Knowledge

Pulsar kick

Source đź“ť

893: 502: 2004: 1492: 2014: 1502: 165:
shells of the star. Since the rate of nuclear reactions in these shells is very sensitively dependent on pressure, the added pressure results in a large release of energy, and the core is pushed back the other way. This in turn adds greater pressure on the other side, and we find that the core begins
254:
natal kicks. The velocity distribution of black hole natal kicks seems similar to that of neutron-star kick velocities. One might have expected that it would be the momenta that were the same with black holes receiving lower velocity than neutron stars due to their higher mass but that does not seem
126:
under 50 km/s, so that few pulsars should have any difficulty in escaping. In fact, with the directly measured distribution of kick velocities, we would expect less than 1% of all pulsars born in a globular cluster to remain. But this is not the case—globular clusters contain many pulsars, some
194:
is biased in some direction. So if neutrino emission happened in the presence of a strong magnetic field, we might expect the average neutrino drift to align in some way with that field, and thus the resulting explosion would be asymmetric. A main problem with this theory is that to have sufficient
223:
then slowly rockets the pulsar away. Notice that this is a postnatal kick, and has nothing to do with asymmetries in the supernova itself. Also notice that this process steals energy from the pulsar's spin, and so a main observational constraint on the theory is the observed rate of rotation for
135:
partner. In this case, perhaps 6% ought to survive, but this is not sufficient to explain the discrepancy. This appears to imply that some large set of pulsars receive virtually no kick at all while others receive a very large kick. It would be difficult to see this bimodal distribution directly
102:
pulsars, jets have been observed which are believed to align with the spin axis of the pulsar. Since these jets align very closely with the bow shock as well as the directly measured velocity of the pulsars, this is considered strong evidence that these pulsars have kicks aligned with their spin
93:
strength. To date, no correlation has been found between the magnetic field strength and the magnitude of the kick. However, there is some contention over whether a correlation between spin axis and kick direction has been observed. For many years, it was believed that no correlation existed. In
111:, and a recent study of 24 pulsars has found a strong correlation between the polarization and kick direction. Such studies have always been fraught with difficulty, however, since uncertainties associated with the polarization measurement are very large, making correlation studies troublesome. 136:
because many speed measurement schemes only put an upper limit on the object's speed. If it is true that some pulsars receive very little kick, this might give us insight into the mechanism for pulsar kicks, since a complete explanation would have to predict this possibility.
152:
using convection or mechanical instabilities in the presupernova star. Perhaps the easiest to understand is the "overstable g-mode". In this theory, we first assume that the core is pushed slightly to one side, off center from the star. This increases the
224:
pulsar's throughout the galaxy. A major bonus to this theory is that it actually predicts the spin-kick correlation. However, there is some contention as to whether this can generate sufficient energy to explain the full range of kick velocities.
174:
becomes large over time. When the star explodes, the core has additional momentum in some direction, which we observe as the kick. It has been proposed that hydrodynamical models can explain the bimodal distribution, through a
214:
to be offcenter and offaxis from the pulsar's spin axis. This results in an asymmetry in the magnitude of the dipole oscillations, as seen from above and below, which in turn means an asymmetry in the emission of
203:
for neutrino scattering depends weakly on the strength of the ambient magnetic field. Thus, if the magnetic field is itself anisotropic, then there could be dark spots which are essentially
190:
of neutrino interactions to explain an asymmetry in neutrino distribution. The first uses the fact that in the presence of a magnetic field, the direction that a neutrino is scattered off a
1913: 1227: 179:
kick scenario" in which the envelope of the presupernova star is stolen by a binary companion, dampening mechanical instabilities and thus reducing the resulting kick.
790: 58:
It is generally accepted today that the average pulsar kick ranges from 200 to 500 km/s. However, some pulsars have a much greater velocity. For example, the
710:
Chen Wang; Dong Lai & J. L. Han (2006). "Neutron Star Kicks in Isolated and Binary Pulsars: Observational Constraints and Implications for Kick Mechanisms".
1442: 1753: 470: 1422: 50:
believe that it must be due to an asymmetry in the way a supernova explodes. If true, this would give information about the supernova mechanism.
620:
James M. Cordes; Roger W. Romani & Scott C. Lundgren (1993). "The Guitar Nebula: a bow shock from a slow-spin, high-velocity neutron star".
1538: 1030: 1977: 692: 819: 769: 1437: 1987: 287:
Cordes, J. M.; Romani, R. W.; Lundgren, S. C. (1993). "The Guitar nebula: A bow shock from a slow-spin, high-velocity neutron star".
545: 523: 78:
generated by the pulsar moving relative to the supernova remnant nebula has been observed and confirms a velocity of 800 km/s.
258:
A 2023 study suggested from numerical simulations of high energy collision a limit of around 10% of the light speed for BH kicks.
1222: 573:
Dong Lai; David F. Chernoff & James M. Cordes (2001). "Pulsar Jets: Implications for Neutron Star Kicks and Initial Spins".
1936: 1258: 1199: 1467: 882: 1962: 1941: 1457: 1432: 1243: 942: 448:
Healy, James; Lousto, Carlos O. (2023). "Ultimate Black Hole Recoil: What the maximum high energy collisions kick is?".
1882: 1931: 1774: 1462: 970: 1728: 1531: 1263: 1253: 872: 1946: 927: 852: 210:
The final main proposal is known as the electromagnetic rocket scenario. In this theory, we assume the pulsar's
2017: 1743: 1713: 1602: 1561: 1452: 1447: 812: 516: 510: 1660: 892: 1472: 877: 867: 200: 2007: 1592: 1477: 1427: 1381: 1217: 1090: 1070: 527: 1505: 1982: 1638: 1524: 1268: 922: 1321: 199:, much stronger than is expected in a heavy star. Another neutrino based theory uses the fact that the 1860: 1848: 1655: 1080: 917: 729: 672: 629: 592: 412: 353: 296: 115: 104: 95: 1102: 1833: 1811: 1693: 1587: 1495: 1112: 1085: 1020: 949: 805: 780: 267: 71: 1877: 1855: 1703: 1645: 1248: 1157: 1133: 1025: 985: 847: 745: 719: 698: 662: 645: 608: 582: 449: 430: 402: 371: 343: 312: 251: 220: 59: 1967: 1806: 1733: 1284: 1128: 1058: 995: 907: 857: 842: 688: 233: 119: 207:
to neutrinos. This however requires anisotropies of order 10 G, which is even more unlikely.
118:. Strong evidence for this possibility comes from the "neutron star retention problem". Most 2038: 1779: 1681: 1167: 975: 965: 737: 680: 637: 600: 420: 391:"Natal Kicks of Stellar-Mass Black Holes by Asymmetric Mass Ejection in Fallback Supernovae" 361: 304: 237: 204: 187: 127:
in excess of 1000. The number can be improved somewhat if one allows a fraction of the kick
560:
Philipp Podsiadlowski; Eric Pfahl & Saul Rappaport (2005). "Neutron-Star Birth Kicks".
1698: 1688: 1650: 1075: 980: 211: 123: 86: 170:. It has been shown that many such modes are overstable in heavy stars, that is, a small 733: 676: 633: 596: 416: 357: 300: 81:
Of particular interest is whether the magnitude or direction of the pulsar kick has any
1718: 1708: 1107: 1063: 1037: 243: 191: 90: 47: 2032: 1908: 1903: 1872: 1633: 1618: 1311: 434: 375: 366: 331: 145: 702: 171: 1784: 1758: 1628: 1623: 1547: 1289: 1189: 1162: 1140: 749: 649: 612: 316: 247: 196: 35: 684: 1843: 1828: 1794: 1391: 1299: 1194: 1184: 1172: 1097: 132: 99: 82: 1972: 1887: 1867: 1838: 1789: 1738: 1406: 1401: 1396: 1376: 1177: 1053: 1015: 912: 148:
theories have been proposed, all of which attempt to explain the asymmetry in
63: 1818: 1801: 1386: 1366: 1361: 1356: 1351: 1306: 1000: 937: 932: 862: 828: 425: 390: 216: 176: 167: 149: 108: 75: 17: 661:. Astrophysics and Space Science Library. Vol. 254. pp. 127–136. 765: 1823: 1582: 1371: 1336: 1331: 1326: 1150: 990: 724: 667: 587: 183: 154: 128: 103:
axis. It is also possible to measure the spin axis of a pulsar using the
39: 471:"Newly discovered black hole 'speed limit' hints at new laws of physics" 1676: 1346: 1316: 1294: 158: 70:. An extremely convincing example of a pulsar kick can be seen in the 1748: 1566: 1341: 1145: 785: 641: 308: 162: 67: 741: 604: 454: 62:
B1508+55 has been reported to have a speed of 1100 km/s and a
407: 348: 1005: 43: 1520: 1516: 801: 114:
There is a possibility that the distribution of kick speeds is
495: 330:
Repetto, Serena; Davies, Melvyn B; Sigurdsson, Steinn (2012).
797: 766:"Fastest Pulsar Speeding Out of Galaxy, Astronomers Discover" 85:
with other properties of the pulsar, such as the spin axis,
38:
to move with a different, usually substantially greater,
1914:
Timeline of white dwarfs, neutron stars, and supernovae
1228:
Timeline of white dwarfs, neutron stars, and supernovae
1955: 1922: 1896: 1767: 1669: 1611: 1575: 1554: 1415: 1277: 1236: 1210: 1121: 1046: 958: 900: 835: 657:Dong Lai (1999). "Physics of Neutron Star Kicks". 34:is the name of the phenomenon that often causes a 395:Monthly Notices of the Royal Astronomical Society 336:Monthly Notices of the Royal Astronomical Society 234:Binary black hole § Black-hole merger recoil 195:asymmetry the theory requires fields of order 10 46:. The cause of pulsar kicks is unknown, but many 1532: 813: 791:Centre de donnĂ©es astronomiques de Strasbourg 764:Finley, Dave; Aguilar, David (Aug 31, 2005). 332:"Investigating stellar-mass black hole kicks" 8: 1443:Monte Agliale Supernovae and Asteroid Survey 1539: 1525: 1517: 820: 806: 798: 723: 666: 586: 546:Learn how and when to remove this message 453: 424: 406: 365: 347: 509:This article includes a list of general 279: 186:driven kick scenarios, relying on the 858:Type II (IIP, IIL, IIn, and IIb) 7: 2013: 1501: 1438:Katzman Automatic Imaging Telescope 515:it lacks sufficient corresponding 25: 2012: 2003: 2002: 1754:Tolman–Oppenheimer–Volkoff limit 1500: 1491: 1490: 1223:History of supernova observation 891: 500: 367:10.1111/j.1365-2966.2012.21549.x 1937:Fermi Gamma-ray Space Telescope 1468:SuperNova Early Warning System 883:Common envelope jets supernova 242:The large distances above the 1: 1963:X-ray pulsar-based navigation 1942:Compton Gamma Ray Observatory 774:Pulsar Kick at 1100 km/s 1458:Supernova/Acceleration Probe 1433:High-Z Supernova Search Team 1031:pulsational pair-instability 685:10.1007/978-94-010-0878-5_15 1932:Rossi X-ray Timing Explorer 1775:Gamma-ray burst progenitors 1463:Supernova Cosmology Project 971:Fast blue optical transient 469:Anna Demming (2023-08-22). 2055: 1988:Most massive neutron stars 1729:Quasi-periodic oscillation 231: 27:Phenomenon in astrophysics 1998: 1947:Chandra X-ray Observatory 1486: 889: 712:The Astrophysical Journal 389:-Thomas Janka, H (2013). 122:in the Milky Way have an 1714:Neutron-star oscillation 1603:Rotating radio transient 1448:Nearby Supernova Factory 1473:Supernova Legacy Survey 530:more precise citations. 131:to be transferred to a 1968:Tempo software program 1478:Texas Supernova Search 1453:Sloan Supernova Survey 1071:Luminous blue variable 66:leading it out of the 1983:List of neutron stars 1978:The Magnificent Seven 923:Phillips relationship 575:Astrophysical Journal 562:ASP Conference Series 426:10.1093/mnras/stt1106 1883:Thorne–Żytkow object 659:Stellar Astrophysics 42:than its progenitor 1834:Neutron star merger 1694:Chandrasekhar limit 1661:Hulse–Taylor pulsar 1588:Soft gamma repeater 1496:Category:Supernovae 1428:Calán/Tololo Survey 1113:Population III star 1021:Soft gamma repeater 853:Type Ib and Ic 734:2006ApJ...639.1007W 677:2000ASSL..254..127L 634:1993Natur.362..133C 597:2001ApJ...549.1111L 417:2013MNRAS.434.1355J 358:2012MNRAS.425.2799R 301:1993Natur.362..133C 268:Hypervelocity stars 182:There are two main 1878:Pulsar wind nebula 1856:Stellar black hole 1506:Commons:Supernovae 1158:Stellar black hole 1134:Pulsar wind nebula 986:Gravitational wave 252:stellar black hole 250:are the result of 221:radiation pressure 60:hypervelocity star 2026: 2025: 1807:Supernova remnant 1597:Ultra-long period 1514: 1513: 1129:Supernova remnant 996:Luminous red nova 908:Carbon detonation 694:978-94-010-3791-4 628:(6416): 133–135. 556: 555: 548: 246:achieved by some 120:globular clusters 16:(Redirected from 2046: 2016: 2015: 2006: 2005: 1780:Asteroseismology 1682:Fast radio burst 1541: 1534: 1527: 1518: 1504: 1503: 1494: 1493: 1357:Remnant G1.9+0.3 976:Fast radio burst 895: 873:Pair-instability 822: 815: 808: 799: 794: 776: 753: 727: 725:astro-ph/0509484 718:(2): 1007–1017. 706: 670: 668:astro-ph/9912522 653: 642:10.1038/362133a0 616: 590: 588:astro-ph/0007272 581:(2): 1111–1118. 569: 551: 544: 540: 537: 531: 526:this article by 517:inline citations 504: 503: 496: 485: 484: 482: 481: 466: 460: 459: 457: 445: 439: 438: 428: 410: 401:(2): 1355–1361. 386: 380: 379: 369: 351: 327: 321: 320: 309:10.1038/362133a0 284: 255:to be the case. 238:Rogue black hole 228:Black hole kicks 188:parity violation 21: 2054: 2053: 2049: 2048: 2047: 2045: 2044: 2043: 2029: 2028: 2027: 2022: 1994: 1951: 1924: 1918: 1892: 1763: 1699:Gamma-ray burst 1689:Bondi accretion 1665: 1607: 1593:Anomalous X-ray 1571: 1550: 1545: 1515: 1510: 1482: 1411: 1397:SN 2016aps 1377:SN Refsdal 1273: 1232: 1206: 1117: 1103:Wolf–Rayet star 1042: 981:Gamma-ray burst 954: 928:Nucleosynthesis 896: 887: 831: 826: 779: 763: 760: 709: 695: 656: 619: 572: 559: 552: 541: 535: 532: 522:Please help to 521: 505: 501: 494: 489: 488: 479: 477: 475:livescience.com 468: 467: 463: 447: 446: 442: 388: 387: 383: 329: 328: 324: 286: 285: 281: 276: 264: 240: 230: 212:magnetic dipole 142: 124:escape velocity 94:studies of the 87:magnetic moment 56: 48:astrophysicists 28: 23: 22: 15: 12: 11: 5: 2052: 2050: 2042: 2041: 2031: 2030: 2024: 2023: 2021: 2020: 2010: 1999: 1996: 1995: 1993: 1992: 1991: 1990: 1980: 1975: 1970: 1965: 1959: 1957: 1953: 1952: 1950: 1949: 1944: 1939: 1934: 1928: 1926: 1920: 1919: 1917: 1916: 1911: 1906: 1900: 1898: 1894: 1893: 1891: 1890: 1885: 1880: 1875: 1870: 1865: 1864: 1863: 1853: 1852: 1851: 1841: 1836: 1831: 1826: 1821: 1816: 1815: 1814: 1809: 1799: 1798: 1797: 1792: 1782: 1777: 1771: 1769: 1765: 1764: 1762: 1761: 1756: 1751: 1746: 1741: 1736: 1731: 1726: 1721: 1716: 1711: 1709:Neutron matter 1706: 1701: 1696: 1691: 1686: 1685: 1684: 1673: 1671: 1667: 1666: 1664: 1663: 1658: 1653: 1648: 1643: 1642: 1641: 1636: 1631: 1621: 1615: 1613: 1612:Binary pulsars 1609: 1608: 1606: 1605: 1600: 1599: 1598: 1595: 1590: 1579: 1577: 1576:Single pulsars 1573: 1572: 1570: 1569: 1564: 1558: 1556: 1552: 1551: 1546: 1544: 1543: 1536: 1529: 1521: 1512: 1511: 1509: 1508: 1498: 1487: 1484: 1483: 1481: 1480: 1475: 1470: 1465: 1460: 1455: 1450: 1445: 1440: 1435: 1430: 1425: 1419: 1417: 1413: 1412: 1410: 1409: 1404: 1399: 1394: 1389: 1387:SN 2006gy 1384: 1379: 1374: 1369: 1367:SN 2011fe 1364: 1362:SN 2007bi 1359: 1354: 1352:SN 2003fg 1349: 1344: 1339: 1334: 1329: 1324: 1319: 1314: 1309: 1304: 1303: 1302: 1292: 1287: 1285:Barnard's Loop 1281: 1279: 1275: 1274: 1272: 1271: 1266: 1261: 1256: 1251: 1246: 1240: 1238: 1234: 1233: 1231: 1230: 1225: 1220: 1214: 1212: 1208: 1207: 1205: 1204: 1203: 1202: 1200:Orion–Eridanus 1192: 1187: 1182: 1181: 1180: 1175: 1170: 1160: 1155: 1154: 1153: 1148: 1138: 1137: 1136: 1125: 1123: 1119: 1118: 1116: 1115: 1110: 1108:Super-AGB star 1105: 1100: 1095: 1094: 1093: 1088: 1083: 1073: 1068: 1067: 1066: 1061: 1050: 1048: 1044: 1043: 1041: 1040: 1038:Symbiotic nova 1035: 1034: 1033: 1023: 1018: 1013: 1008: 1003: 998: 993: 988: 983: 978: 973: 968: 962: 960: 956: 955: 953: 952: 947: 946: 945: 940: 935: 925: 920: 915: 910: 904: 902: 898: 897: 890: 888: 886: 885: 880: 875: 870: 865: 860: 855: 850: 845: 839: 837: 833: 832: 827: 825: 824: 817: 810: 802: 796: 795: 781:"PSR B1508+55" 777: 759: 758:External links 756: 755: 754: 742:10.1086/499397 707: 693: 654: 617: 605:10.1086/319455 570: 554: 553: 508: 506: 499: 493: 490: 487: 486: 461: 440: 381: 322: 278: 277: 275: 272: 271: 270: 263: 260: 244:galactic plane 229: 226: 157:in the nearby 146:hydrodynamical 141: 138: 91:magnetic field 55: 52: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2051: 2040: 2037: 2036: 2034: 2019: 2011: 2009: 2001: 2000: 1997: 1989: 1986: 1985: 1984: 1981: 1979: 1976: 1974: 1971: 1969: 1966: 1964: 1961: 1960: 1958: 1954: 1948: 1945: 1943: 1940: 1938: 1935: 1933: 1930: 1929: 1927: 1925:investigation 1921: 1915: 1912: 1910: 1909:Centaurus X-3 1907: 1905: 1902: 1901: 1899: 1895: 1889: 1886: 1884: 1881: 1879: 1876: 1874: 1873:Pulsar planet 1871: 1869: 1866: 1862: 1861:Related links 1859: 1858: 1857: 1854: 1850: 1849:Related links 1847: 1846: 1845: 1842: 1840: 1837: 1835: 1832: 1830: 1827: 1825: 1822: 1820: 1817: 1813: 1812:Related links 1810: 1808: 1805: 1804: 1803: 1800: 1796: 1793: 1791: 1788: 1787: 1786: 1783: 1781: 1778: 1776: 1773: 1772: 1770: 1766: 1760: 1757: 1755: 1752: 1750: 1747: 1745: 1742: 1740: 1737: 1735: 1732: 1730: 1727: 1725: 1722: 1720: 1717: 1715: 1712: 1710: 1707: 1705: 1702: 1700: 1697: 1695: 1692: 1690: 1687: 1683: 1680: 1679: 1678: 1675: 1674: 1672: 1668: 1662: 1659: 1657: 1654: 1652: 1649: 1647: 1644: 1640: 1637: 1635: 1634:X-ray burster 1632: 1630: 1627: 1626: 1625: 1622: 1620: 1617: 1616: 1614: 1610: 1604: 1601: 1596: 1594: 1591: 1589: 1586: 1585: 1584: 1581: 1580: 1578: 1574: 1568: 1565: 1563: 1560: 1559: 1557: 1553: 1549: 1542: 1537: 1535: 1530: 1528: 1523: 1522: 1519: 1507: 1499: 1497: 1489: 1488: 1485: 1479: 1476: 1474: 1471: 1469: 1466: 1464: 1461: 1459: 1456: 1454: 1451: 1449: 1446: 1444: 1441: 1439: 1436: 1434: 1431: 1429: 1426: 1424: 1421: 1420: 1418: 1414: 1408: 1405: 1403: 1400: 1398: 1395: 1393: 1390: 1388: 1385: 1383: 1380: 1378: 1375: 1373: 1372:SN 2014J 1370: 1368: 1365: 1363: 1360: 1358: 1355: 1353: 1350: 1348: 1345: 1343: 1340: 1338: 1337:SN 1994D 1335: 1333: 1332:SN 1987A 1330: 1328: 1327:SN 1885A 1325: 1323: 1320: 1318: 1315: 1313: 1310: 1308: 1305: 1301: 1298: 1297: 1296: 1293: 1291: 1288: 1286: 1283: 1282: 1280: 1276: 1270: 1267: 1265: 1262: 1260: 1257: 1255: 1254:Massive stars 1252: 1250: 1247: 1245: 1242: 1241: 1239: 1235: 1229: 1226: 1224: 1221: 1219: 1216: 1215: 1213: 1209: 1201: 1198: 1197: 1196: 1193: 1191: 1188: 1186: 1183: 1179: 1176: 1174: 1171: 1169: 1166: 1165: 1164: 1161: 1159: 1156: 1152: 1149: 1147: 1144: 1143: 1142: 1139: 1135: 1132: 1131: 1130: 1127: 1126: 1124: 1120: 1114: 1111: 1109: 1106: 1104: 1101: 1099: 1096: 1092: 1089: 1087: 1084: 1082: 1079: 1078: 1077: 1074: 1072: 1069: 1065: 1062: 1060: 1057: 1056: 1055: 1052: 1051: 1049: 1045: 1039: 1036: 1032: 1029: 1028: 1027: 1024: 1022: 1019: 1017: 1014: 1012: 1009: 1007: 1004: 1002: 999: 997: 994: 992: 989: 987: 984: 982: 979: 977: 974: 972: 969: 967: 964: 963: 961: 957: 951: 948: 944: 941: 939: 936: 934: 931: 930: 929: 926: 924: 921: 919: 916: 914: 911: 909: 906: 905: 903: 899: 894: 884: 881: 879: 876: 874: 871: 869: 868:Superluminous 866: 864: 861: 859: 856: 854: 851: 849: 848:Type Iax 846: 844: 841: 840: 838: 834: 830: 823: 818: 816: 811: 809: 804: 803: 800: 792: 788: 787: 782: 778: 775: 771: 767: 762: 761: 757: 751: 747: 743: 739: 735: 731: 726: 721: 717: 713: 708: 704: 700: 696: 690: 686: 682: 678: 674: 669: 664: 660: 655: 651: 647: 643: 639: 635: 631: 627: 623: 618: 614: 610: 606: 602: 598: 594: 589: 584: 580: 576: 571: 567: 563: 558: 557: 550: 547: 539: 529: 525: 519: 518: 512: 507: 498: 497: 491: 476: 472: 465: 462: 456: 451: 444: 441: 436: 432: 427: 422: 418: 414: 409: 404: 400: 396: 392: 385: 382: 377: 373: 368: 363: 359: 355: 350: 345: 341: 337: 333: 326: 323: 318: 314: 310: 306: 302: 298: 295:(6416): 133. 294: 290: 283: 280: 273: 269: 266: 265: 261: 259: 256: 253: 249: 245: 239: 235: 227: 225: 222: 218: 213: 208: 206: 202: 201:cross section 198: 193: 189: 185: 180: 178: 173: 169: 164: 160: 156: 151: 147: 139: 137: 134: 130: 125: 121: 117: 112: 110: 106: 101: 97: 92: 88: 84: 79: 77: 73: 72:Guitar Nebula 69: 65: 61: 53: 51: 49: 45: 41: 37: 33: 19: 1785:Compact star 1759:Urca process 1749:Timing noise 1734:Relativistic 1723: 1629:X-ray binary 1624:X-ray pulsar 1548:Neutron star 1382:Vela Remnant 1347:SN 1006 1312:SN 1000+0216 1290:Cassiopeia A 1259:Most distant 1190:Local Bubble 1163:Compact star 1141:Neutron star 1010: 878:Calcium-rich 843:Type Ia 784: 773: 715: 711: 658: 625: 621: 578: 574: 565: 561: 542: 533: 514: 492:Bibliography 478:. Retrieved 474: 464: 443: 398: 394: 384: 339: 335: 325: 292: 288: 282: 257: 241: 209: 181: 172:perturbation 143: 113: 105:polarization 80: 74:, where the 57: 36:neutron star 31: 29: 18:Pulsar kicks 1844:White dwarf 1829:Microquasar 1795:Exotic star 1724:Pulsar kick 1646:Millisecond 1562:Radio-quiet 1392:ASASSN-15lh 1342:SN 185 1300:Crab Nebula 1195:Superbubble 1185:Zombie star 1168:electroweak 1098:White dwarf 1047:Progenitors 1011:Pulsar kick 528:introducing 342:(4): 2799. 177:dichotomous 83:correlation 54:Observation 32:pulsar kick 1973:Astropulse 1888:QCD matter 1868:Radio star 1839:Quark-nova 1790:Quark star 1739:Rp-process 1670:Properties 1407:SN 2022jli 1402:SN 2018cow 1269:In fiction 1244:Candidates 1218:Guest star 1076:Supergiant 1054:Hypergiant 1016:Quark-nova 918:Near-Earth 901:Physics of 829:Supernovae 568:: 327–336. 536:April 2009 511:references 480:2023-08-29 455:2301.00018 274:References 232:See also: 64:trajectory 1923:Satellite 1897:Discovery 1819:Hypernova 1802:Supernova 1744:Starquake 1307:iPTF14hls 1211:Discovery 1001:Micronova 950:Neutrinos 943:Îł-process 938:r-process 933:p-process 913:Foe/Bethe 863:Hypernova 435:119281755 408:1306.0007 376:119245969 349:1203.3077 217:radiation 168:oscillate 150:supernova 109:radiation 76:bow shock 2033:Category 2008:Category 1824:Kilonova 1651:Be/X-ray 1583:Magnetar 1416:Research 1322:Kepler's 1264:Remnants 1151:magnetar 1122:Remnants 1026:Imposter 991:Kilonova 703:18944918 262:See also 248:binaries 184:neutrino 155:pressure 140:Theories 129:momentum 40:velocity 2039:Pulsars 2018:Commons 1768:Related 1719:Optical 1677:Blitzar 1656:Spin-up 1423:ASAS-SN 1317:Tycho's 1295:SN 1054 1278:Notable 1249:Notable 959:Related 836:Classes 750:1231368 730:Bibcode 673:Bibcode 650:4341019 630:Bibcode 613:1990229 593:Bibcode 524:improve 413:Bibcode 354:Bibcode 317:4341019 297:Bibcode 192:nucleus 159:silicon 116:bimodal 107:of its 1704:Glitch 1619:Binary 1567:Pulsar 1173:exotic 1146:pulsar 1091:yellow 1059:yellow 966:Failed 786:SIMBAD 748:  701:  691:  648:  622:Nature 611:  513:, but 433:  374:  315:  289:Nature 236:, and 219:. The 205:opaque 163:oxygen 133:binary 68:galaxy 1956:Other 1904:LGM-1 1555:Types 1237:Lists 1178:quark 746:S2CID 720:arXiv 699:S2CID 663:arXiv 646:S2CID 609:S2CID 583:arXiv 450:arXiv 431:S2CID 403:arXiv 372:S2CID 344:arXiv 313:S2CID 144:Many 89:, or 1639:List 1081:blue 1006:Nova 770:NRAO 689:ISBN 161:and 100:Crab 98:and 96:Vela 44:star 1086:red 1064:Red 738:doi 716:639 681:doi 638:doi 626:362 601:doi 579:549 566:328 421:doi 399:434 362:doi 340:425 305:doi 293:362 166:to 2035:: 789:. 783:. 772:. 768:. 744:. 736:. 728:. 714:. 697:. 687:. 679:. 671:. 644:. 636:. 624:. 607:. 599:. 591:. 577:. 564:. 473:. 429:. 419:. 411:. 397:. 393:. 370:. 360:. 352:. 338:. 334:. 311:. 303:. 291:. 30:A 1540:e 1533:t 1526:v 821:e 814:t 807:v 793:. 752:. 740:: 732:: 722:: 705:. 683:: 675:: 665:: 652:. 640:: 632:: 615:. 603:: 595:: 585:: 549:) 543:( 538:) 534:( 520:. 483:. 458:. 452:: 437:. 423:: 415:: 405:: 378:. 364:: 356:: 346:: 319:. 307:: 299:: 197:G 175:" 20:)

Index

Pulsar kicks
neutron star
velocity
star
astrophysicists
hypervelocity star
trajectory
galaxy
Guitar Nebula
bow shock
correlation
magnetic moment
magnetic field
Vela
Crab
polarization
radiation
bimodal
globular clusters
escape velocity
momentum
binary
hydrodynamical
supernova
pressure
silicon
oxygen
oscillate
perturbation
dichotomous

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑