electronic tongue based on a PEDOT-modified voltammetric sensor".
751:
also point to a radical mechanism. The mechanism can also be inferred from the regiochemistry of the dimerization of 3-methylthiophene since C2 in has the highest spin density.
403:
The optical properties of PTs can be sensitive to many factors. PTs exhibit absorption shifts due to application of electric potentials (electrochromism), or to introduction of
234:
is approximately 5×10 S/cm. Generally, the conductivity of PTs is lower than 1000 S/cm, but high conductivity is not necessary for many applications, e.g. as an antistatic film.
390:(a point where the absorbance curves at all temperatures overlap) indicates coexistence between two phases, which may exist on the same chain or on different chains. Not all 349:
Determining the maximum effective conjugation length requires the synthesis of regioregular PTs of defined length. The absorption band in the visible region is increasingly
1344: 615:
and quality of the resulting polymer depends upon the electrode material, current density, temperature, solvent, electrolyte, presence of water, and monomer concentration.
2909:
Gallazzi, M.; Bertarelli, C.; Montoneri, E. (2002). "Critical parameters for product quality and yield in the polymerisation of 3,3"-didodecyl-2,2′:5′,2"-terthiophene".
1747:
Marsella, Michael J.; Swager, Timothy M. (1993). "Designing conducting polymer-based sensors: selective ionochromic response in crown ether-containing polythiophenes".
2445:
Groenendaal, L. B.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J. R. (2000). "Poly(3,4-Ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future".
353:
as the conjugation length increases, and the maximum effective conjugation length is calculated as the saturation point of the red-shift. Early studies by ten Hoeve
2569: 1258:
Loponen, M.; Taka, T.; Laakso, J.; Vakiparta, K.; Suuronen, K.; Valkeinen, P.; Osterholm, J. (1991). "Doping and dedoping processes in poly (3-alkylthiophenes)".
1589:
Nakanishi, Hidetaka; Sumi, Naoto; Aso, Yoshio; Otsubo, Tetsuo (1998). "Synthesis and Properties of the Longest Oligothiophenes: the Icosamer and Heptacosamer".
523:
Oligothiophenes capped at both ends with thermally-labile alkyl esters were cast as films from solution, and then heated to remove the solublizing end groups.
281:(MALDI-MS) studies have shown that poly(3-hexylthiophene)s are also partially halogenated by the residual oxidizing agent. Poly(3-octylthiophene) dissolved in 1162:
Kobayashi, M.; Chen, J.; Chung, T.-C.; Moraes, F.; Heeger, A.J.; Wudl, F. (January 1984). "Synthesis and properties of chemically coupled poly(thiophene)".
275: 704:
indicate that the catalyst/monomer ratio correlated with increased yield of poly(3-octylthiophene). Longer polymerization time also increased the yield.
342:, and the longer the absorption wavelength. Deviation from coplanarity may be permanent, resulting from mislinkages during synthesis or especially bulky 2854:
Qiao, X.; Wang, Xianhong; Zhao, Xiaojiang; Liu, Jian; Mo, Zhishen (2000). "Poly(3-dodecylthiophenes) polymerized with different amounts of catalyst".
1717:
H. W. Heuer; R. Wehrmann; S. Kirchmeyer (2002). "Electrochromic Window Based on Conducting Poly(3,4-ethylenedioxythiophene)-Poly(styrene sulfonate)".
516:
substituents at the 3 position have been polymerized. Such chiral PTs in principle could be employed for detection or separation of chiral analytes.
1927:
Diaz-Quijada, G. A.; et al. (1996). "Regiochemical Analysis of Water Soluble Conductive Polymers: Sodium Poly(ω-(3-thienyl)alkanesulfonates)".
2596:
Yamamoto, Takakazu; Sanechika, Kenichi; Yamamoto, Akio (January 1980). "Preparation of thermostable and electric-conducting poly(2,5-thienylene)".
1652:
De Souza, J.; Pereira, Ernesto C. (2001). "Luminescence of poly(3-thiopheneacetic acid) in alcohols and aqueous solutions of poly(vinyl alcohol)".
331: 897: 474: 114: 218: 2672:
Chen, Tian An; O'Brien, Richard A.; Rieke, Reuben D. (1993). "Use of highly reactive zinc leads to a new, facile synthesis for polyarylenes".
1189:
Mastragostino, M.; Soddu, L. (1990). "Electrochemical characterization of "n" doped polyheterocyclic conducting polymers—I. Polybithiophene".
3407: 2497: 2140:
Kim; Chen, Li; Gong; Osada, Yoshihito (1999). "Titration Behavior and Spectral Transitions of Water-Soluble Polythiophene Carboxylic Acids".
650: 338:
The number of coplanar rings determines the conjugation length—the longer the conjugation length, the lower the separation between adjacent
889: 2466: 1119:
Mehmood, Umer; Al-Ahmed, Amir; Hussein, Ibnelwaleed A. (2016). "Review on recent advances in polythiophene based photovoltaic devices".
719:
reported that polymerization was only observed in solvents where the catalyst was either partially or completely insoluble (chloroform,
498:
Water-soluble PT's are represented by sodium poly(3-thiophenealkanesulfonate)s. In addition to conferring water solubility, the pendant
2175:
Andersson, M.; Ekeblad, P. O.; Hjertberg, T.; Wennerström, O.; Inganäs, O. (1991). "Polythiophene with a free amino-acid side-chain".
1866: 490:, also increases with HH dyad content, which they attributed to greater relief from conformational strain in the first excited state. 3305: 3297: 3283: 3132: 3112: 1971: 1475: 3187:
Bäuerle, Peter; Scheib, Stefan (1993). "Molecular recognition of alkali-ions by crown-ether-functionalized poly(alkylthiophenes)".
1004:Österholm, J.-E.; Passiniemi, P.; Isotalo, H.; Stubb, H. (February 1987). "Synthesis and properties of FeCl4-doped polythiophene". 603: 3446: 3082: 2963:
Niemi, V. M.; Knuuttila, P.; Österholm, J. E.; Korvola, J. (1992). "Polymerization of 3-alkylthiophenes with ferric chloride".
865:. In general, two categories of applications are proposed for conducting polymers. Static applications rely upon the intrinsic 1730: 3426: 266:
produce PTs with lower conductivities than iodine, but with higher environmental stabilities. Oxidative polymerization with
39:
Polythiophenes demonstrate interesting optical properties resulting from their conjugated backbone, as demonstrated by the
707: 294: 3451: 520: 1518:
Meier, H.; Stalmach, U.; Kolshorn, H (September 1997). "Effective conjugation length and UV/vis spectra of oligomers".
715:
In terms of mechanism, the oxidative polymerization using ferric chloride, a radical pathway has been proposed. Niemi
620: 455:
One undesirable feature of 3-alkylthiophenes is the variable regioregularity of the polymer. Focusing on the polymer
323:
spectra of well-defined oligo(thiophene) systems is ongoing. Conjugation relies upon overlap of the π-orbitals of the
2765:"Preparation of soluble polythiophene derivatives utilizing transition metal halides as catalysts and their property" 141:
The development of polythiophenes and related conductive organic polymers was recognized by the awarding of the 2000
797:
has been extensively used as an antistatic coating (as packaging materials for electronic components, for example).
761:
A carbocation mechanism is inferred from the structure of 3-(4-octylphenyl)thiophene prepared from ferric chloride.
106:
substituents at the 3- or 4-position(s). They are also colored solids, but tend to be soluble in organic solvents.
2936:
Laakso, J.; Jarvinen, H.; Skagerberg, B. (1993). "Recent developments in the polymerization of 3-alkylthiophenes".
2405:"Fluorine Substituted Conjugated Polymer of Medium Band Gap Yields 7% Efficiency in Polymer−Fullerene Solar Cells" 2260:
Desimone, J. M.; Guan, Z.; Elsbernd, C. S. (1992). "Synthesis of Fluoropolymers in Supercritical Carbon Dioxide".
3436: 320: 1774:
Rughooputh, S. D. D. V.; Hotta, S.; Heeger, A. J.; Wudl, F. (May 1987). "Chromism of soluble polythienylenes".
1076:
McQuade, D. Tyler; Pullen, Anthony E.; Swager, Timothy M. (2000). "Conjugated Polymer-Based Chemical Sensors".
834: 612: 142: 1031:
Nielsen, Christian B.; McCulloch, Iain (2013). "Recent advances in transistor performance of polythiophenes".
866: 755: 748: 665: 524: 367: 316: 312: 62: 1488: 951: 765: 539: 35: 977:
Tourillon, G.; Garnier, F. (April 1982). "New electrochemically generated organic conducting polymers".
854: 433: 87: 447: 289:, and can be cast into films with conductivities reaching 1 S/cm. Other, less common p-dopants include 1679:
Roux, Claudine; Leclerc, Mario (1992). "Rod-to-coil transition in alkoxy-substituted polythiophenes".
378:
7 to 415 nm at pH 4. This is attributed to formation of a compact coil structure, which can form
3340:
Roncali, Jean (1992). "Conjugated poly(thiophenes): synthesis, functionalization, and applications".
3196: 3070: 2828: 2681: 2644: 2605: 2454: 2325: 2269: 2149: 2063: 2054:
Xu, Bai; Holdcroft, Steven (1993). "Molecular control of luminescence from poly(3-hexylthiophenes)".
2001: 1936: 1901: 1854: 1783: 1688: 1360: 1128: 701: 696: 255: 118: 3431: 3061:
Rosseinsky, D. R.; Mortimer, R. J. (2001). "Electrochromic Systems and the Prospects for Devices".
838: 502:
groups act as counterions, producing self-doped conducting polymers. Substituted PTs with tethered
429: 51: 47: 2089:
Patil, A. O.; Ikenoue, Y.; Wudl, Fred; Heeger, A. J. (1987). "Water soluble conducting polymers".
250:
produce highly conductive materials, which are unstable owing to slow evaporation of the halogen.
3361:
Roncali, Jean (1997). "Synthetic Principles for Bandgap Control in Linear π-Conjugated Systems".
3169: 3086: 2507: 2385: 2341: 2293: 1870: 1237: 1144: 1101: 1058: 916:
Strictly speaking, "polythiophene" is a misnomer, since the polymer consists of thienylene (2,5-C
350: 290: 267: 131: 110: 627:
resulting from branching at the α-carbon of a 3-substituted thiophene inhibits polymerization.
473:
These three diads can be combined into four distinct triads. The triads are distinguishable by
3441: 3403: 3378: 3301: 3293: 3279: 3255: 3161: 3128: 3108: 3043: 2493: 2424: 2377: 2285: 2242: 1967: 1634: 1571: 1563: 1471: 1093: 802: 687: 371: 278: 214:
In principle, PT can be n-doped using reducing agents, but this approach is rarely practiced.
2404: 3395: 3370: 3349: 3328: 3245: 3235: 3204: 3153: 3078: 3035: 3007: 2972: 2945: 2918: 2891: 2863: 2836: 2800: 2745: 2717: 2689: 2652: 2613: 2578: 2542: 2485: 2462: 2416: 2369: 2333: 2277: 2234: 2204: 2157: 2122: 2098: 2071: 2036: 2009: 1944: 1909: 1862: 1818: 1791: 1756: 1726: 1696: 1661: 1626: 1598: 1555: 1527: 1500: 1449: 1422: 1395: 1368: 1325: 1294: 1267: 1229: 1198: 1171: 1136: 1085: 1048: 1040: 1013: 986: 959: 850: 827: 414: 387: 330: 154: 546:. Regiochemistry is not an issue in since this monomer is symmetrical. PEDOT is found in 27: 2519: 1345:"MALDI-MS Evaluation of Poly(3-hexylthiophene) Synthesized by Chemical Oxidation with FeCl 819: 659: 644: 547: 503: 217: 150: 3278:(Eds: T. A. Skotheim, R. L. Elsenbaumer, J. R. Reynolds), Marcel Dekker, New York, 1998. 3224:"Polythiophenes Inhibit Prion Propagation by Stabilizing Prion Protein (PrP) Aggregates" 3200: 3074: 2832: 2685: 2648: 2609: 2458: 2329: 2273: 2153: 2067: 2005: 1940: 1905: 1858: 1787: 1692: 1364: 1132: 781: 3250: 3223: 1044: 878: 823: 624: 456: 259: 146: 2922: 2867: 2208: 1665: 1386:
Heffner, G.; Pearson, D. (1991). "Solution processing of a doped conducting polymer".
1329: 3420: 3319:
Street, G. B.; Clarke, T. C. (1981). "Conducting Polymers: A Review of Recent Work".
3090: 3011: 2976: 2949: 2895: 2804: 2764: 1453: 1426: 1399: 1271: 1202: 1175: 1148: 1062: 1017: 990: 732: 391: 379: 263: 66: 3173: 2403:
Price, Samuel C.; Stuart, Andrew C.; Yang, Liqiang; Zhou, Huaxing; You, Wei (2011).
2389: 2345: 2297: 1241: 885:
functionalities exhibit properties that vary with the alkali metal. and main-chain.
102:. The rings are linked through the 2- and 5-positions. Poly(alkylthiophene)s have 2560: 2225:
Kane-Maguire, Leon A. P.; Wallace, Gordon G. (2010). "Chiral conducting polymers".
1874: 1105: 888: 798: 551: 487: 459:
at the dyad level, 3-substituted thiophenes can couple to give any of three dyads:
339: 286: 251: 40: 658:
Regioregular PTs have been prepared by lithiation 2-bromo-3-alkylthiophenes using
407:(ionochromism). Soluble PATs exhibit both thermochromism and solvatochromism (see 2994:
Olinga, T.; François, B. (1995). "Kinetics of polymerization of thiophene by FeCl
2281: 1795: 1531: 882: 846: 740: 711:
Proposed mechanisms for ferric chloride oxidative polymerizations of thiophenes.
631: 568: 530:
Fluorinated polythiophene yield 7% efficiency in polymer-fullerene solar cells.
324: 127: 2657: 2632: 2617: 1140: 3157: 2582: 1489:"Substituted .. – undecithiophenes, the longest characterized oligothiophenes" 1298: 842: 806: 527:(AFM) images showed a significant increase in long-range order after heating. 343: 3208: 1845:
McCullough, Richard D. (1998). "The Chemistry of Conducting Polythiophenes".
1567: 567:
In an electrochemical polymerization, a solution containing thiophene and an
451:
The four possible triads resulting from coupling of 3-substituted thiophenes.
3399: 3240: 877:, PTs can also be functionalized with receptors for detecting metal ions or 790: 634:, which then couple with another monomer to produce a radical cation dimer. 507: 499: 271: 226: 80: 3382: 3259: 3165: 3047: 2467:
10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C
2428: 2381: 2337: 2289: 2246: 1638: 1575: 1097: 1053: 1343:
McCarley, Tracy Donovan; Noble; Dubois, C. J.; McCarley, Robin L. (2001).
682:
in 1986. The stoichiometry is analogous to that of electropolymerization.
3103:
Garnier, F. "Field-Effect Transistors Based on Conjugated Materials". In
2126: 1867:
10.1002/(SICI)1521-4095(199801)10:2<93::AID-ADMA93>3.0.CO;2-F
1559: 221:
Removal of two electrons (p-doping) from a PT chain produces a bipolaron.
3353: 3332: 2749: 2721: 2693: 2546: 2102: 2075: 2040: 2013: 1948: 1913: 1822: 1760: 1700: 1504: 1233: 2489: 979:
Journal of Electroanalytical Chemistry and Interfacial Electrochemistry
794: 724: 720: 282: 247: 123: 77: 3374: 3222:
Margalith, Ilan; Suter, Carlo; Ballmer, Boris; Schwarz, Petra (2012).
3083:
10.1002/1521-4095(200106)13:11<783::AID-ADMA783>3.0.CO;2-D
3039: 2840: 2420: 2373: 2161: 1630: 1602: 1372: 1089: 963: 285:
can be doped by solutions of ferric chloride hexahydrate dissolved in
58: 2238: 1731:
10.1002/1616-3028(20020201)12:2<89::AID-ADFM89>3.0.CO;2-1
874: 862: 736: 728: 630:
In terms of mechanism, oxidation of the thiophene monomer produces a
513: 404: 243: 231: 135: 84: 2564: 1470:; Müllen, K.; Wegner, G., Eds.; Wiley-VCH: Weinheim, Germany, 1998, 791:
poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT-PSS)
17: 1966:(Eds: Kuzmany, H.; Mehring, M.; Roth, S.), Springer, Berlin, 1987, 315:; however, the development of refined models to accurately predict 1487:
Ten Hoeve, W.; Wynberg, H.; Havinga, E. E.; Meijer, E. W. (1991).
1285:
Bartuš, Ján (1991). "Electrically Conducting Thiophene Polymers".
858: 780: 607:
Proposed initial steps in the electropolymerization of thiophenes.
572: 543: 103: 57: 46: 34: 26: 334:
Conjugated π-orbitals of a coplanar and a twisted substituted PT.
90:. The parent PT is an insoluble colored solid with the formula (C 924:
S) repeat units. Similarly, thiophene is not a monomer as such.
695:
reported higher yields of soluble poly(dialkylterthiophene)s in
623:, whereas unsubstituted thiophene requires an additional 0.2 V. 482: 418:
Ionoselective PTs reported by Bäuerle (left) and Swager (right).
3394:. Advances in Polymer Science. Vol. 145. pp. 57–122. 327:, which, in turn, requires the thiophene rings to be coplanar. 2484:. Advances in Polymer Science. Vol. 129. pp. 1–166. 382:
with PVA upon partial deprotonation of the acetic acid group.
138:
that can provide a range of optical and electronic responses.
43:
of a substituted polythiophene solution under UV irradiation.
664: 649: 554:, electroluminescent displays, printed wiring, and sensors. 157:"for the discovery and development of conductive polymers". 1742: 1740: 386:
red–violet at 25 °C to pale yellow at 150 °C. An
375: 3127:(Eds: Müllen, K.; Wegner, G.), Wiley-VCH, Weinheim, 1998, 3123:
Harrison, M. G.; Friend, R. H. "Optical Applications". In
3107:(Eds: Müllen, K.; Wegner, G.), Wiley-VCH, Weinheim, 1998, 1809:
Frommer, Jane E. (1986). "Conducting polymer solutions".
2763:
Sugimoto, R.; Taketa, S.; Gu, H. B.; Yoshino, K (1986).
2440: 2438: 873:
PTs have been touted as sensor elements. In addition to
1886: 1884: 1312:
Qiao, X.; Wang, Xianhong; Mo, Zhishen (2001). "The FeCl
1214: 1212: 31:
The monomer repeat unit of unsubstituted polythiophene.
1983: 1981: 1979: 65:
image of poly(3-decylthiophene-2,5-diyl) on hexagonal
2567:[On the companion of benzene in stone coal]. 2565:"Ueber den Begleiter des Benzols im Steinkohlentheer" 408: 54:
of poly(3-butylthiophene) from the crystal structure.
1253: 1251: 2989: 2987: 2631:Lin, John W-P.; Dudek, Lesley P. (September 1980). 2598:
Journal of Polymer Science: Polymer Letters Edition
2633:"Synthesis and properties of poly(2,5-thienylene)" 1712: 1710: 896:Polythiophenes show potential in the treatment of 242:A variety of reagents have been used to dope PTs. 519:Poly(3-(perfluorooctyl)thiophene)s is soluble in 411:) in chloroform and 2,5-dimethyltetrahydrofuran. 3290:Polythiophenes: Electrically Conductive Polymers 1316:-doped poly(3-alkyithiophenes) in solid state". 2482:Polythiophenes—Electrically Conducting Polymers 3392:Molecular Engineering of p-Conjugated Polymers 2570:Berichte der deutschen chemischen Gesellschaft 8: 1964:Electronic Properties of Conjugated Polymers 3125:Electronic Materials: The Oligomer Approach 3105:Electronic Materials: The Oligomer Approach 1468:Electronic Materials: The Oligomer Approach 276:matrix-assisted laser desorption/ionization 3390:Reddinger, J. L.; Reynolds, J. R. (1999). 1121:Renewable & Sustainable Energy Reviews 892:Chiral PT synthesized by Yashima and Goto. 3249: 3239: 2656: 1287:Journal of Macromolecular Science, Part A 1052: 2738:Journal of the American Chemical Society 2409:Journal of the American Chemical Society 2362:Journal of the American Chemical Society 2220: 2218: 2091:Journal of the American Chemical Society 2029:Journal of the American Chemical Society 1840: 1838: 1836: 1834: 1832: 1749:Journal of the American Chemical Society 1619:Journal of the American Chemical Society 1548:Journal of the American Chemical Society 1493:Journal of the American Chemical Society 1466:Bässler, H. "Electronic Excitation". In 1222:Journal of the American Chemical Society 887: 706: 643:syntheses from 2,5-dibromothiophene use 602: 446: 413: 329: 216: 936: 909: 826:windows promise significant savings in 805:per year with PEDOT:PSS because of its 789:As an example of a static application, 542:(EDOT) is the precursor to the polymer 538:The 3,4-disubstituted thiophene called 225:Upon "p-doping", charged unit called a 3146:Analytical and Bioanalytical Chemistry 2515: 2505: 833:Another potential application include 571:produces a conductive PT film on the 7: 161:Mechanism of conductivity and doping 3228:The Journal of Biological Chemistry 506:also exhibit water solubility. and 2998:in choloroform and acetonitrile". 1045:10.1016/j.progpolymsci.2013.05.003 674:Routes employing chemical oxidants 25: 2535:The Journal of Physical Chemistry 469:5,5', or tail–tail (TT), coupling 466:2,2', or head–head (HH), coupling 463:2,5', or head–tail (HT), coupling 374:(PVA) shifts from 480 nm at 270:can result in doping by residual 3028:The Journal of Organic Chemistry 2710:The Journal of Organic Chemistry 2480:Schopf, G.; Koßmehl, G. (1997). 1591:The Journal of Organic Chemistry 754: 301:Structure and optical properties 3276:Handbook of Conducting Polymers 749:Quantum mechanical calculations 2316:-soluble Conjugated Polymer". 1: 2923:10.1016/S0379-6779(01)00665-8 2868:10.1016/S0379-6779(00)00233-2 2209:10.1016/S0379-6779(98)00161-1 1811:Accounts of Chemical Research 1719:Advanced Functional Materials 1666:10.1016/S0379-6779(00)00453-7 1330:10.1016/S0379-6779(00)00587-7 366:The absorption band of poly ( 295:trifluoromethanesulfonic acid 3012:10.1016/0379-6779(94)02457-A 2977:10.1016/0032-3861(92)90138-M 2950:10.1016/0379-6779(93)90225-L 2896:10.1016/0032-3861(96)83153-3 2805:10.1016/0379-6779(95)03401-5 2637:Journal of Polymer Science A 2282:10.1126/science.257.5072.945 1776:Journal of Polymer Science B 1454:10.1016/0013-4686(94)80063-4 1427:10.1016/0379-6779(93)91226-R 1400:10.1016/0379-6779(91)91821-Q 1272:10.1016/0379-6779(91)91111-M 1203:10.1016/0013-4686(90)87029-2 1176:10.1016/0379-6779(84)90044-4 1018:10.1016/0379-6779(87)90881-2 991:10.1016/0022-0728(82)90015-8 654:Kumada coupling route to PT. 521:supercritical carbon dioxide 1796:10.1002/polb.1987.090250508 1532:10.1002/actp.1997.010480905 1033:Progress in Polymer Science 793:product ("Clevios P") from 119:delocalization of electrons 3468: 3292:, Springer, Berlin, 1997, 2658:10.1002/pol.1980.170180910 2618:10.1002/pol.1980.130180103 1141:10.1016/j.rser.2015.12.177 881:as well. PTs with pendant 839:electroluminescent devices 423:Substituted polythiophenes 370:) in aqueous solutions of 3315:(journal). ISSN 0379-6779 3158:10.1007/s00216-006-1102-1 2583:10.1002/cber.188301601324 1299:10.1080/00222339108054069 822:. Widespread adoption of 820:electrochromic properties 563:Electrochemical synthesis 3209:10.1002/adma.19930051113 2227:Chemical Society Reviews 835:field-effect transistors 723:, carbon tetrachloride, 613:degree of polymerization 143:Nobel Prize in Chemistry 3400:10.1007/3-540-70733-6_2 3288:G. Schopf, G. Koßmehl, 3241:10.1074/jbc.M112.355958 2119:Chemical Communications 851:nonlinear optic devices 548:electrochromic displays 525:Atomic force microscopy 368:3-thiophene acetic acid 115:electrical conductivity 3447:Organic semiconductors 2338:10.1002/adma.200305333 893: 875:biosensor applications 801:coats 200 m × 10 m of 786: 768:mechanism. Barbarella 766:radical polymerization 712: 670: 655: 647:and related reactions 608: 540:ethylenedioxythiophene 452: 419: 335: 222: 70: 55: 44: 32: 3427:Molecular electronics 2563:(January–June 1883). 891: 847:photochemical resists 813:Proposed applications 784: 710: 702:Factorial experiments 668: 660:Kumada cross-coupling 653: 606: 450: 434:arsenic pentafluoride 417: 333: 220: 61: 50: 38: 30: 2127:10.1039/cc9960001651 1560:10.1021/jacs.7b05299 697:carbon tetrachloride 669:Rieke method for PT. 638:From bromothiophenes 494:Special substituents 313:Schrödinger equation 256:trifluoroacetic acid 113:when oxidized. The 3452:Conductive polymers 3354:10.1021/cr00012a009 3333:10.1147/rd.251.0051 3201:1993AdM.....5..848B 3075:2001AdM....13..783R 2833:2003MaMol..36.8617F 2750:10.1021/ja00051a066 2722:10.1021/jo00004a021 2694:10.1021/ma00065a036 2686:1993MaMol..26.3462C 2649:1980JPoSA..18.2869L 2610:1980JPoSL..18....9Y 2547:10.1021/j100311a030 2459:2000AdM....12..481G 2330:2004AdM....16..180L 2274:1992Sci...257..945D 2154:1999MaMol..32.3964K 2103:10.1021/ja00240a044 2076:10.1021/ma00069a009 2068:1993MaMol..26.4457X 2041:10.1021/ja00106a027 2014:10.1021/ma00100a039 2006:1994MaMol..27.6503A 1941:1996MaMol..29.5416D 1914:10.1021/ma00089a022 1906:1994MaMol..27.3039B 1859:1998AdM....10...93M 1823:10.1021/ar00121a001 1788:1987JPoSB..25.1071R 1761:10.1021/ja00078a090 1701:10.1021/ma00034a012 1693:1992MaMol..25.2141R 1554:(39): 13735–13739. 1505:10.1021/ja00015a067 1442:Electrochimica Acta 1365:2001MaMol..34.7999M 1234:10.1021/ja00064a070 1191:Electrochimica Acta 1133:2016RSERv..57..550M 949:-butylthiophene)". 430:arsenic trifluoride 372:poly(vinyl alcohol) 52:Space-filling model 3189:Advanced Materials 3063:Advanced Materials 2490:10.1007/BFb0008700 2318:Advanced Materials 1847:Advanced Materials 894: 787: 713: 688:Soxhlet extraction 671: 656: 609: 453: 420: 336: 306:Conjugation length 223: 71: 69:(top-right inset). 56: 45: 33: 3409:978-3-540-65210-6 3375:10.1021/cr950257t 3040:10.1021/jo960982j 3034:(23): 8285–8292. 2841:10.1021/ma0348730 2769:Chemistry Express 2499:978-3-540-61857-7 2421:10.1021/ja1112595 2415:(12): 4625–4631. 2374:10.1021/ja039529x 2162:10.1021/ma981848z 1949:10.1021/ma960126+ 1631:10.1021/ja034333i 1603:10.1021/jo981541y 1373:10.1021/ma002140z 1090:10.1021/cr9801014 1039:(12): 2053–2069. 964:10.1021/cm802168e 803:photographic film 440:3-Alkylthiophenes 279:mass spectrometry 132:applied potential 117:results from the 16:(Redirected from 3459: 3437:Organic polymers 3413: 3386: 3363:Chemical Reviews 3357: 3342:Chemical Reviews 3336: 3312:Synthetic Metals 3264: 3263: 3253: 3243: 3234:(23): 18872–87. 3219: 3213: 3212: 3184: 3178: 3177: 3152:(6): 2101–2110. 3141: 3135: 3121: 3115: 3101: 3095: 3094: 3058: 3052: 3051: 3022: 3016: 3015: 3006:(1–3): 297–298. 3000:Synthetic Metals 2991: 2982: 2980: 2971:(7): 1559–1562. 2960: 2954: 2953: 2938:Synthetic Metals 2933: 2927: 2926: 2911:Synthetic Metals 2906: 2900: 2899: 2878: 2872: 2871: 2856:Synthetic Metals 2851: 2845: 2844: 2815: 2809: 2808: 2793:Synthetic Metals 2783: 2777: 2776: 2760: 2754: 2753: 2732: 2726: 2725: 2704: 2698: 2697: 2669: 2663: 2662: 2660: 2643:(9): 2869–2873. 2628: 2622: 2621: 2593: 2587: 2586: 2577:(1): 1465–1478. 2557: 2551: 2550: 2530: 2524: 2523: 2517: 2513: 2511: 2503: 2477: 2471: 2470: 2442: 2433: 2432: 2400: 2394: 2393: 2356: 2350: 2349: 2308: 2302: 2301: 2257: 2251: 2250: 2239:10.1039/b908001p 2233:(7): 2545–2576. 2222: 2213: 2212: 2197:Synthetic Metals 2191: 2185: 2184: 2172: 2166: 2165: 2137: 2131: 2130: 2113: 2107: 2106: 2086: 2080: 2079: 2051: 2045: 2044: 2024: 2018: 2017: 1985: 1974: 1959: 1953: 1952: 1924: 1918: 1917: 1888: 1879: 1878: 1842: 1827: 1826: 1806: 1800: 1799: 1782:(5): 1071–1078. 1771: 1765: 1764: 1744: 1735: 1734: 1714: 1705: 1704: 1676: 1670: 1669: 1660:(1–3): 167–170. 1654:Synthetic Metals 1649: 1643: 1642: 1613: 1607: 1606: 1586: 1580: 1579: 1542: 1536: 1535: 1515: 1509: 1508: 1484: 1478: 1464: 1458: 1457: 1437: 1431: 1430: 1415:Synthetic Metals 1410: 1404: 1403: 1388:Synthetic Metals 1383: 1377: 1376: 1340: 1334: 1333: 1318:Synthetic Metals 1309: 1303: 1302: 1282: 1276: 1275: 1266:(1–2): 479–484. 1260:Synthetic Metals 1255: 1246: 1245: 1216: 1207: 1206: 1186: 1180: 1179: 1164:Synthetic Metals 1159: 1153: 1152: 1116: 1110: 1109: 1078:Chemical Reviews 1073: 1067: 1066: 1056: 1028: 1022: 1021: 1012:(1–3): 213–218. 1006:Synthetic Metals 1001: 995: 994: 974: 968: 967: 941: 925: 914: 879:chiral molecules 828:air conditioning 758: 625:Steric hindrance 599:+ 2n H + 2n e 512:Thiophenes with 504:carboxylic acids 475:NMR spectroscopy 388:isosbestic point 291:gold trichloride 155:Hideki Shirakawa 21: 3467: 3466: 3462: 3461: 3460: 3458: 3457: 3456: 3417: 3416: 3410: 3389: 3360: 3339: 3321:IBM J. Res. Dev 3318: 3272: 3270:Further reading 3267: 3221: 3220: 3216: 3186: 3185: 3181: 3143: 3142: 3138: 3122: 3118: 3102: 3098: 3060: 3059: 3055: 3024: 3023: 3019: 2997: 2993: 2992: 2985: 2962: 2961: 2957: 2935: 2934: 2930: 2908: 2907: 2903: 2880: 2879: 2875: 2853: 2852: 2848: 2817: 2816: 2812: 2790: 2785: 2784: 2780: 2762: 2761: 2757: 2734: 2733: 2729: 2706: 2705: 2701: 2671: 2670: 2666: 2630: 2629: 2625: 2595: 2594: 2590: 2559: 2558: 2554: 2532: 2531: 2527: 2514: 2504: 2500: 2479: 2478: 2474: 2444: 2443: 2436: 2402: 2401: 2397: 2358: 2357: 2353: 2315: 2310: 2309: 2305: 2268:(5072): 945–7. 2259: 2258: 2254: 2224: 2223: 2216: 2193: 2192: 2188: 2174: 2173: 2169: 2139: 2138: 2134: 2115: 2114: 2110: 2088: 2087: 2083: 2053: 2052: 2048: 2026: 2025: 2021: 1991: 1987: 1986: 1977: 1960: 1956: 1926: 1925: 1921: 1890: 1889: 1882: 1844: 1843: 1830: 1808: 1807: 1803: 1773: 1772: 1768: 1746: 1745: 1738: 1716: 1715: 1708: 1678: 1677: 1673: 1651: 1650: 1646: 1615: 1614: 1610: 1588: 1587: 1583: 1544: 1543: 1539: 1520:Acta Polymerica 1517: 1516: 1512: 1486: 1485: 1481: 1465: 1461: 1439: 1438: 1434: 1412: 1411: 1407: 1385: 1384: 1380: 1348: 1342: 1341: 1337: 1315: 1311: 1310: 1306: 1284: 1283: 1279: 1257: 1256: 1249: 1218: 1217: 1210: 1188: 1187: 1183: 1161: 1160: 1156: 1118: 1117: 1113: 1075: 1074: 1070: 1030: 1029: 1025: 1003: 1002: 998: 976: 975: 971: 943: 942: 938: 934: 929: 928: 923: 919: 915: 911: 906: 861:, and chemical 815: 779: 747:is soluble in. 746: 676: 645:Kumada coupling 640: 598: 594: 590: 586: 582: 565: 560: 536: 496: 442: 425: 401: 399:Optical effects 308: 303: 268:ferric chloride 240: 209: 205: 201: 197: 193: 189: 185: 181: 177: 169: 163: 151:Alan MacDiarmid 101: 97: 93: 23: 22: 15: 12: 11: 5: 3465: 3463: 3455: 3454: 3449: 3444: 3439: 3434: 3429: 3419: 3418: 3415: 3414: 3408: 3387: 3369:(1): 173–206. 3358: 3348:(4): 711–738. 3337: 3316: 3308: 3286: 3271: 3268: 3266: 3265: 3214: 3179: 3136: 3116: 3096: 3053: 3017: 2995: 2983: 2955: 2928: 2901: 2890:(4): 661–665. 2873: 2846: 2821:Macromolecules 2810: 2788: 2778: 2775:(11): 635–638. 2755: 2727: 2699: 2674:Macromolecules 2664: 2623: 2588: 2552: 2525: 2516:|journal= 2498: 2472: 2453:(7): 481–494. 2434: 2395: 2351: 2313: 2303: 2252: 2214: 2186: 2167: 2142:Macromolecules 2132: 2108: 2081: 2056:Macromolecules 2046: 2035:(1): 233–244. 2019: 1994:Macromolecules 1989: 1975: 1954: 1929:Macromolecules 1919: 1894:Macromolecules 1880: 1828: 1801: 1766: 1736: 1706: 1681:Macromolecules 1671: 1644: 1625:(18): 5286–7. 1608: 1581: 1537: 1526:(9): 379–384. 1510: 1479: 1459: 1432: 1405: 1378: 1353:Macromolecules 1346: 1335: 1313: 1304: 1293:(9): 917–924. 1277: 1247: 1208: 1181: 1154: 1111: 1084:(7): 2537–74. 1068: 1023: 996: 985:(1): 173–178. 969: 935: 933: 930: 927: 926: 921: 917: 908: 907: 905: 902: 898:prion diseases 824:electrochromic 814: 811: 778: 775: 744: 739:, acetone, or 675: 672: 639: 636: 632:radical cation 601: 600: 596: 592: 588: 584: 580: 564: 561: 559: 556: 535: 532: 495: 492: 471: 470: 467: 464: 457:microstructure 441: 438: 424: 421: 400: 397: 380:hydrogen bonds 325:aromatic rings 307: 304: 302: 299: 264:sulfonic acids 260:propionic acid 239: 236: 212: 211: 207: 203: 199: 195: 191: 187: 183: 179: 175: 167: 162: 159: 147:Alan J. Heeger 99: 95: 91: 74:Polythiophenes 24: 14: 13: 10: 9: 6: 4: 3: 2: 3464: 3453: 3450: 3448: 3445: 3443: 3440: 3438: 3435: 3433: 3430: 3428: 3425: 3424: 3422: 3411: 3405: 3401: 3397: 3393: 3388: 3384: 3380: 3376: 3372: 3368: 3364: 3359: 3355: 3351: 3347: 3343: 3338: 3334: 3330: 3326: 3322: 3317: 3314: 3313: 3309: 3307: 3306:0-387-61483-4 3303: 3299: 3298:3-540-61483-4 3295: 3291: 3287: 3285: 3284:0-8247-0050-3 3281: 3277: 3274: 3273: 3269: 3261: 3257: 3252: 3247: 3242: 3237: 3233: 3229: 3225: 3218: 3215: 3210: 3206: 3202: 3198: 3194: 3190: 3183: 3180: 3175: 3171: 3167: 3163: 3159: 3155: 3151: 3147: 3140: 3137: 3134: 3133:3-527-29438-4 3130: 3126: 3120: 3117: 3114: 3113:3-527-29438-4 3110: 3106: 3100: 3097: 3092: 3088: 3084: 3080: 3076: 3072: 3068: 3064: 3057: 3054: 3049: 3045: 3041: 3037: 3033: 3029: 3021: 3018: 3013: 3009: 3005: 3001: 2990: 2988: 2984: 2978: 2974: 2970: 2966: 2959: 2956: 2951: 2947: 2944:(2–3): 1204. 2943: 2939: 2932: 2929: 2924: 2920: 2916: 2912: 2905: 2902: 2897: 2893: 2889: 2885: 2877: 2874: 2869: 2865: 2861: 2857: 2850: 2847: 2842: 2838: 2834: 2830: 2826: 2822: 2814: 2811: 2806: 2802: 2798: 2794: 2782: 2779: 2774: 2770: 2766: 2759: 2756: 2751: 2747: 2744:(25): 10087. 2743: 2739: 2731: 2728: 2723: 2719: 2715: 2711: 2703: 2700: 2695: 2691: 2687: 2683: 2679: 2675: 2668: 2665: 2659: 2654: 2650: 2646: 2642: 2638: 2634: 2627: 2624: 2619: 2615: 2611: 2607: 2603: 2599: 2592: 2589: 2584: 2580: 2576: 2573:(in German). 2572: 2571: 2566: 2562: 2561:Meyer, Victor 2556: 2553: 2548: 2544: 2540: 2536: 2529: 2526: 2521: 2509: 2501: 2495: 2491: 2487: 2483: 2476: 2473: 2468: 2464: 2460: 2456: 2452: 2448: 2441: 2439: 2435: 2430: 2426: 2422: 2418: 2414: 2410: 2406: 2399: 2396: 2391: 2387: 2383: 2379: 2375: 2371: 2368:(6): 1596–7. 2367: 2363: 2355: 2352: 2347: 2343: 2339: 2335: 2331: 2327: 2323: 2319: 2307: 2304: 2299: 2295: 2291: 2287: 2283: 2279: 2275: 2271: 2267: 2263: 2256: 2253: 2248: 2244: 2240: 2236: 2232: 2228: 2221: 2219: 2215: 2210: 2206: 2202: 2198: 2190: 2187: 2182: 2178: 2177:Polym. Commun 2171: 2168: 2163: 2159: 2155: 2151: 2147: 2143: 2136: 2133: 2128: 2124: 2120: 2112: 2109: 2104: 2100: 2096: 2092: 2085: 2082: 2077: 2073: 2069: 2065: 2061: 2057: 2050: 2047: 2042: 2038: 2034: 2030: 2023: 2020: 2015: 2011: 2007: 2003: 1999: 1995: 1984: 1982: 1980: 1976: 1973: 1972:0-387-18582-8 1969: 1965: 1958: 1955: 1950: 1946: 1942: 1938: 1934: 1930: 1923: 1920: 1915: 1911: 1907: 1903: 1899: 1895: 1887: 1885: 1881: 1876: 1872: 1868: 1864: 1860: 1856: 1853:(2): 93–116. 1852: 1848: 1841: 1839: 1837: 1835: 1833: 1829: 1824: 1820: 1816: 1812: 1805: 1802: 1797: 1793: 1789: 1785: 1781: 1777: 1770: 1767: 1762: 1758: 1755:(25): 12214. 1754: 1750: 1743: 1741: 1737: 1732: 1728: 1724: 1720: 1713: 1711: 1707: 1702: 1698: 1694: 1690: 1686: 1682: 1675: 1672: 1667: 1663: 1659: 1655: 1648: 1645: 1640: 1636: 1632: 1628: 1624: 1620: 1612: 1609: 1604: 1600: 1596: 1592: 1585: 1582: 1577: 1573: 1569: 1565: 1561: 1557: 1553: 1549: 1541: 1538: 1533: 1529: 1525: 1521: 1514: 1511: 1506: 1502: 1498: 1494: 1490: 1483: 1480: 1477: 1476:3-527-29438-4 1473: 1469: 1463: 1460: 1455: 1451: 1447: 1443: 1436: 1433: 1428: 1424: 1420: 1416: 1409: 1406: 1401: 1397: 1393: 1389: 1382: 1379: 1374: 1370: 1366: 1362: 1358: 1354: 1350: 1339: 1336: 1331: 1327: 1323: 1319: 1308: 1305: 1300: 1296: 1292: 1288: 1281: 1278: 1273: 1269: 1265: 1261: 1254: 1252: 1248: 1243: 1239: 1235: 1231: 1227: 1223: 1215: 1213: 1209: 1204: 1200: 1196: 1192: 1185: 1182: 1177: 1173: 1169: 1165: 1158: 1155: 1150: 1146: 1142: 1138: 1134: 1130: 1126: 1122: 1115: 1112: 1107: 1103: 1099: 1095: 1091: 1087: 1083: 1079: 1072: 1069: 1064: 1060: 1055: 1054:10044/1/14442 1050: 1046: 1042: 1038: 1034: 1027: 1024: 1019: 1015: 1011: 1007: 1000: 997: 992: 988: 984: 980: 973: 970: 965: 961: 957: 954: 953: 948: 940: 937: 931: 913: 910: 903: 901: 899: 890: 886: 884: 880: 876: 871: 868: 864: 860: 856: 852: 848: 844: 840: 836: 831: 829: 825: 821: 812: 810: 808: 804: 800: 796: 792: 783: 776: 774: 771: 767: 762: 759: 757: 752: 750: 742: 738: 734: 733:diethyl ether 730: 726: 722: 718: 709: 705: 703: 698: 694: 689: 683: 681: 673: 667: 663: 661: 652: 648: 646: 637: 635: 633: 628: 626: 622: 616: 614: 605: 578: 577: 576: 574: 570: 562: 557: 555: 553: 552:photovoltaics 549: 545: 541: 533: 531: 528: 526: 522: 517: 515: 510: 509: 505: 501: 493: 491: 489: 484: 478: 476: 468: 465: 462: 461: 460: 458: 449: 445: 439: 437: 435: 431: 422: 416: 412: 410: 406: 398: 396: 393: 392:thermochromic 389: 383: 381: 377: 373: 369: 364: 361: 356: 352: 347: 345: 341: 340:energy levels 332: 328: 326: 322: 318: 314: 305: 300: 298: 296: 292: 288: 284: 280: 277: 273: 269: 265: 261: 257: 253: 252:Organic acids 249: 245: 237: 235: 233: 228: 219: 215: 173: 172: 171: 160: 158: 156: 152: 148: 144: 139: 137: 133: 129: 125: 120: 116: 112: 107: 105: 89: 86: 82: 79: 75: 68: 67:boron nitride 64: 60: 53: 49: 42: 37: 29: 19: 3391: 3366: 3362: 3345: 3341: 3327:(1): 51–57. 3324: 3320: 3311: 3289: 3275: 3231: 3227: 3217: 3192: 3188: 3182: 3149: 3145: 3139: 3124: 3119: 3104: 3099: 3066: 3062: 3056: 3031: 3027: 3020: 3003: 2999: 2968: 2964: 2958: 2941: 2937: 2931: 2917:(1): 91–95. 2914: 2910: 2904: 2887: 2883: 2876: 2859: 2855: 2849: 2827:(23): 8617. 2824: 2820: 2813: 2796: 2792: 2781: 2772: 2768: 2758: 2741: 2737: 2730: 2713: 2709: 2702: 2680:(13): 3462. 2677: 2673: 2667: 2640: 2636: 2626: 2601: 2597: 2591: 2574: 2568: 2555: 2541:(27): 6706. 2538: 2534: 2528: 2481: 2475: 2450: 2446: 2412: 2408: 2398: 2365: 2361: 2354: 2321: 2317: 2306: 2265: 2261: 2255: 2230: 2226: 2200: 2196: 2189: 2180: 2176: 2170: 2148:(12): 3964. 2145: 2141: 2135: 2121:(14): 1651. 2118: 2111: 2094: 2090: 2084: 2062:(17): 4457. 2059: 2055: 2049: 2032: 2028: 2022: 2000:(22): 6503. 1997: 1993: 1963: 1957: 1935:(16): 5416. 1932: 1928: 1922: 1900:(11): 3039. 1897: 1893: 1850: 1846: 1814: 1810: 1804: 1779: 1775: 1769: 1752: 1748: 1722: 1718: 1684: 1680: 1674: 1657: 1653: 1647: 1622: 1618: 1611: 1597:(24): 8632. 1594: 1590: 1584: 1551: 1547: 1540: 1523: 1519: 1513: 1499:(15): 5887. 1496: 1492: 1482: 1467: 1462: 1445: 1441: 1435: 1418: 1414: 1408: 1391: 1387: 1381: 1359:(23): 7999. 1356: 1352: 1338: 1321: 1317: 1307: 1290: 1286: 1280: 1263: 1259: 1228:(11): 4910. 1225: 1221: 1194: 1190: 1184: 1170:(1): 77–86. 1167: 1163: 1157: 1124: 1120: 1114: 1081: 1077: 1071: 1036: 1032: 1026: 1009: 1005: 999: 982: 978: 972: 958:(1): 78–87. 955: 952:Chem. Mater. 950: 946: 939: 912: 895: 872: 867:conductivity 832: 816: 788: 777:Applications 769: 763: 760: 753: 716: 714: 692: 684: 679: 677: 657: 641: 629: 617: 610: 566: 537: 529: 518: 511: 497: 488:Stokes shift 479: 472: 454: 443: 426: 402: 384: 365: 359: 354: 348: 337: 321:fluorescence 309: 287:acetonitrile 254:, including 241: 224: 213: 164: 140: 108: 73: 72: 41:fluorescence 3195:(11): 848. 3069:(11): 783. 2716:(4): 1445. 2604:(1): 9–12. 2097:(6): 1858. 1687:(8): 2141. 1127:: 550–561. 883:crown ether 843:solar cells 741:formic acid 569:electrolyte 405:alkali ions 351:red-shifted 344:side chains 274:, although 128:temperature 109:PTs become 88:heterocycle 78:polymerized 3432:Thiophenes 3421:Categories 2862:(3): 261. 2799:(2): 141. 2447:Adv. Mater 2324:(2): 180. 2203:(2): 107. 2183:: 546–548. 1817:(1): 2–9. 1448:(2): 273. 1394:(3): 341. 1324:(2): 449. 1197:(2): 463. 932:References 807:antistatic 785:PEDOT-PSS. 731:, and not 317:absorption 111:conductive 81:thiophenes 76:(PTs) are 3091:137731242 2518:ignored ( 2508:cite book 1725:(2): 89. 1568:0002-7863 1421:(2): 93. 1149:101640805 1063:136757919 855:batteries 587:S → (C 558:Synthesis 508:urethanes 500:sulfonate 227:bipolaron 210:+ 1/5 nA 186:+ 1/5n PF 3442:Plastics 3383:11848868 3260:22493452 3174:12701566 3166:17235499 3048:11667817 2429:21375339 2390:33756974 2382:14871066 2346:97859155 2298:35348519 2290:17789638 2247:20567781 1639:12720435 1576:28872865 1242:15848137 1098:11749295 272:catalyst 238:Oxidants 3251:3365923 3197:Bibcode 3071:Bibcode 2965:Polymer 2884:Polymer 2829:Bibcode 2682:Bibcode 2645:Bibcode 2606:Bibcode 2455:Bibcode 2326:Bibcode 2270:Bibcode 2262:Science 2150:Bibcode 2064:Bibcode 2002:Bibcode 1937:Bibcode 1902:Bibcode 1875:7147581 1855:Bibcode 1784:Bibcode 1689:Bibcode 1361:Bibcode 1129:Bibcode 1106:4936796 945:Poly(3- 863:sensors 830:costs. 795:Heraeus 725:pentane 721:toluene 283:toluene 248:bromine 136:sensors 124:solvent 3406:  3381:  3304:  3296:  3282:  3258:  3248:  3172:  3164:  3131:  3111:  3089:  3046:  2496:  2427:  2388:  2380:  2344:  2296:  2288:  2245:  1970:  1873:  1637:  1574:  1566:  1474:  1240:  1147:  1104:  1096:  1061:  859:diodes 770:et al. 737:xylene 729:hexane 727:, and 717:et al. 693:et al. 680:et al. 514:chiral 360:et al. 355:et al. 262:, and 244:Iodine 232:copper 190:→ (C 153:, and 85:sulfur 3170:S2CID 3087:S2CID 2386:S2CID 2342:S2CID 2294:S2CID 1871:S2CID 1238:S2CID 1145:S2CID 1102:S2CID 1059:S2CID 904:Notes 573:anode 544:PEDOT 534:PEDOT 409:above 104:alkyl 3404:ISBN 3379:PMID 3302:ISBN 3294:ISBN 3280:ISBN 3256:PMID 3162:PMID 3129:ISBN 3109:ISBN 3044:PMID 2787:FeCl 2520:help 2494:ISBN 2425:PMID 2378:PMID 2286:PMID 2243:PMID 1968:ISBN 1635:PMID 1572:PMID 1564:ISSN 1472:ISBN 1094:PMID 799:AGFA 611:The 483:zinc 432:and 319:and 293:and 246:and 208:0.2n 83:, a 18:P3HT 3396:doi 3371:doi 3350:doi 3329:doi 3246:PMC 3236:doi 3232:287 3205:doi 3154:doi 3150:387 3079:doi 3036:doi 3008:doi 2973:doi 2946:doi 2919:doi 2915:128 2892:doi 2864:doi 2860:114 2837:doi 2801:doi 2791:". 2746:doi 2742:114 2718:doi 2690:doi 2653:doi 2614:doi 2579:doi 2543:doi 2486:doi 2463:doi 2417:doi 2413:133 2370:doi 2366:126 2334:doi 2278:doi 2266:257 2235:doi 2205:doi 2158:doi 2123:doi 2099:doi 2095:109 2072:doi 2037:doi 2033:117 2010:doi 1992:". 1945:doi 1910:doi 1863:doi 1819:doi 1792:doi 1757:doi 1753:115 1727:doi 1697:doi 1662:doi 1658:118 1627:doi 1623:125 1599:doi 1556:doi 1552:139 1528:doi 1501:doi 1497:113 1450:doi 1423:doi 1396:doi 1369:doi 1326:doi 1322:122 1295:doi 1268:doi 1230:doi 1226:115 1199:doi 1172:doi 1137:doi 1086:doi 1082:100 1049:hdl 1041:doi 1014:doi 987:doi 983:135 960:doi 621:SCE 579:n C 202:(PF 145:to 63:AFM 3423:: 3402:. 3377:. 3367:97 3365:. 3346:92 3344:. 3325:25 3323:. 3300:; 3254:. 3244:. 3230:. 3226:. 3203:. 3191:. 3168:. 3160:. 3148:. 3085:. 3077:. 3067:13 3065:. 3042:. 3032:61 3030:. 3004:69 3002:. 2986:^ 2969:33 2967:. 2942:55 2940:. 2913:. 2888:37 2886:. 2858:. 2835:. 2825:36 2823:. 2797:75 2795:. 2771:. 2767:. 2740:. 2714:56 2712:. 2688:. 2678:26 2676:. 2651:. 2641:18 2639:. 2635:. 2612:. 2602:18 2600:. 2575:16 2539:91 2537:. 2512:: 2510:}} 2506:{{ 2492:. 2461:. 2451:12 2449:. 2437:^ 2423:. 2411:. 2407:. 2384:. 2376:. 2364:. 2340:. 2332:. 2322:16 2320:. 2312:CO 2292:. 2284:. 2276:. 2264:. 2241:. 2231:39 2229:. 2217:^ 2201:98 2199:. 2181:32 2179:. 2156:. 2146:32 2144:. 2093:. 2070:. 2060:26 2058:. 2031:. 2008:. 1998:27 1996:. 1978:^ 1943:. 1933:29 1931:. 1908:. 1898:27 1896:. 1883:^ 1869:. 1861:. 1851:10 1849:. 1831:^ 1815:19 1813:. 1790:. 1780:25 1778:. 1751:. 1739:^ 1723:12 1721:. 1709:^ 1695:. 1685:25 1683:. 1656:. 1633:. 1621:. 1595:63 1593:. 1570:. 1562:. 1550:. 1524:48 1522:. 1495:. 1491:. 1446:39 1444:. 1419:60 1417:. 1392:44 1390:. 1367:. 1357:34 1355:. 1351:. 1320:. 1291:28 1289:. 1264:41 1262:. 1250:^ 1236:. 1224:. 1211:^ 1195:35 1193:. 1166:. 1143:. 1135:. 1125:57 1123:. 1100:. 1092:. 1080:. 1057:. 1047:. 1037:38 1035:. 1010:18 1008:. 981:. 956:21 900:. 857:, 853:, 849:, 845:, 841:, 837:, 735:, 595:S) 550:, 477:. 376:pH 297:. 258:, 198:S) 182:S) 174:(C 170:: 149:, 130:, 126:, 98:S) 3412:. 3398:: 3385:. 3373:: 3356:. 3352:: 3335:. 3331:: 3262:. 3238:: 3211:. 3207:: 3199:: 3193:5 3176:. 3156:: 3093:. 3081:: 3073:: 3050:. 3038:: 3014:. 3010:: 2996:3 2981:. 2979:. 2975:: 2952:. 2948:: 2925:. 2921:: 2898:. 2894:: 2870:. 2866:: 2843:. 2839:: 2831:: 2807:. 2803:: 2789:3 2773:1 2752:. 2748:: 2724:. 2720:: 2696:. 2692:: 2684:: 2661:. 2655:: 2647:: 2620:. 2616:: 2608:: 2585:. 2581:: 2549:. 2545:: 2522:) 2502:. 2488:: 2469:. 2465:: 2457:: 2431:. 2419:: 2392:. 2372:: 2348:. 2336:: 2328:: 2314:2 2300:. 2280:: 2272:: 2249:. 2237:: 2211:. 2207:: 2164:. 2160:: 2152:: 2129:. 2125:: 2105:. 2101:: 2078:. 2074:: 2066:: 2043:. 2039:: 2016:. 2012:: 2004:: 1990:3 1951:. 1947:: 1939:: 1916:. 1912:: 1904:: 1877:. 1865:: 1857:: 1825:. 1821:: 1798:. 1794:: 1786:: 1763:. 1759:: 1733:. 1729:: 1703:. 1699:: 1691:: 1668:. 1664:: 1641:. 1629:: 1605:. 1601:: 1578:. 1558:: 1534:. 1530:: 1507:. 1503:: 1456:. 1452:: 1429:. 1425:: 1402:. 1398:: 1375:. 1371:: 1363:: 1349:" 1347:3 1332:. 1328:: 1314:3 1301:. 1297:: 1274:. 1270:: 1244:. 1232:: 1205:. 1201:: 1178:. 1174:: 1168:9 1151:. 1139:: 1131:: 1108:. 1088:: 1065:. 1051:: 1043:: 1020:. 1016:: 993:. 989:: 966:. 962:: 947:n 922:2 920:H 918:4 745:3 597:n 593:2 591:H 589:4 585:4 583:H 581:4 206:) 204:6 200:n 196:2 194:H 192:4 188:6 184:n 180:2 178:H 176:4 168:6 100:n 96:2 94:H 92:4 20:)

Index

P3HT


fluorescence

Space-filling model

AFM
boron nitride
polymerized
thiophenes
sulfur
heterocycle
alkyl
conductive
electrical conductivity
delocalization of electrons
solvent
temperature
applied potential
sensors
Nobel Prize in Chemistry
Alan J. Heeger
Alan MacDiarmid
Hideki Shirakawa

bipolaron
copper
Iodine
bromine

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.