Knowledge

Dye laser

Source đź“ť

354: 297:, and the molecules absorb the lasing wavelength, making the dye partially opaque. Flashlamp-pumped lasers need a flash with an extremely short duration, to deliver the large amounts of energy necessary to bring the dye past threshold before triplet absorption overcomes singlet emission. Dye lasers with an external pump-laser can direct enough energy of the proper wavelength into the dye with a relatively small amount of input energy, but the dye must be circulated at high speeds to keep the triplet molecules out of the beam path. Due to their high absorption, the pumping energy may often be concentrated into a rather small volume of liquid. 397: 347:. The absorption centers of many dyes are very close to the emission centers. Sometimes the two are close enough that the absorption profile slightly overlaps the emission profile. As a result, most dyes exhibit very small Stokes shifts and consequently allow for lower energy losses than many other laser types due to this phenomenon. The wide absorption profiles make them particularly suited to broadband pumping, such as from a flashtube. It also allows a wide range of pump lasers to be used for any certain dye and, conversely, many different dyes can be used with a single pump laser. 113: 370: 38:, emitting at 580 nm (yellow). The emitted laser beam is visible as faint yellow lines between the yellow window (center) and the yellow optics (upper-right), where it reflects down across the image to an unseen mirror, and back into the dye jet from the lower left corner. The orange dye-solution enters the laser from the left and exits to the right, still glowing from triplet phosphorescence, and is pumped by a 514 nm (blue-green) beam from an argon laser. The pump laser can be seen entering the dye jet, beneath the yellow window. 514:, (in its chloride form), can be very corrosive to all metals except stainless steel. Although dyes have very broad fluorescence spectra, the dye's absorption and emission will tend to center on a certain wavelength and taper off to each side, forming a tunability curve, with the absorption center being of a shorter wavelength than the emission center. Rhodamine 6G, for example, has its highest output around 590 nm, and the conversion efficiency lowers as the laser is tuned to either side of this wavelength. 124:(not shown). A diffraction grating is used as the high-reflector (upper yellow beam, left side). The two meter beam is redirected several times by mirrors and prisms, which reduce the overall length, expand or focus the beam for various parts of the cavity, and eliminate one of two counter-propagating waves produced by the dye cell. The laser is capable of continuous wave operation or ultrashort picosecond pulses (trillionth of a second, equating to a beam less than 213:
inlet/outlet for the liquid on each end. The dye cell is usually side-pumped, with one or more flashtubes running parallel to the dye cell in a reflector cavity. The reflector cavity is often water cooled, to prevent thermal shock in the dye caused by the large amounts of near-infrared radiation which the flashtube produces. Axial pumped lasers have a hollow, annular-shaped flashtube that surrounds the dye cell, which has lower
31: 2187: 471: 1690: 353: 665: 145: 545:, and many others. Solvents can be highly toxic, and can sometimes be absorbed directly through the skin, or through inhaled vapors. Many solvents are also extremely flammable. The various solvents can also have an effect on the specific color of the dye solution, the lifetime of the singlet state, either enhancing or 221:
A ring laser design is often chosen for continuous operation, although a Fabry–Pérot design is sometimes used. In a ring laser, the mirrors of the laser are positioned to allow the beam to travel in a circular path. The dye cell, or cuvette, is usually very small. Sometimes a dye jet is used to help
192:
are also needed to oscillate the light produced by the dye's fluorescence, which is amplified with each pass through the liquid. The output mirror is normally around 80% reflective, while all other mirrors are usually more than 99.9% reflective. The dye solution is usually circulated at high speeds,
761:
is set up and by sweeping the frequency, the frequency of the light returning from the fixed arm is slightly different from the frequency returning from the distance measuring arm. This produces a beat frequency which can be detected and used to determine the absolute difference between the lengths
745:
In spectroscopy, dye lasers can be used to study the absorption and emission spectra of various materials. Their tunability, (from the near-infrared to the near-ultraviolet), narrow bandwidth, and high intensity allows a much greater diversity than other light sources. The variety of pulse widths,
676:
Dye lasers are very versatile. In addition to their recognized wavelength agility these lasers can offer very large pulsed energies or very high average powers. Flashlamp-pumped dye lasers have been shown to yield hundreds of Joules per pulse and copper-laser-pumped dye lasers are known to yield
81:
and pulsed lasers. The dye rhodamine 6G, for example, can be tuned from 635 nm (orangish-red) to 560 nm (greenish-yellow), and produce pulses as short as 16 femtoseconds. Moreover, the dye can be replaced by another type in order to generate an even broader range of wavelengths with the
257:
used in these lasers contain rather large organic molecules which fluoresce. Most dyes have a very short time between the absorption and emission of light, referred to as the fluorescence lifetime, which is often on the order of a few nanoseconds. (In comparison, most solid-state lasers have a
212:
laser cavity is usually used for flashtube pumped lasers, which consists of two mirrors, which may be flat or curved, mounted parallel to each other with the laser medium in between. The dye cell is often a thin tube approximately equal in length to the flashtube, with both windows and an
343:(emitted number of photons per absorbed number), but from the losses when high-energy photons are absorbed and reemitted as photons of longer wavelengths. Because the energy of a photon is determined by its wavelength, the emitted photons will be of lower energy; a phenomenon called the 217:
for a shorter flash, and improved transfer efficiency. Coaxial pumped lasers have an annular dye cell that surrounds the flashtube, for even better transfer efficiency, but have a lower gain due to diffraction losses. Flash pumped lasers can be used only for pulsed output applications.
418:
Dye lasers' emission is inherently broad. However, tunable narrow linewidth emission has been central to the success of the dye laser. In order to produce narrow bandwidth tuning these lasers use many types of cavities and resonators which include gratings, prisms,
369: 338:
A benefit of organic dyes is their high fluorescence efficiency. The greatest losses in many lasers and other fluorescence devices is not from the transfer efficiency (absorbed versus reflected/transmitted energy) or
746:
from ultra-short, femtosecond pulses to continuous-wave operation, makes them suitable for a wide range of applications, from the study of fluorescent lifetimes and semiconductor properties to
312:. With a dye jet, one avoids reflection losses from the glass surfaces and contamination of the walls of the cuvette. These advantages come at the cost of a more-complicated alignment. 569:
quenchers for rhodamine G, increasing the laser output power. Output power of 1.4 kilowatt at 585 nm was achieved using Rhodamine 6G with COT in methanol-water solution.
388:
Continuous-wave (CW) dye lasers often use a dye jet. CW dye-lasers can have a linear or a ring cavity, and provided the foundation for the development of femtosecond lasers.
176:
evenly throughout the liquid. The dye solution may be circulated through a dye cell, or streamed through open air using a dye jet. A high energy source of light is needed to
300:
Since organic dyes tend to decompose under the influence of light, the dye solution is normally circulated from a large reservoir. The dye solution can be flowing through a
120:
of a linear dye-laser, showing the beam path. The pump laser (green) enters the dye cell from the left. The emitted beam exits to the right (lower yellow beam) through a
718:
where they are used to make skin tone more even. The wide range of wavelengths possible allows very close matching to the absorption lines of certain tissues, such as
258:
fluorescence lifetime ranging from hundreds of microseconds to a few milliseconds.) Under standard laser-pumping conditions, the molecules emit their energy before a
237:. The liquid is circulated at very high speeds, to prevent triplet absorption from cutting off the beam. Unlike Fabry–Pérot cavities, a ring laser does not generate 245:, a phenomenon where energy becomes trapped in unused portions of the medium between the crests of the wave. This leads to a better gain from the lasing medium. 82:
same laser, from the near-infrared to the near-ultraviolet, although this usually requires replacing other optical components in the laser as well, such as
148:
A ring dye laser. P-pump laser beam; G-gain dye jet; A-saturable absorber dye jet; M0, M1, M2-planar mirrors; OC–output coupler; CM1 to CM4-curved mirrors.
852:
Design and Analysis of Flashlamp Systems for Pumping Organic Dye Lasers – J. F. Holzrichter and A. L. Schawlow. Annals of the New York Academy of Sciences
1422: 1041: 378:
in Rhodamine 6G during broadband absorption/emission. In laser operation, the Stokes shift is the difference between the pump wavelength and the output.
410:. Depending on the angle unwanted wavelengths are dispersed, so are used to tune the output of a dye laser, often to a linewidth of a fraction of an 447: 1650: 2147: 319:
as laser media. The beam needs to make only a few passes through the liquid to reach full design power, and hence, the high transmittance of the
517:
A wide variety of solvents can be used, although most dyes will dissolve better in some solvents than in others. Some of the solvents used are
1010: 691: 669: 672:
experiment at LLNL. Green light is from a copper vapor pump laser used to pump a highly tuned dye laser which is producing the orange light.
450:. The various resonators and oscillator designs developed for dye lasers have been successfully adapted to other laser types such as the 1722: 1449:
Fork, R. L.; Greene, B. I.; Shank, C. V. (1981). "Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking".
510:, and others. While some dyes are actually used in food coloring, most dyes are very toxic, and often carcinogenic. Many dyes, such as 1391: 396: 1622: 1593: 208:
Because the liquid medium of a dye laser can fit any shape, there are a multitude of different configurations that can be used. A
1886: 726:, while the narrow bandwidth obtainable helps reduce the possibility of damage to the surrounding tissue. They are used to treat 455: 420: 400: 577:
Flashlamps and several types of lasers can be used to optically pump dye lasers. A partial list of excitation lasers include:
2056: 1129:
I. Shoshan, N. N. Danon, and U. P. Oppenheim, Narrowband operation of a pulsed dye laser without intracavity beam expansion,
747: 359:
A cuvette used in a dye laser. A thin sheet of liquid is passed between the windows at high speeds. The windows are set at
335:, or otherwise made of a material that will not reflect at the lasing wavelength while reflecting at the pump wavelength. 289:, and the dye is transparent to the lasing wavelength. Within a microsecond or less, the molecules will change to their 2112: 1356: 1240:
Duarte, F. J.; Piper, J. A. (1981-06-15). "Prism preexpanded grazing-incidence grating cavity for pulsed dye lasers".
363:(air-to-glass interface) for the pump laser, and at Brewster's angle (liquid-to-glass interface) for the emitted beam. 112: 323:. The high gain also leads to high losses, because reflections from the dye-cell walls or flashlamp reflector cause 1916: 549:
the triplet state, and, thus, on the lasing bandwidth and power obtainable with a particular laser-pumping source.
1146:
Littman, Michael G.; Metcalf, Harold J. (1978-07-15). "Spectrally narrow pulsed dye laser without beam expander".
274:
can be "flipped", quickly changing from the useful, fast-emitting "singlet" state to the slower "triplet" state.
70: 754: 546: 262:
can properly build up, so dyes require rather specialized means of pumping. Liquid dyes have an extremely high
1580:
Costela A, Garcia-Moreno I, Gomez C (2016). "Medical Applications of Organic Dye Lasers". In Duarte FJ (ed.).
1304:
Duarte, F.J.; Piper, J.A. (1982). "Dispersion theory of multiple-prism beam expanders for pulsed dye lasers".
965:"Encyclopedia of Laser Physics and Technology - spatial hole burning, SHB, laser, single-frequency operation" 474:
Rhodamine 6G Chloride powder; mixed with methanol; emitting yellow light under the influence of a green laser
1715: 2086: 1906: 242: 101: 1974: 1694: 1852: 1661: 783: 324: 194: 77:, often spanning 50 to 100 nanometers or more. The wide bandwidth makes them particularly suitable for 2211: 2081: 1964: 1952: 1879: 1819: 1458: 1313: 1249: 1206: 1155: 1110: 871: 639: 439: 435: 259: 62: 2132: 2051: 1991: 1911: 1836: 1017: 992: 407: 360: 278: 202: 862:
Yee, T. K.; Fan, B.; Gustafson, T. K. (1979-04-15). "Simmer-enhanced flashlamp-pumped dye laser".
209: 1708: 1482: 631: 581: 1753: 446:
to illuminate the diffraction grating. Next were the grazing-incidence grating designs and the
2152: 2026: 2001: 1618: 1589: 1474: 1416: 1329: 1273: 1265: 1222: 1179: 1171: 1079:
O. G. Peterson, S. A. Tuccio, B. B. Snavely, "CW operation of an organic dye solution laser",
1035: 895: 887: 562: 231: 157: 83: 2162: 2127: 2107: 2076: 1466: 1321: 1257: 1214: 1163: 879: 820: 685: 653: 558: 327:, dramatically reducing the amount of energy available to the beam. Pump cavities are often 263: 181: 160:
dye, which is a carbon-based, soluble stain that is often fluorescent, such as the dye in a
94: 1398: 2190: 2071: 2061: 1872: 1651:"Highly linear, Widerange Swept Frequency Generation at Microwave and Optical Frequencies" 727: 612: 507: 431: 294: 1550: 1462: 1317: 1253: 1210: 1197:
Duarte, F.J.; Piper, J.A. (1980). "A double-prism beam expander for pulsed dye lasers".
1159: 964: 875: 2167: 2157: 2117: 2066: 1984: 1937: 1921: 1847: 758: 739: 711: 635: 602: 320: 271: 223: 198: 30: 2205: 2122: 2102: 2043: 1969: 1824: 1809: 1778: 1773: 1325: 1218: 789: 777: 591: 499: 443: 403: 340: 290: 282: 267: 238: 227: 222:
avoid reflection losses. The dye is usually pumped with an external laser, such as a
177: 121: 90: 78: 55: 1486: 470: 2142: 2011: 2006: 1947: 1788: 1783: 1763: 836: 735: 704: 642: 596: 566: 542: 511: 495: 459: 375: 344: 316: 286: 277:
The incoming light excites the dye molecules into the state of being ready to emit
234: 117: 35: 1346:
Amnon Yariv, Optical Electronics in Modern Communications, Fifth Edition, page 266
2172: 2033: 2016: 1996: 1768: 1758: 757:
to enable measurement of absolute distances with very high accuracy. A two axis
715: 586: 538: 487: 451: 161: 153: 51: 17: 913: 2021: 1842: 723: 656:
eventually resulted in the routine emission of femtosecond dye laser pulses.
646: 607: 552: 214: 74: 1570:, F. J. Duarte and L. W. Hillman, Eds. (Academic, New York, 1990) Chapter 10. 1478: 1333: 1269: 1226: 1175: 891: 2137: 1979: 1959: 1793: 1740: 1700: 1614: 1585: 1541:, F. J. Duarte and L. W. Hillman (eds.)(Academic, New York, 1990) Chapter 8. 1528:, F. J. Duarte and L. W. Hillman (eds.)(Academic, New York, 1990) Chapter 9. 938: 771: 618: 503: 483: 479: 332: 254: 185: 173: 1367: 1277: 1183: 899: 1689: 1113:, Repetitively Pulsed Tunable Dye Laser for High Resolution Spectroscopy, 1748: 1261: 1167: 883: 699: 634:
demonstrated, in 1981, the generation of ultra-short laser pulse using a
530: 491: 411: 169: 104:(SSDL). These SSDL lasers use dye-doped organic matrices as gain medium. 1500: 664: 100:
In addition to the usual liquid state, dye lasers are also available as
1829: 1095: 719: 526: 328: 301: 165: 144: 1070:, 2nd rev. ed., vol. 1, Berlin ; New York: Springer-Verlag, 1977 645:). This kind of laser is capable of generating laser pulses of ~ 0.1 534: 522: 424: 309: 189: 59: 1470: 811:
by Frank J. Duarte, Lloyd W. Hillman -- Academic Press 1990 Page 42
308:, i.e., as a sheet-like stream in open air from a specially-shaped 1895: 780: â€“ Laser that uses a carbon-based material as the gain medium 731: 663: 518: 469: 395: 205:
is usually mounted in the beam path, to allow tuning of the beam.
143: 111: 73:
lasing media, a dye can usually be used for a much wider range of
47: 1290:
P. Zorabedian, Tunable external cavity semiconductor lasers, in
1868: 1704: 66: 1294:, F. J. Duarte (Ed.) (Academic, New York, 1995) Chapter 8. 266:. In addition, the large molecules are subject to complex 1864: 652:
The introduction of grating techniques and intra-cavity
188:
or an external laser is usually used for this purpose.
714:
these lasers are applied in several areas, including
406:
in one direction, providing better illumination of a
27:
Equipment using an organic dye to emit coherent light
1537:
D. Klick, Industrial applications of dye lasers, in
680:
Dye lasers are used in many applications including:
2095: 2042: 1930: 1802: 1739: 914:"General Xenon Flash and Strobe Design Guidelines" 1524:M. A. Akerman, Dye laser isotope separation, in 738:. They can be matched to a variety of inks for 995:– Cambridge University Press 1996 Page 397-399 285:. In this state, the molecules emit light via 34:Close-up of a table-top CW dye laser based on 1880: 1716: 1053: 1051: 786: â€“ Laser with a dye-doped organic matrix 742:, as well as a number of other applications. 555:is added to some dyes to prolong their life. 293:. In the triplet state, light is emitted via 8: 1439:(Academic, New York, 1990) Chapters 5 and 6. 89:Dye lasers were independently discovered by 1005: 1003: 1001: 1887: 1873: 1865: 1723: 1709: 1701: 197:and to decrease degradation of the dye. A 1640:By Jeff Hecht – McGraw Hill 1992 Page 294 1057:"Principles of Lasers", by Orazio Svelto 939:"Sam's Laser FAQ - Home-Built Dye Laser" 792: â€“ Laser with a variable wavelength 164:pen. The dye is mixed with a compatible 29: 2148:Multiple-prism grating laser oscillator 1566:L. Goldman, Dye lasers in medicine, in 1435:F. J. Duarte and L. W. Hillman (Eds.), 809:Dye Laser Principles: With Applications 801: 677:average powers in the kilowatt regime. 349: 1814: 1421:: CS1 maint: archived copy as title ( 1414: 1100:(Academic, New York, 1990) Chapter 4. 1040:: CS1 maint: archived copy as title ( 1033: 304:, i.e., a glass container, or be as a 692:atomic vapor laser isotope separation 670:atomic vapor laser isotope separation 448:multiple-prism grating configurations 7: 1248:(12). The Optical Society: 2113–6. 1154:(14). The Optical Society: 2224–7. 599:(mainly second and third harmonics) 454:. The physics of narrow-linewidth 421:multiple-prism grating arrangements 1066:F. P. Schäfer and K. H. Drexhage, 870:(8). The Optical Society: 1131–2. 774: â€“ Dye used as a laser medium 730:and other blood vessel disorders, 25: 2186: 2185: 1688: 1096:F. J. Duarte and L. W. Hillman, 827:(Springer-Verlag, Berlin, 1990). 368: 352: 748:lunar laser ranging experiments 2057:Amplified spontaneous emission 1457:(9). AIP Publishing: 671–672. 630:R. L. Fork, B. I. Greene, and 1: 270:transitions during which the 1613:(3rd ed.). Boca Raton: 1584:(3rd ed.). Boca Raton: 1326:10.1016/0030-4018(82)90216-4 1219:10.1016/0030-4018(80)90368-5 2113:Chirped pulse amplification 1557:, 3rd Ed. (Springer, 2003). 1312:(5). Elsevier BV: 303–307. 1205:(1). Elsevier BV: 100–104. 843:(Academic, New York, 1990). 753:Tunable lasers are used in 654:prismatic pulse compressors 486:(orange, 540–680 nm), 392:Narrow linewidth dye lasers 315:Liquid dyes have very high 140:of a millimeter in length). 2228: 1917:List of laser applications 1611:Tunable Laser Applications 1582:Tunable Laser Applications 839:and L. W. Hillman (Eds.), 626:Ultra-short optical pulses 498:(violet 410–480 nm), 490:(green, 530–560 nm), 97:(and colleagues) in 1966. 2181: 1902: 755:swept-frequency metrology 638:(or dye laser exploiting 502:(blue, 450–470 nm), 434:dye laser, introduced by 963:Paschotta, Dr. RĂĽdiger. 494:(blue 490–620 nm), 458:lasers was explained by 1609:Duarte FJ, ed. (2016). 1501:"HIGH POWER DYE LASERS" 1451:Applied Physics Letters 1292:Tunable Lasers Handbook 1907:List of laser articles 673: 565:(COT) can be added as 475: 456:multiple-prism grating 415: 325:parasitic oscillations 180:the liquid beyond its 149: 141: 102:solid state dye lasers 39: 1853:Solid-state dye laser 1505:www.tunablelasers.com 1306:Optics Communications 1199:Optics Communications 784:Solid-state dye laser 667: 473: 399: 147: 115: 33: 2082:Population inversion 1820:Liquid-crystal laser 1697:at Wikimedia Commons 1588:. pp. 293–313. 1568:Dye Laser Principles 1539:Dye Laser Principles 1526:Dye Laser Principles 1437:Dye Laser Principles 1262:10.1364/ao.20.002113 1168:10.1364/ao.17.002224 1098:Dye Laser Principles 969:www.rp-photonics.com 884:10.1364/ao.18.001131 841:Dye Laser Principles 279:stimulated radiation 260:population inversion 243:spatial hole burning 2133:Laser beam profiler 2052:Active laser medium 1992:Free-electron laser 1912:List of laser types 1837:Active laser medium 1667:on 7 September 2012 1638:The Laser Guidebook 1463:1981ApPhL..38..671F 1318:1982OptCo..43..303D 1254:1981ApOpt..20.2113D 1211:1980OptCo..35..100D 1160:1978ApOpt..17.2224L 1136:, 4495-4497 (1977). 1086:, 1917-1918 (1970). 993:William T. Silfvast 876:1979ApOpt..18.1131Y 582:Copper vapor lasers 408:diffraction grating 203:diffraction grating 184:. A fast discharge 152:A dye laser uses a 1555:Laser Spectroscopy 989:Laser fundamentals 674: 619:Krypton ion lasers 476: 440:Galilean telescope 416: 195:triplet absorption 150: 142: 84:dielectric mirrors 40: 2199: 2198: 2153:Optical amplifier 2002:Solid-state laser 1862: 1861: 1693:Media related to 1120:, 895-898 (1972). 1081:Appl. Phys. Lett. 943:www.repairfaq.org 918:members.misty.com 762:of the two arms. 686:laser guide stars 573:Excitation lasers 563:cyclooctatetraene 430:The first narrow 232:frequency doubled 156:consisting of an 16:(Redirected from 2219: 2189: 2188: 2163:Optical isolator 2128:Injection seeder 2108:Beam homogenizer 2087:Ultrashort pulse 2077:Lasing threshold 1889: 1882: 1875: 1866: 1815:Excitation laser 1725: 1718: 1711: 1702: 1692: 1677: 1676: 1674: 1672: 1666: 1660:. Archived from 1655: 1647: 1641: 1635: 1629: 1628: 1606: 1600: 1599: 1577: 1571: 1564: 1558: 1548: 1542: 1535: 1529: 1522: 1516: 1515: 1513: 1511: 1497: 1491: 1490: 1446: 1440: 1433: 1427: 1426: 1420: 1412: 1410: 1409: 1403: 1397:. Archived from 1396: 1388: 1382: 1381: 1379: 1378: 1372: 1366:. Archived from 1361: 1353: 1347: 1344: 1338: 1337: 1301: 1295: 1288: 1282: 1281: 1237: 1231: 1230: 1194: 1188: 1187: 1143: 1137: 1127: 1121: 1108: 1102: 1093: 1087: 1077: 1071: 1064: 1058: 1055: 1046: 1045: 1039: 1031: 1029: 1028: 1022: 1016:. Archived from 1015: 1007: 996: 986: 980: 979: 977: 975: 960: 954: 953: 951: 949: 935: 929: 928: 926: 924: 910: 904: 903: 859: 853: 850: 844: 834: 828: 818: 812: 806: 728:port-wine stains 621:in the CW regime 615:in the CW regime 613:Argon ion lasers 559:Cycloheptatriene 372: 361:Brewster's angle 356: 264:lasing threshold 182:lasing threshold 139: 137: 136: 133: 130: 86:or pump lasers. 21: 18:Pulsed dye laser 2227: 2226: 2222: 2221: 2220: 2218: 2217: 2216: 2202: 2201: 2200: 2195: 2177: 2091: 2072:Laser linewidth 2062:Continuous wave 2038: 1931:Types of lasers 1926: 1898: 1893: 1863: 1858: 1798: 1735: 1729: 1685: 1680: 1670: 1668: 1664: 1653: 1649: 1648: 1644: 1636: 1632: 1625: 1608: 1607: 1603: 1596: 1579: 1578: 1574: 1565: 1561: 1549: 1545: 1536: 1532: 1523: 1519: 1509: 1507: 1499: 1498: 1494: 1471:10.1063/1.92500 1448: 1447: 1443: 1434: 1430: 1413: 1407: 1405: 1401: 1394: 1392:"Archived copy" 1390: 1389: 1385: 1376: 1374: 1370: 1359: 1357:"Tuning Curves" 1355: 1354: 1350: 1345: 1341: 1303: 1302: 1298: 1289: 1285: 1239: 1238: 1234: 1196: 1195: 1191: 1145: 1144: 1140: 1128: 1124: 1109: 1105: 1094: 1090: 1078: 1074: 1065: 1061: 1056: 1049: 1032: 1026: 1024: 1020: 1013: 1011:"Archived copy" 1009: 1008: 999: 987: 983: 973: 971: 962: 961: 957: 947: 945: 937: 936: 932: 922: 920: 912: 911: 907: 861: 860: 856: 851: 847: 835: 831: 819: 815: 807: 803: 799: 768: 662: 640:colliding pulse 628: 603:Nitrogen lasers 575: 508:malachite green 468: 404:expand the beam 401:Multiple prisms 394: 386: 379: 373: 364: 357: 295:phosphorescence 251: 168:, allowing the 134: 131: 128: 127: 125: 118:internal cavity 110: 58:, usually as a 28: 23: 22: 15: 12: 11: 5: 2225: 2223: 2215: 2214: 2204: 2203: 2197: 2196: 2194: 2193: 2182: 2179: 2178: 2176: 2175: 2170: 2168:Output coupler 2165: 2160: 2158:Optical cavity 2155: 2150: 2145: 2140: 2135: 2130: 2125: 2120: 2118:Gain-switching 2115: 2110: 2105: 2099: 2097: 2093: 2092: 2090: 2089: 2084: 2079: 2074: 2069: 2067:Laser ablation 2064: 2059: 2054: 2048: 2046: 2040: 2039: 2037: 2036: 2031: 2030: 2029: 2024: 2019: 2014: 2009: 1999: 1994: 1989: 1988: 1987: 1982: 1977: 1972: 1967: 1965:Carbon dioxide 1957: 1956: 1955: 1953:Liquid-crystal 1950: 1940: 1938:Chemical laser 1934: 1932: 1928: 1927: 1925: 1924: 1922:Laser acronyms 1919: 1914: 1909: 1903: 1900: 1899: 1894: 1892: 1891: 1884: 1877: 1869: 1860: 1859: 1857: 1856: 1850: 1848:Ring-dye laser 1845: 1840: 1834: 1833: 1832: 1822: 1817: 1812: 1806: 1804: 1800: 1799: 1797: 1796: 1791: 1786: 1781: 1776: 1771: 1766: 1761: 1756: 1751: 1745: 1743: 1737: 1736: 1734:(liquid state) 1730: 1728: 1727: 1720: 1713: 1705: 1699: 1698: 1684: 1683:External links 1681: 1679: 1678: 1642: 1630: 1623: 1601: 1594: 1572: 1559: 1543: 1530: 1517: 1492: 1441: 1428: 1383: 1348: 1339: 1296: 1283: 1242:Applied Optics 1232: 1189: 1148:Applied Optics 1138: 1131:J. Appl. Phys. 1122: 1103: 1088: 1072: 1059: 1047: 997: 981: 955: 930: 905: 864:Applied Optics 854: 845: 829: 813: 800: 798: 795: 794: 793: 787: 781: 775: 767: 764: 759:interferometer 740:tattoo removal 712:laser medicine 708: 707: 702: 697: 694: 689: 684:astronomy (as 661: 658: 636:ring-dye laser 627: 624: 623: 622: 616: 610: 605: 600: 594: 592:Excimer lasers 589: 584: 574: 571: 467: 466:Chemicals used 464: 393: 390: 385: 382: 381: 380: 374: 367: 365: 358: 351: 321:output coupler 250: 247: 239:standing waves 193:to help avoid 109: 106: 79:tunable lasers 65:. Compared to 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2224: 2213: 2210: 2209: 2207: 2192: 2184: 2183: 2180: 2174: 2171: 2169: 2166: 2164: 2161: 2159: 2156: 2154: 2151: 2149: 2146: 2144: 2141: 2139: 2136: 2134: 2131: 2129: 2126: 2124: 2123:Gaussian beam 2121: 2119: 2116: 2114: 2111: 2109: 2106: 2104: 2103:Beam expander 2101: 2100: 2098: 2094: 2088: 2085: 2083: 2080: 2078: 2075: 2073: 2070: 2068: 2065: 2063: 2060: 2058: 2055: 2053: 2050: 2049: 2047: 2045: 2044:Laser physics 2041: 2035: 2032: 2028: 2025: 2023: 2020: 2018: 2015: 2013: 2010: 2008: 2005: 2004: 2003: 2000: 1998: 1995: 1993: 1990: 1986: 1983: 1981: 1978: 1976: 1973: 1971: 1968: 1966: 1963: 1962: 1961: 1958: 1954: 1951: 1949: 1946: 1945: 1944: 1941: 1939: 1936: 1935: 1933: 1929: 1923: 1920: 1918: 1915: 1913: 1910: 1908: 1905: 1904: 1901: 1897: 1890: 1885: 1883: 1878: 1876: 1871: 1870: 1867: 1854: 1851: 1849: 1846: 1844: 1841: 1839:(gain medium) 1838: 1835: 1831: 1828: 1827: 1826: 1825:Organic laser 1823: 1821: 1818: 1816: 1813: 1811: 1810:Tunable laser 1808: 1807: 1805: 1801: 1795: 1792: 1790: 1787: 1785: 1782: 1780: 1779:Umbelliferone 1777: 1775: 1774:Rhodamine 123 1772: 1770: 1767: 1765: 1762: 1760: 1757: 1755: 1752: 1750: 1747: 1746: 1744: 1742: 1738: 1733: 1726: 1721: 1719: 1714: 1712: 1707: 1706: 1703: 1696: 1691: 1687: 1686: 1682: 1663: 1659: 1652: 1646: 1643: 1639: 1634: 1631: 1626: 1624:9781482261066 1620: 1616: 1612: 1605: 1602: 1597: 1595:9781482261066 1591: 1587: 1583: 1576: 1573: 1569: 1563: 1560: 1556: 1552: 1547: 1544: 1540: 1534: 1531: 1527: 1521: 1518: 1506: 1502: 1496: 1493: 1488: 1484: 1480: 1476: 1472: 1468: 1464: 1460: 1456: 1452: 1445: 1442: 1438: 1432: 1429: 1424: 1418: 1404:on 2015-02-21 1400: 1393: 1387: 1384: 1373:on 2011-09-20 1369: 1365: 1358: 1352: 1349: 1343: 1340: 1335: 1331: 1327: 1323: 1319: 1315: 1311: 1307: 1300: 1297: 1293: 1287: 1284: 1279: 1275: 1271: 1267: 1263: 1259: 1255: 1251: 1247: 1243: 1236: 1233: 1228: 1224: 1220: 1216: 1212: 1208: 1204: 1200: 1193: 1190: 1185: 1181: 1177: 1173: 1169: 1165: 1161: 1157: 1153: 1149: 1142: 1139: 1135: 1132: 1126: 1123: 1119: 1116: 1112: 1107: 1104: 1101: 1099: 1092: 1089: 1085: 1082: 1076: 1073: 1069: 1063: 1060: 1054: 1052: 1048: 1043: 1037: 1023:on 2017-02-16 1019: 1012: 1006: 1004: 1002: 998: 994: 990: 985: 982: 970: 966: 959: 956: 944: 940: 934: 931: 919: 915: 909: 906: 901: 897: 893: 889: 885: 881: 877: 873: 869: 865: 858: 855: 849: 846: 842: 838: 833: 830: 826: 822: 821:F. P. Schäfer 817: 814: 810: 805: 802: 796: 791: 790:Tunable laser 788: 785: 782: 779: 778:Organic laser 776: 773: 770: 769: 765: 763: 760: 756: 751: 749: 743: 741: 737: 736:kidney stones 733: 729: 725: 721: 717: 713: 706: 703: 701: 698: 696:manufacturing 695: 693: 690: 687: 683: 682: 681: 678: 671: 666: 659: 657: 655: 650: 648: 644: 641: 637: 633: 625: 620: 617: 614: 611: 609: 606: 604: 601: 598: 597:Nd:YAG lasers 595: 593: 590: 588: 585: 583: 580: 579: 578: 572: 570: 568: 564: 560: 556: 554: 550: 548: 544: 540: 536: 532: 528: 524: 520: 515: 513: 509: 505: 501: 500:umbelliferone 497: 493: 489: 485: 481: 472: 465: 463: 461: 457: 453: 449: 445: 444:beam expander 441: 437: 433: 428: 426: 422: 413: 409: 405: 402: 398: 391: 389: 384:CW dye lasers 383: 377: 371: 366: 362: 355: 350: 348: 346: 342: 341:quantum yield 336: 334: 330: 326: 322: 318: 313: 311: 307: 303: 298: 296: 292: 291:triplet state 288: 284: 283:singlet state 280: 275: 273: 269: 268:excited state 265: 261: 256: 248: 246: 244: 240: 236: 233: 229: 225: 219: 216: 211: 206: 204: 200: 196: 191: 187: 183: 179: 175: 171: 167: 163: 159: 155: 146: 123: 122:cavity dumper 119: 114: 107: 105: 103: 98: 96: 95:F. P. Schäfer 92: 91:P. P. Sorokin 87: 85: 80: 76: 72: 68: 64: 61: 57: 56:lasing medium 53: 50:that uses an 49: 45: 37: 32: 19: 2143:Mode locking 2096:Laser optics 1942: 1789:(E)-Stilbene 1784:(Z)-Stilbene 1764:Rhodamine 6G 1731: 1669:. Retrieved 1662:the original 1657: 1645: 1637: 1633: 1610: 1604: 1581: 1575: 1567: 1562: 1554: 1551:W. Demtröder 1546: 1538: 1533: 1525: 1520: 1508:. Retrieved 1504: 1495: 1454: 1450: 1444: 1436: 1431: 1406:. Retrieved 1399:the original 1386: 1375:. Retrieved 1368:the original 1363: 1351: 1342: 1309: 1305: 1299: 1291: 1286: 1245: 1241: 1235: 1202: 1198: 1192: 1151: 1147: 1141: 1133: 1130: 1125: 1117: 1114: 1111:T. W. Hänsch 1106: 1097: 1091: 1083: 1080: 1075: 1067: 1062: 1025:. Retrieved 1018:the original 988: 984: 972:. Retrieved 968: 958: 946:. Retrieved 942: 933: 921:. Retrieved 917: 908: 867: 863: 857: 848: 840: 837:F. J. Duarte 832: 824: 816: 808: 804: 752: 744: 709: 705:spectroscopy 679: 675: 660:Applications 651: 643:mode-locking 629: 587:Diode lasers 576: 557: 551: 543:cyclodextrin 516: 512:rhodamine 6G 478:Some of the 477: 429: 417: 387: 376:Stokes shift 345:Stokes shift 337: 314: 305: 299: 287:fluorescence 276: 252: 241:which cause 235:Nd:YAG laser 220: 207: 151: 108:Construction 99: 88: 43: 41: 36:rhodamine 6G 2212:Laser types 2173:Q-switching 2034:X-ray laser 2027:Ti-sapphire 1997:Laser diode 1975:Helium–neon 1769:Rhodamine B 1759:Fluorescein 1068:Dye Lasers. 716:dermatology 632:C. V. Shank 608:Ruby lasers 539:cyclohexane 488:fluorescein 462:and Piper. 452:diode laser 210:Fabry–PĂ©rot 162:highlighter 154:gain medium 75:wavelengths 71:solid state 52:organic dye 1843:Adamantane 1754:Polyphenyl 1741:Laser dyes 1732:Dye lasers 1695:Dye lasers 1408:2012-08-15 1377:2023-11-03 1115:Appl. Opt. 1027:2017-02-13 825:Dye Lasers 797:References 724:hemoglobin 649:duration. 553:Adamantane 480:laser dyes 215:inductance 2138:M squared 1960:Gas laser 1943:Dye laser 1794:Tetracene 1615:CRC Press 1586:CRC Press 1479:0003-6951 1334:0030-4018 1270:0003-6935 1227:0030-4018 1176:0003-6935 892:0003-6935 772:Laser dye 547:quenching 504:tetracene 484:rhodamine 438:, used a 432:linewidth 249:Operation 186:flashtube 170:molecules 69:and most 44:dye laser 2206:Category 2191:Category 1985:Nitrogen 1749:Coumarin 1671:19 April 1658:nasa.gov 1510:19 April 1487:45813878 1417:cite web 1278:20332895 1184:20203761 1036:cite web 974:19 April 948:19 April 923:19 April 900:20208893 766:See also 700:medicine 531:methanol 496:stilbene 492:coumarin 412:angstrom 333:anodized 224:nitrogen 63:solution 1970:Excimer 1830:Ormosil 1803:Aspects 1459:Bibcode 1364:Exciton 1314:Bibcode 1250:Bibcode 1207:Bibcode 1156:Bibcode 872:Bibcode 823:(Ed.), 720:melanin 567:triplet 527:ethanol 425:etalons 306:dye jet 302:cuvette 228:excimer 190:Mirrors 174:diffuse 166:solvent 158:organic 138:⁠ 126:⁠ 54:as the 2012:Nd:YAG 2007:Er:YAG 1948:Bubble 1896:Lasers 1855:(SSDL) 1621:  1592:  1485:  1477:  1332:  1276:  1268:  1225:  1182:  1174:  898:  890:  535:hexane 523:glycol 460:Duarte 436:Hänsch 423:, and 329:coated 310:nozzle 281:; the 178:'pump' 60:liquid 2017:Raman 1665:(PDF) 1654:(PDF) 1483:S2CID 1402:(PDF) 1395:(PDF) 1371:(PDF) 1360:(PDF) 1021:(PDF) 1014:(PDF) 732:scars 519:water 230:, or 199:prism 67:gases 48:laser 46:is a 2022:Ruby 1673:2018 1619:ISBN 1590:ISBN 1512:2018 1475:ISSN 1423:link 1330:ISSN 1274:PMID 1266:ISSN 1223:ISSN 1180:PMID 1172:ISSN 1042:link 976:2018 950:2018 925:2018 896:PMID 888:ISSN 734:and 561:and 482:are 317:gain 272:spin 255:dyes 253:The 116:The 93:and 1980:Ion 1467:doi 1322:doi 1258:doi 1215:doi 1164:doi 991:by 880:doi 722:or 710:In 668:An 442:as 201:or 172:to 2208:: 1656:. 1617:. 1553:, 1503:. 1481:. 1473:. 1465:. 1455:38 1453:. 1419:}} 1415:{{ 1362:. 1328:. 1320:. 1310:43 1308:. 1272:. 1264:. 1256:. 1246:20 1244:. 1221:. 1213:. 1203:35 1201:. 1178:. 1170:. 1162:. 1152:17 1150:. 1134:48 1118:11 1084:42 1050:^ 1038:}} 1034:{{ 1000:^ 967:. 941:. 916:. 894:. 886:. 878:. 868:18 866:. 750:. 688:), 647:ps 541:, 537:, 533:, 529:, 525:, 521:, 506:, 427:. 331:, 226:, 42:A 1888:e 1881:t 1874:v 1724:e 1717:t 1710:v 1675:. 1627:. 1598:. 1514:. 1489:. 1469:: 1461:: 1425:) 1411:. 1380:. 1336:. 1324:: 1316:: 1280:. 1260:: 1252:: 1229:. 1217:: 1209:: 1186:. 1166:: 1158:: 1044:) 1030:. 978:. 952:. 927:. 902:. 882:: 874:: 414:. 135:3 132:/ 129:1 20:)

Index

Pulsed dye laser

rhodamine 6G
laser
organic dye
lasing medium
liquid
solution
gases
solid state
wavelengths
tunable lasers
dielectric mirrors
P. P. Sorokin
F. P. Schäfer
solid state dye lasers

internal cavity
cavity dumper

gain medium
organic
highlighter
solvent
molecules
diffuse
'pump'
lasing threshold
flashtube
Mirrors

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑