Knowledge (XXG)

Pushout (category theory)

Source 📝

3080: 337: 270: 3327: 3347: 3337: 1700: 1450: 1847: 359:. Note that in each case, we are only providing a construction of an object in the isomorphism class of pushouts; as mentioned above, though there may be other ways to construct it, they are all equivalent. 1695:{\displaystyle A\otimes _{C}B=\left\{\sum _{i\in I}(a_{i},b_{i})\;{\big |}\;a_{i}\in A,b_{i}\in B\right\}{\Bigg /}{\bigg \langle }(f(c)a,b)-(a,g(c)b)\;{\big |}\;a\in A,b\in B,c\in C{\bigg \rangle }} 1323: 1273: 2561: 2488: 1371: 771: 2640:
pdf available Gives an account of some categorical methods in topology, use the fundamental groupoid on a set of base points to give a generalisation of the Seifert-van Kampen Theorem.
724: 498: 613: 1762: 1749: 162: 1223: 648: 907: 797: 686: 201: 1077: 1045: 964: 2187:
Graphically this means that two pushout squares, placed side by side and sharing one morphism, form a larger pushout square when ignoring the inner shared morphism.
125:
of the pushout (given below) essentially says that the pushout is the "most general" way to complete this commutative square. Common notations for the pushout are
2680: 2583:. Thus we may interpret the theorem as confirming that the fundamental group functor preserves pushouts of inclusions. We might expect this to be simplest when 2724: 2231:
Pushouts can be constructed from coproducts and coequalizers, as described below (the pushout is the coequalizer of the maps to the coproduct).
1709: 2591:, since then both homomorphisms above have trivial domain. Indeed, this is the case, since then the pushout (of groups) reduces to the 3371: 2627:
An introduction to categorical approaches to algebraic topology: the focus is on the algebra, and assumes a topological background.
2235:
All of the above examples may be regarded as special cases of the following very general construction, which works in any category
1162: 2596: 1158: 821: 2717: 2921: 2876: 2634: 982: 3350: 3290: 2228:
is the pushout of and , so if there are pushouts (and an initial object), then there are coequalizers and coproducts;
2493: 2423: 1278: 1228: 3340: 3126: 2990: 2898: 2367: 1390: 1382: 978: 211: 729: 3299: 2881: 2804: 557: 52: 3330: 3286: 2891: 2710: 691: 87: 2886: 2868: 986: 456: 3093: 2859: 2839: 2762: 1842:{\displaystyle \left({\frac {\operatorname {lcm} (m,n)}{m}},{\frac {\operatorname {lcm} (m,n)}{n}}\right)} 1386: 1378: 356: 207: 1328: 2975: 2814: 1850: 586: 509: 1725: 2787: 2782: 505: 128: 83: 2595:, which is the coproduct in the category of groups. In a most general case we will be speaking of a 1195: 621: 3131: 3079: 3009: 3005: 2809: 1136: 998: 276: 110: 336: 2985: 2980: 2962: 2844: 2819: 1166: 1154: 1144: 879: 581: 298: 122: 1574: 776: 665: 167: 3294: 3231: 3219: 3121: 3046: 3041: 2999: 2995: 2777: 2772: 2401: 1434: 1185: 1177: 1050: 1018: 829: 376: 943: 803:. Cographs are dual to graphs of functions since the graph may be defined as the pullback of 3255: 3141: 3116: 3051: 3036: 3031: 2970: 2799: 2767: 2646: 2588: 1927: 1181: 817: 3167: 2733: 2373: 1104: 20: 3204: 343:
As with all universal constructions, the pushout, if it exists, is unique up to a unique
2681:"Does the concept of "cograph of a function" have natural generalisations / Extensions?" 3199: 3183: 3146: 3136: 3056: 2603: 2205: 1189: 1100: 412: 2392:
is also path-connected. (Assume also that the basepoint * lies in the intersection of
3365: 3194: 3026: 2903: 2829: 1002: 933: 917:. More generally, all identification spaces may be regarded as pushouts in this way. 849: 16:
Most general completion of a commutative square given two morphisms with same domain
2948: 2849: 2592: 1013: 269: 3209: 2372:
The Seifert–van Kampen theorem answers the following question. Suppose we have a
1751:, considered as a category with one object, the pushout of two positive integers 3189: 3061: 2931: 2201: 344: 24: 773:. A function may be recovered by its cograph because each equivalence class in 3241: 3179: 2792: 990: 1393:(see the examples section) as dual notions to each other. In particular, let 3235: 2926: 2602:
There is a detailed exposition of this, in a slightly more general setting (
2197: 921: 3304: 2936: 2834: 2618: 2606: 2212:
Coproducts are a pushout from the initial object, and the coequalizer of
1931: 994: 424: 56: 3274: 3264: 2913: 2824: 2697: 2637: 1720: 1374: 48: 319:) for which the following diagram commutes, there must exist a unique 3269: 2420:? The answer is yes, provided we also know the induced homomorphisms 1716: 545: 3151: 2702: 301:
with respect to this diagram. That is, for any other such triple (
3091: 2744: 2706: 985:
with gluing" in the same way we think of adjunction spaces as "
2649:
Explains some uses of groupoids in group theory and topology.
2274:
with the same domain and the same target, the coequalizer of
618:
A specific case of this is the cograph of a function. If
580:, then the pushout can be canonically identified with the 1389:, we can think of the tensor product of rings and the 662:. In elementary terms, the cograph is the quotient of 2609:) in the book by J. P. May listed in the references. 2567:
is the pushout of these two induced maps. Of course,
2496: 2426: 2338:, then include into the coproduct, or we can go from 1987:) is an isomorphism, and so is the natural map coker( 1765: 1728: 1453: 1331: 1281: 1231: 1198: 1053: 1021: 946: 882: 779: 732: 694: 688:
by the equivalence relation generated by identifying
668: 624: 589: 459: 170: 131: 2563:
The theorem then says that the fundamental group of
3254: 3218: 3166: 3159: 3110: 3019: 2961: 2912: 2867: 2858: 2755: 2555: 2482: 2350:, then include into the coproduct. The pushout of 2290:In this setup, we obtain the pushout of morphisms 1897:exists as well and there is a natural isomorphism 1841: 1743: 1694: 1365: 1317: 1267: 1217: 1071: 1039: 958: 901: 791: 765: 718: 680: 642: 607: 492: 195: 156: 1687: 1581: 1095:are arbitrary homomorphisms from a common domain 1079:. The pushout of these maps is the direct sum of 486: 1405:be objects (commutative rings with identity) in 966:, the space obtained by gluing the basepoint of 2556:{\displaystyle \pi _{1}(D,*)\to \pi _{1}(B,*).} 1861:. Note that the same pair is also the pullback. 1135:. A similar approach yields the pushout in the 355:Here are some examples of pushouts in familiar 2483:{\displaystyle \pi _{1}(D,*)\to \pi _{1}(A,*)} 2314:by first forming the coproduct of the targets 1318:{\displaystyle f':B\rightarrow A\otimes _{C}B} 1268:{\displaystyle g':A\rightarrow A\otimes _{C}B} 431:) are identified, together with the morphisms 2718: 1646: 1526: 1123:)). Thus we have "glued" along the images of 8: 2571:is the pushout of the two inclusion maps of 2192:Construction via coproducts and coequalizers 766:{\displaystyle f(x)\in Y\subseteq X\sqcup Y} 2380:, covered by path-connected open subspaces 2362:Application: the Seifert–van Kampen theorem 3346: 3336: 3163: 3107: 3088: 2864: 2752: 2741: 2725: 2711: 2703: 2416:, can we recover the fundamental group of 1651: 1643: 1531: 1523: 2647:"Categories and Groupoids" free download 2529: 2501: 2495: 2459: 2431: 2425: 2326:to this coproduct. We can either go from 1804: 1771: 1764: 1735: 1730: 1727: 1686: 1685: 1645: 1644: 1580: 1579: 1573: 1572: 1555: 1536: 1525: 1524: 1514: 1501: 1482: 1461: 1452: 1330: 1306: 1280: 1256: 1230: 1206: 1197: 1052: 1020: 945: 940:the one-point space. Then the pushout is 890: 881: 778: 731: 719:{\displaystyle x\in X\subseteq X\sqcup Y} 693: 667: 623: 588: 481: 458: 222:Explicitly, the pushout of the morphisms 184: 169: 145: 130: 2659: 2622:A concise course in algebraic topology. 2358:is the coequalizer of these new maps. 1930:all pushouts exist, and they preserve 1712:for the case of non-commutative rings. 1107:by the subgroup consisting of pairs ( 876:. The result is the adjunction space 493:{\displaystyle P=(X\sqcup Y)/\!\sim } 7: 1849:, where the numerators are both the 1710:Free product of associative algebras 1373:. In fact, since the pushout is the 2624:University of Chicago Press, 1999. 1366:{\displaystyle f'\circ g=g'\circ f} 920:A special case of the above is the 2322:. We then have two morphisms from 799:contains precisely one element of 608:{\displaystyle X\cup Y\subseteq W} 423:, where elements sharing a common 403:are set functions. The pushout of 14: 1087:. Generalizing to the case where 981:, pushouts can be thought of as " 924:or one-point union; here we take 820:is an example of pushouts in the 331:also making the diagram commute: 3345: 3335: 3326: 3325: 3078: 2001:There is a natural isomorphism ( 1744:{\displaystyle \mathbf {Z} _{+}} 1731: 1099:, one obtains for the pushout a 654:of a function is the pushout of 335: 268: 1188:), the pushout is given by the 909:, which is just the pushout of 658:along the identity function of 157:{\displaystyle P=X\sqcup _{Z}Y} 2597:free product with amalgamation 2547: 2535: 2522: 2519: 2507: 2477: 2465: 2452: 2449: 2437: 1825: 1813: 1792: 1780: 1640: 1634: 1628: 1616: 1610: 1598: 1592: 1586: 1520: 1494: 1296: 1246: 1218:{\displaystyle A\otimes _{C}B} 1159:free product with amalgamation 1103:of the direct sum; namely, we 1063: 1031: 822:category of topological spaces 742: 736: 643:{\displaystyle f\colon X\to Y} 634: 478: 466: 1: 1976:, then the natural map coker( 1441:. Then the tensor product is: 113:with the two given morphisms 86:. The pushout consists of an 2255:, their coproduct exists in 1934:in the following sense: if ( 1157:, the pushout is called the 3020:Constructions on categories 2196:Pushouts are equivalent to 902:{\displaystyle X\cup _{f}Y} 506:finest equivalence relation 3388: 3127:Higher-dimensional algebra 2668:Category Theory in Context 2368:Seifert-van Kampen theorem 2365: 2036:. Explicitly, this means: 1163:Seifert–van Kampen theorem 979:category of abelian groups 3321: 3100: 3087: 3076: 2751: 2740: 2412:, and their intersection 864:using an "attaching map" 792:{\displaystyle X\sqcup Y} 681:{\displaystyle X\sqcup Y} 196:{\displaystyle P=X+_{Z}Y} 93:along with two morphisms 3372:Limits (category theory) 2638:"Topology and Groupoids" 1391:fibered product of rings 1072:{\displaystyle g:0\to B} 1040:{\displaystyle f:0\to A} 650:is a function, then the 121:. In fact, the defining 2937:Cokernels and quotients 2860:Universal constructions 959:{\displaystyle X\vee Y} 3094:Higher category theory 2840:Natural transformation 2557: 2484: 1843: 1745: 1715:In the multiplicative 1696: 1367: 1319: 1269: 1219: 1073: 1041: 960: 903: 807:along the identity of 793: 767: 720: 682: 644: 609: 568:the inclusion maps of 494: 264:such that the diagram 230:consists of an object 197: 158: 2558: 2485: 2208:) in the sense that: 1871:Whenever the pushout 1851:least common multiple 1844: 1746: 1697: 1368: 1320: 1270: 1220: 1161:. It shows up in the 1074: 1042: 961: 904: 824:. More precisely, if 794: 768: 721: 683: 645: 610: 495: 198: 159: 2963:Algebraic categories 2494: 2424: 2148:then the pushout of 1952:) is the pushout of 1763: 1726: 1451: 1329: 1279: 1229: 1196: 1051: 1019: 970:to the basepoint of 944: 880: 816:The construction of 777: 730: 692: 666: 622: 587: 536:. In particular, if 457: 351:Examples of pushouts 168: 129: 3132:Homotopy hypothesis 2810:Commutative diagram 2645:Philip J. Higgins, 2388:whose intersection 1225:with the morphisms 548:of some larger set 399: →  387: →  206:The pushout is the 2845:Universal property 2553: 2480: 2402:fundamental groups 2400:.) If we know the 2262:For any morphisms 1839: 1741: 1692: 1493: 1435:ring homomorphisms 1385:is the limit of a 1363: 1315: 1265: 1215: 1176:, the category of 1167:algebraic topology 1155:category of groups 1069: 1037: 989:with gluing". The 956: 899: 789: 763: 716: 678: 640: 605: 490: 234:and two morphisms 218:Universal property 193: 154: 123:universal property 111:commutative square 55:consisting of two 41:cocartesian square 3359: 3358: 3317: 3316: 3313: 3312: 3295:monoidal category 3250: 3249: 3122:Enriched category 3074: 3073: 3070: 3069: 3047:Quotient category 3042:Opposite category 2957: 2956: 1832: 1799: 1759:is just the pair 1478: 1186:category of rings 1178:commutative rings 856:to another space 818:adjunction spaces 33:fibered coproduct 3379: 3349: 3348: 3339: 3338: 3329: 3328: 3164: 3142:Simplex category 3117:Categorification 3108: 3089: 3082: 3052:Product category 3037:Kleisli category 3032:Functor category 2877:Terminal objects 2865: 2800:Adjoint functors 2753: 2742: 2727: 2720: 2713: 2704: 2698:pushout in nLab 2685: 2684: 2677: 2671: 2664: 2589:simply connected 2562: 2560: 2559: 2554: 2534: 2533: 2506: 2505: 2489: 2487: 2486: 2481: 2464: 2463: 2436: 2435: 2243:For any objects 2204:(if there is an 1991:) → coker( 1980:) → coker( 1928:abelian category 1848: 1846: 1845: 1840: 1838: 1834: 1833: 1828: 1805: 1800: 1795: 1772: 1750: 1748: 1747: 1742: 1740: 1739: 1734: 1701: 1699: 1698: 1693: 1691: 1690: 1650: 1649: 1585: 1584: 1578: 1577: 1571: 1567: 1560: 1559: 1541: 1540: 1530: 1529: 1519: 1518: 1506: 1505: 1492: 1466: 1465: 1372: 1370: 1369: 1364: 1356: 1339: 1324: 1322: 1321: 1316: 1311: 1310: 1289: 1274: 1272: 1271: 1266: 1261: 1260: 1239: 1224: 1222: 1221: 1216: 1211: 1210: 1182:full subcategory 1078: 1076: 1075: 1070: 1046: 1044: 1043: 1038: 965: 963: 962: 957: 908: 906: 905: 900: 895: 894: 810: 806: 802: 798: 796: 795: 790: 772: 770: 769: 764: 725: 723: 722: 717: 687: 685: 684: 679: 661: 657: 649: 647: 646: 641: 614: 612: 611: 606: 499: 497: 496: 491: 485: 339: 272: 208:categorical dual 202: 200: 199: 194: 189: 188: 163: 161: 160: 155: 150: 149: 109:that complete a 3387: 3386: 3382: 3381: 3380: 3378: 3377: 3376: 3362: 3361: 3360: 3355: 3309: 3279: 3246: 3223: 3214: 3171: 3155: 3106: 3096: 3083: 3066: 3015: 2953: 2922:Initial objects 2908: 2854: 2747: 2736: 2734:Category theory 2731: 2694: 2689: 2688: 2679: 2678: 2674: 2665: 2661: 2656: 2615: 2525: 2497: 2492: 2491: 2455: 2427: 2422: 2421: 2370: 2364: 2194: 2113:the pushout of 2078:the pushout of 2032: 2019: 2010: 1997: 1986: 1951: 1944: 1919: 1906: 1893: 1880: 1868: 1806: 1773: 1770: 1766: 1761: 1760: 1729: 1724: 1723: 1551: 1532: 1510: 1497: 1477: 1473: 1457: 1449: 1448: 1349: 1332: 1327: 1326: 1302: 1282: 1277: 1276: 1252: 1232: 1227: 1226: 1202: 1194: 1193: 1049: 1048: 1017: 1016: 942: 941: 886: 878: 877: 808: 804: 800: 775: 774: 728: 727: 690: 689: 664: 663: 659: 655: 620: 619: 585: 584: 455: 454: 444: 437: 353: 318: 311: 296: 289: 279:and such that ( 255: 240: 220: 180: 166: 165: 141: 127: 126: 45:amalgamated sum 31:(also called a 21:category theory 17: 12: 11: 5: 3385: 3383: 3375: 3374: 3364: 3363: 3357: 3356: 3354: 3353: 3343: 3333: 3322: 3319: 3318: 3315: 3314: 3311: 3310: 3308: 3307: 3302: 3297: 3283: 3277: 3272: 3267: 3261: 3259: 3252: 3251: 3248: 3247: 3245: 3244: 3239: 3228: 3226: 3221: 3216: 3215: 3213: 3212: 3207: 3202: 3197: 3192: 3187: 3176: 3174: 3169: 3161: 3157: 3156: 3154: 3149: 3147:String diagram 3144: 3139: 3137:Model category 3134: 3129: 3124: 3119: 3114: 3112: 3105: 3104: 3101: 3098: 3097: 3092: 3085: 3084: 3077: 3075: 3072: 3071: 3068: 3067: 3065: 3064: 3059: 3057:Comma category 3054: 3049: 3044: 3039: 3034: 3029: 3023: 3021: 3017: 3016: 3014: 3013: 3003: 2993: 2991:Abelian groups 2988: 2983: 2978: 2973: 2967: 2965: 2959: 2958: 2955: 2954: 2952: 2951: 2946: 2941: 2940: 2939: 2929: 2924: 2918: 2916: 2910: 2909: 2907: 2906: 2901: 2896: 2895: 2894: 2884: 2879: 2873: 2871: 2862: 2856: 2855: 2853: 2852: 2847: 2842: 2837: 2832: 2827: 2822: 2817: 2812: 2807: 2802: 2797: 2796: 2795: 2790: 2785: 2780: 2775: 2770: 2759: 2757: 2749: 2748: 2745: 2738: 2737: 2732: 2730: 2729: 2722: 2715: 2707: 2701: 2700: 2693: 2692:External links 2690: 2687: 2686: 2672: 2658: 2657: 2655: 2652: 2651: 2650: 2642: 2641: 2631: 2630: 2629: 2628: 2614: 2611: 2552: 2549: 2546: 2543: 2540: 2537: 2532: 2528: 2524: 2521: 2518: 2515: 2512: 2509: 2504: 2500: 2479: 2476: 2473: 2470: 2467: 2462: 2458: 2454: 2451: 2448: 2445: 2442: 2439: 2434: 2430: 2374:path-connected 2366:Main article: 2363: 2360: 2288: 2287: 2260: 2233: 2232: 2229: 2206:initial object 2193: 2190: 2189: 2188: 2184: 2183: 2182: 2181: 2146: 2111: 2076: 2028: 2015: 2006: 1999: 1995: 1984: 1949: 1942: 1924: 1915: 1902: 1889: 1876: 1867: 1864: 1863: 1862: 1837: 1831: 1827: 1824: 1821: 1818: 1815: 1812: 1809: 1803: 1798: 1794: 1791: 1788: 1785: 1782: 1779: 1776: 1769: 1738: 1733: 1713: 1705: 1704: 1703: 1702: 1689: 1684: 1681: 1678: 1675: 1672: 1669: 1666: 1663: 1660: 1657: 1654: 1648: 1642: 1639: 1636: 1633: 1630: 1627: 1624: 1621: 1618: 1615: 1612: 1609: 1606: 1603: 1600: 1597: 1594: 1591: 1588: 1583: 1576: 1570: 1566: 1563: 1558: 1554: 1550: 1547: 1544: 1539: 1535: 1528: 1522: 1517: 1513: 1509: 1504: 1500: 1496: 1491: 1488: 1485: 1481: 1476: 1472: 1469: 1464: 1460: 1456: 1443: 1442: 1433:be morphisms ( 1362: 1359: 1355: 1352: 1348: 1345: 1342: 1338: 1335: 1314: 1309: 1305: 1301: 1298: 1295: 1292: 1288: 1285: 1264: 1259: 1255: 1251: 1248: 1245: 1242: 1238: 1235: 1214: 1209: 1205: 1201: 1190:tensor product 1170: 1151: 1101:quotient group 1068: 1065: 1062: 1059: 1056: 1036: 1033: 1030: 1027: 1024: 1003:abelian groups 987:disjoint union 975: 955: 952: 949: 934:pointed spaces 918: 898: 893: 889: 885: 852:we can "glue" 814: 813: 812: 788: 785: 782: 762: 759: 756: 753: 750: 747: 744: 741: 738: 735: 715: 712: 709: 706: 703: 700: 697: 677: 674: 671: 639: 636: 633: 630: 627: 604: 601: 598: 595: 592: 520:) ~  489: 484: 480: 477: 474: 471: 468: 465: 462: 442: 435: 413:disjoint union 352: 349: 341: 340: 316: 309: 294: 287: 274: 273: 253: 238: 219: 216: 192: 187: 183: 179: 176: 173: 153: 148: 144: 140: 137: 134: 82:with a common 23:, a branch of 15: 13: 10: 9: 6: 4: 3: 2: 3384: 3373: 3370: 3369: 3367: 3352: 3344: 3342: 3334: 3332: 3324: 3323: 3320: 3306: 3303: 3301: 3298: 3296: 3292: 3288: 3284: 3282: 3280: 3273: 3271: 3268: 3266: 3263: 3262: 3260: 3257: 3253: 3243: 3240: 3237: 3233: 3230: 3229: 3227: 3225: 3217: 3211: 3208: 3206: 3203: 3201: 3198: 3196: 3195:Tetracategory 3193: 3191: 3188: 3185: 3184:pseudofunctor 3181: 3178: 3177: 3175: 3173: 3165: 3162: 3158: 3153: 3150: 3148: 3145: 3143: 3140: 3138: 3135: 3133: 3130: 3128: 3125: 3123: 3120: 3118: 3115: 3113: 3109: 3103: 3102: 3099: 3095: 3090: 3086: 3081: 3063: 3060: 3058: 3055: 3053: 3050: 3048: 3045: 3043: 3040: 3038: 3035: 3033: 3030: 3028: 3027:Free category 3025: 3024: 3022: 3018: 3011: 3010:Vector spaces 3007: 3004: 3001: 2997: 2994: 2992: 2989: 2987: 2984: 2982: 2979: 2977: 2974: 2972: 2969: 2968: 2966: 2964: 2960: 2950: 2947: 2945: 2942: 2938: 2935: 2934: 2933: 2930: 2928: 2925: 2923: 2920: 2919: 2917: 2915: 2911: 2905: 2904:Inverse limit 2902: 2900: 2897: 2893: 2890: 2889: 2888: 2885: 2883: 2880: 2878: 2875: 2874: 2872: 2870: 2866: 2863: 2861: 2857: 2851: 2848: 2846: 2843: 2841: 2838: 2836: 2833: 2831: 2830:Kan extension 2828: 2826: 2823: 2821: 2818: 2816: 2813: 2811: 2808: 2806: 2803: 2801: 2798: 2794: 2791: 2789: 2786: 2784: 2781: 2779: 2776: 2774: 2771: 2769: 2766: 2765: 2764: 2761: 2760: 2758: 2754: 2750: 2743: 2739: 2735: 2728: 2723: 2721: 2716: 2714: 2709: 2708: 2705: 2699: 2696: 2695: 2691: 2682: 2676: 2673: 2669: 2663: 2660: 2653: 2648: 2644: 2643: 2639: 2636: 2633: 2632: 2626: 2625: 2623: 2620: 2617: 2616: 2612: 2610: 2608: 2605: 2600: 2598: 2594: 2590: 2586: 2582: 2578: 2574: 2570: 2566: 2550: 2544: 2541: 2538: 2530: 2526: 2516: 2513: 2510: 2502: 2498: 2474: 2471: 2468: 2460: 2456: 2446: 2443: 2440: 2432: 2428: 2419: 2415: 2411: 2407: 2403: 2399: 2395: 2391: 2387: 2383: 2379: 2375: 2369: 2361: 2359: 2357: 2353: 2349: 2345: 2341: 2337: 2333: 2329: 2325: 2321: 2317: 2313: 2309: 2305: 2301: 2297: 2293: 2285: 2281: 2277: 2273: 2269: 2265: 2261: 2258: 2254: 2250: 2246: 2242: 2241: 2240: 2238: 2230: 2227: 2223: 2219: 2215: 2211: 2210: 2209: 2207: 2203: 2199: 2191: 2186: 2185: 2179: 2175: 2171: 2167: 2163: 2159: 2155: 2151: 2147: 2144: 2140: 2136: 2132: 2128: 2124: 2121:is given by 2120: 2116: 2112: 2109: 2105: 2101: 2097: 2093: 2089: 2085: 2081: 2077: 2075:are given and 2074: 2070: 2066: 2062: 2058: 2054: 2050: 2046: 2042: 2038: 2037: 2035: 2031: 2026: 2022: 2018: 2013: 2009: 2004: 2000: 1994: 1990: 1983: 1979: 1975: 1971: 1967: 1963: 1959: 1955: 1948: 1941: 1937: 1933: 1929: 1925: 1922: 1918: 1913: 1909: 1905: 1900: 1896: 1892: 1887: 1884:exists, then 1883: 1879: 1874: 1870: 1869: 1865: 1860: 1856: 1852: 1835: 1829: 1822: 1819: 1816: 1810: 1807: 1801: 1796: 1789: 1786: 1783: 1777: 1774: 1767: 1758: 1754: 1736: 1722: 1718: 1714: 1711: 1707: 1706: 1682: 1679: 1676: 1673: 1670: 1667: 1664: 1661: 1658: 1655: 1652: 1637: 1631: 1625: 1622: 1619: 1613: 1607: 1604: 1601: 1595: 1589: 1568: 1564: 1561: 1556: 1552: 1548: 1545: 1542: 1537: 1533: 1515: 1511: 1507: 1502: 1498: 1489: 1486: 1483: 1479: 1474: 1470: 1467: 1462: 1458: 1454: 1447: 1446: 1445: 1444: 1440: 1436: 1432: 1428: 1424: 1420: 1416: 1412: 1408: 1404: 1400: 1396: 1392: 1388: 1384: 1380: 1376: 1360: 1357: 1353: 1350: 1346: 1343: 1340: 1336: 1333: 1325:that satisfy 1312: 1307: 1303: 1299: 1293: 1290: 1286: 1283: 1262: 1257: 1253: 1249: 1243: 1240: 1236: 1233: 1212: 1207: 1203: 1199: 1191: 1187: 1183: 1179: 1175: 1171: 1168: 1164: 1160: 1156: 1152: 1149: 1146: 1142: 1140: 1134: 1130: 1126: 1122: 1118: 1114: 1110: 1106: 1102: 1098: 1094: 1090: 1086: 1082: 1066: 1060: 1057: 1054: 1034: 1028: 1025: 1022: 1015: 1014:homomorphisms 1011: 1007: 1004: 1001:, so for any 1000: 996: 992: 988: 984: 980: 976: 973: 969: 953: 950: 947: 939: 935: 931: 927: 923: 919: 916: 912: 896: 891: 887: 883: 875: 871: 867: 863: 859: 855: 851: 850:inclusion map 847: 843: 839: 835: 831: 827: 823: 819: 815: 786: 783: 780: 760: 757: 754: 751: 748: 745: 739: 733: 713: 710: 707: 704: 701: 698: 695: 675: 672: 669: 653: 637: 631: 628: 625: 617: 616: 602: 599: 596: 593: 590: 583: 579: 575: 571: 567: 563: 559: 555: 551: 547: 543: 539: 535: 531: 527: 523: 519: 515: 511: 507: 503: 487: 482: 475: 472: 469: 463: 460: 452: 448: 441: 434: 430: 426: 422: 418: 414: 410: 406: 402: 398: 395: :  394: 390: 386: 383: :  382: 378: 375:as above are 374: 370: 366: 363:Suppose that 362: 361: 360: 358: 350: 348: 346: 338: 334: 333: 332: 330: 326: 322: 315: 308: 304: 300: 293: 286: 282: 278: 271: 267: 266: 265: 263: 259: 252: 248: 244: 237: 233: 229: 225: 217: 215: 213: 209: 204: 190: 185: 181: 177: 174: 171: 151: 146: 142: 138: 135: 132: 124: 120: 116: 112: 108: 104: 100: 96: 92: 89: 85: 81: 77: 73: 69: 65: 61: 58: 54: 50: 46: 42: 38: 34: 30: 26: 22: 3275: 3256:Categorified 3160:n-categories 3111:Key concepts 2949:Direct limit 2943: 2932:Coequalizers 2850:Yoneda lemma 2756:Key concepts 2746:Key concepts 2675: 2667: 2662: 2635:Ronald Brown 2621: 2601: 2593:free product 2584: 2580: 2576: 2572: 2568: 2564: 2417: 2413: 2409: 2405: 2397: 2393: 2389: 2385: 2381: 2377: 2371: 2355: 2351: 2347: 2343: 2339: 2335: 2331: 2327: 2323: 2319: 2315: 2311: 2307: 2303: 2299: 2295: 2291: 2289: 2283: 2279: 2275: 2271: 2267: 2263: 2256: 2252: 2248: 2244: 2239:satisfying: 2236: 2234: 2225: 2221: 2217: 2213: 2202:coequalizers 2195: 2177: 2173: 2169: 2165: 2161: 2157: 2156:is given by 2153: 2149: 2142: 2138: 2134: 2130: 2126: 2122: 2118: 2114: 2107: 2103: 2099: 2095: 2091: 2087: 2086:is given by 2083: 2079: 2072: 2068: 2064: 2060: 2056: 2052: 2048: 2044: 2040: 2033: 2029: 2024: 2020: 2016: 2011: 2007: 2002: 1992: 1988: 1981: 1977: 1973: 1969: 1965: 1961: 1957: 1953: 1946: 1939: 1935: 1920: 1916: 1911: 1907: 1903: 1898: 1894: 1890: 1885: 1881: 1877: 1872: 1858: 1854: 1756: 1752: 1719:of positive 1438: 1430: 1426: 1422: 1418: 1414: 1410: 1406: 1402: 1398: 1394: 1173: 1169:(see below). 1147: 1138: 1137:category of 1132: 1128: 1124: 1120: 1116: 1112: 1108: 1096: 1092: 1088: 1084: 1080: 1009: 1005: 971: 967: 937: 929: 925: 914: 910: 873: 869: 865: 861: 857: 853: 845: 841: 837: 833: 825: 651: 577: 573: 569: 565: 561: 558:intersection 553: 549: 541: 537: 533: 529: 525: 521: 517: 513: 512:) such that 501: 450: 446: 439: 432: 428: 420: 416: 408: 404: 400: 396: 392: 388: 384: 380: 372: 368: 364: 354: 342: 328: 324: 320: 313: 306: 302: 291: 284: 280: 275: 261: 257: 250: 246: 242: 235: 231: 227: 223: 221: 205: 118: 114: 106: 102: 98: 94: 90: 79: 75: 71: 67: 63: 59: 44: 40: 36: 32: 28: 18: 3224:-categories 3200:Kan complex 3190:Tricategory 3172:-categories 3062:Subcategory 2820:Exponential 2788:Preadditive 2783:Pre-abelian 379:, and that 345:isomorphism 37:fibered sum 25:mathematics 3242:3-category 3232:2-category 3205:∞-groupoid 3180:Bicategory 2927:Coproducts 2887:Equalizers 2793:Bicategory 2654:References 2619:May, J. P. 2613:References 2282:exists in 2198:coproducts 1866:Properties 1012:, we have 991:zero group 983:direct sum 528:) for all 508:(cf. also 357:categories 3291:Symmetric 3236:2-functor 2976:Relations 2899:Pullbacks 2607:groupoids 2545:∗ 2527:π 2523:→ 2517:∗ 2499:π 2475:∗ 2457:π 2453:→ 2447:∗ 2429:π 2014:) ⊔ 1932:cokernels 1811:⁡ 1778:⁡ 1680:∈ 1668:∈ 1656:∈ 1614:− 1562:∈ 1543:∈ 1487:∈ 1480:∑ 1459:⊗ 1358:∘ 1341:∘ 1304:⊗ 1297:→ 1254:⊗ 1247:→ 1204:⊗ 1192:of rings 1115:), − 1064:→ 1032:→ 997:of every 951:∨ 922:wedge sum 888:∪ 784:⊔ 758:⊔ 752:⊆ 746:∈ 711:⊔ 705:⊆ 699:∈ 673:⊔ 635:→ 629:: 600:⊆ 594:∪ 556:is their 488:∼ 473:⊔ 299:universal 143:⊔ 57:morphisms 47:) is the 3366:Category 3351:Glossary 3331:Category 3305:n-monoid 3258:concepts 2914:Colimits 2882:Products 2835:Morphism 2778:Concrete 2773:Additive 2763:Category 2670:, p. xii 2604:covering 2310:→ 2306: : 2298:→ 2294: : 2224:→ 2220: : 2176:→ 2172: : 2164:→ 2160: : 2141:→ 2137: : 2129:→ 2125: : 2106:→ 2102: : 2094:→ 2090: : 2071:→ 2067: : 2059:→ 2055: : 2047:→ 2043: : 2039:if maps 2023:≅ 1972:→ 1968: : 1960:→ 1956: : 1914: ⊔ 1910:≅ 1901: ⊔ 1888: ⊔ 1875: ⊔ 1721:integers 1688:⟩ 1582:⟨ 1429:→ 1425: : 1417:→ 1413: : 1409:and let 1383:pullback 1381:and the 1354:′ 1337:′ 1287:′ 1237:′ 1143:for any 1141:-modules 995:subgroup 872:→ 868: : 844:→ 840: : 830:subspace 425:preimage 327:→ 323: : 277:commutes 260:→ 256: : 245:→ 241: : 212:pullback 105:→ 97:→ 78:→ 74: : 66:→ 62: : 3341:Outline 3300:n-group 3265:2-group 3220:Strict 3210:∞-topos 3006:Modules 2944:Pushout 2892:Kernels 2825:Functor 2768:Abelian 2666:Riehl, 1375:colimit 1184:of the 1153:In the 1105:mod out 977:In the 848:is the 652:cograph 560:, with 546:subsets 504:is the 453:, i.e. 411:is the 210:of the 53:diagram 49:colimit 29:pushout 3287:Traced 3270:2-ring 3000:Fields 2986:Groups 2981:Magmas 2869:Limits 2376:space 1926:In an 1717:monoid 1401:, and 1387:cospan 1127:under 932:to be 860:along 500:where 371:, and 88:object 84:domain 3281:-ring 3168:Weak 3152:Topos 2996:Rings 2575:into 2168:and 2110:, and 1439:CRing 1437:) in 1407:CRing 1377:of a 1174:CRing 999:group 993:is a 828:is a 726:with 582:union 572:into 445:from 297:) is 51:of a 2971:Sets 2579:and 2490:and 2396:and 2384:and 2354:and 2346:via 2334:via 2318:and 2302:and 2278:and 2266:and 2247:and 2200:and 2152:and 2133:and 2117:and 2098:and 2082:and 2063:and 1964:and 1857:and 1755:and 1708:See 1421:and 1379:span 1275:and 1145:ring 1131:and 1091:and 1083:and 1047:and 1008:and 936:and 928:and 913:and 836:and 576:and 564:and 552:and 544:are 540:and 510:this 449:and 427:(in 419:and 407:and 391:and 377:sets 249:and 226:and 164:and 117:and 101:and 70:and 27:, a 2815:End 2805:CCC 2587:is 2404:of 2342:to 2330:to 2270:of 2251:of 1853:of 1808:lcm 1775:lcm 1180:(a 1172:In 1165:of 832:of 532:in 415:of 43:or 39:or 35:or 19:In 3368:: 3293:) 3289:)( 2599:. 2408:, 2216:, 2158:ki 2154:hg 2051:, 1998:). 1945:, 1938:, 1397:, 615:. 438:, 367:, 347:. 312:, 305:, 290:, 283:, 214:. 203:. 3285:( 3278:n 3276:E 3238:) 3234:( 3222:n 3186:) 3182:( 3170:n 3012:) 3008:( 3002:) 2998:( 2726:e 2719:t 2712:v 2683:. 2585:D 2581:B 2577:A 2573:D 2569:X 2565:X 2551:. 2548:) 2542:, 2539:B 2536:( 2531:1 2520:) 2514:, 2511:D 2508:( 2503:1 2478:) 2472:, 2469:A 2466:( 2461:1 2450:) 2444:, 2441:D 2438:( 2433:1 2418:X 2414:D 2410:B 2406:A 2398:B 2394:A 2390:D 2386:B 2382:A 2378:X 2356:g 2352:f 2348:g 2344:Y 2340:Z 2336:f 2332:X 2328:Z 2324:Z 2320:Y 2316:X 2312:Y 2308:Z 2304:g 2300:X 2296:Z 2292:f 2286:. 2284:C 2280:k 2276:j 2272:C 2268:k 2264:j 2259:; 2257:C 2253:C 2249:B 2245:A 2237:C 2226:Y 2222:X 2218:g 2214:f 2180:. 2178:Q 2174:D 2170:l 2166:Q 2162:A 2150:f 2145:, 2143:Q 2139:D 2135:l 2131:Q 2127:P 2123:k 2119:h 2115:j 2108:P 2104:B 2100:j 2096:P 2092:A 2088:i 2084:g 2080:f 2073:D 2069:B 2065:h 2061:B 2057:C 2053:g 2049:A 2045:C 2041:f 2034:D 2030:C 2027:⊔ 2025:A 2021:D 2017:B 2012:B 2008:C 2005:⊔ 2003:A 1996:1 1993:i 1989:g 1985:2 1982:i 1978:f 1974:Y 1970:Z 1966:g 1962:X 1958:Z 1954:f 1950:2 1947:i 1943:1 1940:i 1936:P 1923:. 1921:A 1917:C 1912:B 1908:B 1904:C 1899:A 1895:A 1891:C 1886:B 1882:B 1878:C 1873:A 1859:n 1855:m 1836:) 1830:n 1826:) 1823:n 1820:, 1817:m 1814:( 1802:, 1797:m 1793:) 1790:n 1787:, 1784:m 1781:( 1768:( 1757:n 1753:m 1737:+ 1732:Z 1683:C 1677:c 1674:, 1671:B 1665:b 1662:, 1659:A 1653:a 1647:| 1641:) 1638:b 1635:) 1632:c 1629:( 1626:g 1623:, 1620:a 1617:( 1611:) 1608:b 1605:, 1602:a 1599:) 1596:c 1593:( 1590:f 1587:( 1575:/ 1569:} 1565:B 1557:i 1553:b 1549:, 1546:A 1538:i 1534:a 1527:| 1521:) 1516:i 1512:b 1508:, 1503:i 1499:a 1495:( 1490:I 1484:i 1475:{ 1471:= 1468:B 1463:C 1455:A 1431:B 1427:C 1423:g 1419:A 1415:C 1411:f 1403:C 1399:B 1395:A 1361:f 1351:g 1347:= 1344:g 1334:f 1313:B 1308:C 1300:A 1294:B 1291:: 1284:f 1263:B 1258:C 1250:A 1244:A 1241:: 1234:g 1213:B 1208:C 1200:A 1150:. 1148:R 1139:R 1133:g 1129:f 1125:Z 1121:z 1119:( 1117:g 1113:z 1111:( 1109:f 1097:Z 1093:g 1089:f 1085:B 1081:A 1067:B 1061:0 1058:: 1055:g 1035:A 1029:0 1026:: 1023:f 1010:B 1006:A 974:. 972:Y 968:X 954:Y 948:X 938:Z 930:Y 926:X 915:g 911:f 897:Y 892:f 884:X 874:X 870:Z 866:f 862:Z 858:X 854:Y 846:Y 842:Z 838:g 834:Y 826:Z 811:. 809:Y 805:f 801:Y 787:Y 781:X 761:Y 755:X 749:Y 743:) 740:x 737:( 734:f 714:Y 708:X 702:X 696:x 676:Y 670:X 660:X 656:f 638:Y 632:X 626:f 603:W 597:Y 591:X 578:Y 574:X 570:Z 566:g 562:f 554:Z 550:W 542:Y 538:X 534:Z 530:z 526:z 524:( 522:g 518:z 516:( 514:f 502:~ 483:/ 479:) 476:Y 470:X 467:( 464:= 461:P 451:Y 447:X 443:2 440:i 436:1 433:i 429:Z 421:Y 417:X 409:g 405:f 401:Y 397:Z 393:g 389:X 385:Z 381:f 373:Z 369:Y 365:X 329:Q 325:P 321:u 317:2 314:j 310:1 307:j 303:Q 295:2 292:i 288:1 285:i 281:P 262:P 258:Y 254:2 251:i 247:P 243:X 239:1 236:i 232:P 228:g 224:f 191:Y 186:Z 182:+ 178:X 175:= 172:P 152:Y 147:Z 139:X 136:= 133:P 119:g 115:f 107:P 103:Y 99:P 95:X 91:P 80:Y 76:Z 72:g 68:X 64:Z 60:f

Index

category theory
mathematics
colimit
diagram
morphisms
domain
object
commutative square
universal property
categorical dual
pullback

commutes
universal

isomorphism
categories
sets
disjoint union
preimage
finest equivalence relation
this
subsets
intersection
union
adjunction spaces
category of topological spaces
subspace
inclusion map
wedge sum

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.