Knowledge

Cubic field

Source 📝

659: 651: 2145: 1233: 1059: 654:
The blue crosses are the number of totally real cubic fields of bounded discriminant. The black line is the asymptotic distribution to first order whereas the green line includes the second order term.
662:
The blue crosses are the number of complex cubic fields of bounded discriminant. The black line is the asymptotic distribution to first order whereas the green line includes the second order term.
356: 145: 1228:{\displaystyle N^{\pm }(X)\sim {\frac {A_{\pm }}{12\zeta (3)}}X+{\frac {4\zeta ({\frac {1}{3}})B_{\pm }}{5\Gamma ({\frac {2}{3}})^{3}\zeta ({\frac {5}{3}})}}X^{\frac {5}{6}}} 869: 1274: 292: 1923: 424:
is an example of a totally real cubic field that is not cyclic. Its discriminant is 148, the smallest discriminant of a non-cyclic totally real cubic field.
358:. This is an example of a pure cubic field, and hence of a complex cubic field. In fact, of all pure cubic fields, it has the smallest discriminant (in 667: 252: 402:
yields a cyclic cubic field, and hence a totally real cubic field. It has the smallest discriminant of all totally real cubic fields, namely 49.
1904: 689:, the discriminant of a cubic field will be positive precisely when the field is totally real, and negative if it is a complex cubic field. 1970: 2165: 581: 255:, then the proportion of cubic fields which are cyclic approaches zero as the bound on the discriminant approaches infinity. 1888: 993:
The study of the number of cubic fields whose discriminant is less than a given bound is a current area of research. Let
2170: 71: 1309: 436: 1733:
This theorem yields the only two proven cases of the Cohen-Lenstra heuristics for class groups of quadratic fields.
1794: 1629: 1034: 1776:. Translations of Mathematical Monographs. Vol. 10. Providence, Rhode Island: American Mathematical Society. 1701: 523: 44: 321: 32: 2149: 658: 1038: 1009:)) denote the number of totally real (respectively complex) cubic fields whose discriminant is bounded by 538: 155: 40: 96: 1281: 601: 1834:; Shankar, Arul; Tsimerman, Jacob (2013), "On the Davenport–Heilbronn theorem and second order terms", 650: 1979: 1853: 1724: 1637: 817: 440: 244: 177: 2091:
Taniguchi, Takashi; Thorne, Frank (2013), "Secondary terms in counting functions for cubic fields",
251:
is totally real. It is a rare occurrence in the sense that if the set of cubic fields is ordered by
2017:(1930), "Arithmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischer Grundlage", 634: = −3. This is the case for which the quadratic field contained in the Galois closure of 83: 380:
is not pure. It has the smallest discriminant (in absolute value) of all cubic fields, namely −23.
2126: 2100: 2080: 2054: 2034: 2003: 1942: 1877: 1843: 1714: 1401: 1255: 189: 268: 1900: 1711:
The mean number of 3-torsion elements in the class groups and ideal groups of quadratic orders
1689: 1573: 295: 1534: 2110: 2064: 2026: 1987: 1961: 1932: 1861: 1810: 1645: 1603: 1537: 1436: 1014: 428: 224: 158: 2122: 2076: 1999: 1954: 1914: 1873: 1824: 2118: 2072: 1995: 1950: 1910: 1896: 1869: 1831: 1820: 1706: 1697: 1557: 1553: 562: 493: 64: 60: 1983: 1857: 1728: 1641: 1965: 1541: 1440: 1413: 1409: 1405: 1289: 1018: 979: 639: 531: 457: 359: 306: 1666:
Concerning algebraic integers derivable from a root of an equation of the third degree
1650: 1624: 1608: 1592:"Effective determination of the decomposition of the rational primes in a cubic field" 1591: 2159: 2038: 2007: 1881: 2130: 580:
is sometimes considered as the "degenerate" quadratic field of discriminant 1). The
2084: 2014: 1483:, §B.4 contains a table of totally real cubic fields and indicates which are cyclic 883: 469: 240: 232: 2068: 1815: 1041:, combined with a study of the tables of cubic fields compiled by Karim Belabas ( 305:. Such fields are always complex cubic fields since each positive number has two 1693: 318:
Adjoining the real cube root of 2 to the rational numbers gives the cubic field
174: 162: 28: 17: 1688:
Their work can also be interpreted as a computation of the average size of the
1400:. These fundamental systems of units can be calculated by means of generalized 1865: 1050: 975: 87: 2114: 1046: 263: 1991: 2144: 1431:
Harvey Cohn computed an asymptotic for the number of cyclic cubic fields (
2030: 1946: 1533:
The exact counts were computed by Michel Olivier and are available at
2059: 1937: 1801:
Belabas, Karim (1997), "A fast algorithm to compute cubic fields",
1334:
pairs of conjugate complex embeddings is determined by the formula
2105: 2045:
Roberts, David P. (2001), "Density of cubic field discriminants",
1895:, Graduate Texts in Mathematics, vol. 138, Berlin, New York: 1848: 1719: 811:(θ) for some number θ that is a root of an irreducible polynomial 657: 649: 431:
are cubic because the degree of a cyclotomic field is equal to φ(
722:. Formulae are known which calculate the prime decomposition of 1968:(1971), "On the density of discriminants of cubic fields. II", 1548:). The second-order term was conjectured by David P. Roberts ( 1296:
using methods based on Bhargava's earlier work, as well as by
928:
this index formula can be combined with the conductor formula
939:
to obtain a decomposition of the polynomial discriminant Δ =
734:
Unlike quadratic fields, several non-isomorphic cubic fields
1921:
Cohn, Harvey (1954), "The density of abelian cubic fields",
696: > 0 there are only finitely many cubic fields 215:
if it contains all three roots of its generating polynomial
1759:
On a generalization of the algorithm of continued fractions
1700:, and thus constitutes one of the few proven cases of the 681:
is the number of conjugate pairs of complex embeddings of
484:
of degree two as its Galois closure. The Galois group Gal(
1021:
determined the first term of the asymptotic behaviour of
1561: 1293: 1514: 1512: 443:
values except for φ(1) = φ(2) = 1.
1258: 1062: 820: 324: 271: 99: 1276:, according to the totally real or complex case, ζ( 1677: 1668:, Master's Thesis, St. Petersburg, 1894 (Russian). 1545: 1444: 1268: 1227: 1033:goes to infinity). By means of an analysis of the 863: 350: 286: 139: 1893:A Course in Computational Algebraic Number Theory 1774:The theory of irrationalities of the third degree 365:The complex cubic field obtained by adjoining to 1924:Proceedings of the American Mathematical Society 1596:Proceedings of the American Mathematical Society 1292:. Proofs of this formula have been published by 1459:, §B.3 contains a table of complex cubic fields 1408:, which have been interpreted geometrically by 1297: 472:of order three. However, any other cubic field 1443:computed the asymptotic for all cubic fields ( 8: 1761:(in Russian). Warsaw: Doctoral Dissertation. 262:if it can be obtained by adjoining the real 1625:"Multiplicities of dihedral discriminants" 1529: 1527: 913:(θ) of θ is then defined by Δ =  731:, and so it can be explicitly calculated. 2104: 2058: 1936: 1847: 1814: 1718: 1649: 1607: 1259: 1257: 1214: 1194: 1182: 1168: 1151: 1134: 1122: 1091: 1085: 1067: 1061: 840: 819: 338: 333: 325: 323: 277: 272: 270: 114: 100: 98: 1294:Bhargava, Shankar & Tsimerman (2013) 924:In the case of a non-cyclic cubic field 351:{\displaystyle \mathbf {Q} ({\sqrt{2}})} 1744: 1549: 1536:. The first-order asymptotic is due to 1424: 1042: 1013:in absolute value. In the early 1970s, 1772:Delone, B. N.; Faddeev, D. K. (1964). 1562:Bhargava, Shankar & Tsimerman 2013 1352:− 1. Hence a totally real cubic field 1518: 1504: 1492: 1480: 1468: 1456: 1300:based on the Shintani zeta function. 630:is a pure cubic field if and only if 7: 1791:Introductory algebraic number theory 1552:) and a proof has been published by 1432: 1396:= 1 has a single fundamental unit ε 1053:a more precise asymptotic formula: 405:The field obtained by adjoining to 223:is a cyclic cubic field if it is a 140:{\displaystyle \mathbf {Q} /(f(x))} 1971:Proceedings of the Royal Society A 1789:Şaban Alaca, Kenneth S. Williams, 1162: 553: ≠ 1 then the Galois closure 537: = 1, in which case the only 510:The discriminant of a cubic field 25: 1651:10.1090/S0025-5718-1992-1122071-3 1609:10.1090/S0002-9939-1983-0687621-6 780:  = −1228, 22356, 2143: 978:up to a possible factor 2 or 2. 966:associated with the cubic field 772:  = −1836, 3969, 748:may share the same discriminant 638:is the cyclotomic field of cube 326: 101: 1590:Llorente, P.; Nart, E. (1983). 1370:= 0 has two independent units ε 950:into the square of the product 898:. Denoting the discriminant of 864:{\displaystyle f(X)=X^{3}-aX+b} 788: = −3299, 32009, and 247:three. This can only happen if 1678:Davenport & Heilbronn 1971 1546:Davenport & Heilbronn 1971 1445:Davenport & Heilbronn 1971 1204: 1191: 1179: 1165: 1144: 1131: 1110: 1104: 1079: 1073: 830: 824: 796: = −70956, 3054132. 756:of these fields is called the 345: 330: 134: 131: 125: 119: 111: 105: 1: 2069:10.1090/s0025-5718-00-01291-6 1816:10.1090/s0025-5718-97-00846-6 1578:Diophantische Approximationen 1316:of an algebraic number field 1312:, the torsion-free unit rank 1298:Taniguchi & Thorne (2013) 982:gave a method for separating 476:is a non-Galois extension of 301:to the rational number field 1636:(198): 831–847 and S55–S58. 1269:{\displaystyle {\sqrt {3}}} 514:can be written uniquely as 31:, specifically the area of 2187: 2047:Mathematics of Computation 1803:Mathematics of Computation 1795:Cambridge University Press 1378:and a complex cubic field 764:. Some small examples are 506:Associated quadratic field 480:and has a field extension 296:cube-free positive integer 287:{\displaystyle {\sqrt{n}}} 258:A cubic field is called a 196:has a non-real root, then 192:. If, on the other hand, 188:and it is an example of a 2093:Duke Mathematical Journal 2019:Mathematische Zeitschrift 1866:10.1007/s00222-012-0433-0 1702:Cohen–Lenstra conjectures 990:in the square part of Δ. 784:  = 4 for 2115:10.1215/00127094-2371752 1836:Inventiones Mathematicae 1310:Dirichlet's unit theorem 576: = 1, the subfield 524:fundamental discriminant 437:Euler's totient function 186:totally real cubic field 2166:Algebraic number theory 1757:Voronoi, G. F. (1896). 962:of the quadratic field 692:Given some real number 492:) is isomorphic to the 90:to a field of the form 33:algebraic number theory 1992:10.1098/rspa.1971.0075 1270: 1229: 1039:Shintani zeta function 865: 666:Since the sign of the 663: 655: 612:. The discriminant of 568:whose discriminant is 460:with Galois group Gal( 439:, which only takes on 352: 288: 141: 41:algebraic number field 1709:; Varma, Ila (2014), 1623:Mayer, D. C. (1992). 1282:Riemann zeta function 1271: 1245: = 1 or 3, 1230: 958:and the discriminant 866: 661: 653: 602:relative discriminant 452:A cyclic cubic field 353: 309:non-real cube roots. 289: 142: 74: = 3, then 2152:at Wikimedia Commons 1556:, Arul Shankar, and 1327:real embeddings and 1256: 1060: 818: 803:will be of the form 760:of the discriminant 468:) isomorphic to the 383:Adjoining a root of 322: 269: 231:, in which case its 97: 2171:Field (mathematics) 1984:1971RSPSA.322..405D 1858:2013InMat.193..439B 1729:2014arXiv1401.5875B 1642:1992MaCom..58..831M 1049:, David P. Roberts 882:are integers. The 792: = 6 for 776: = 3 for 768: = 2 for 700:whose discriminant 202:complex cubic field 2053:(236): 1699–1705, 2031:10.1007/BF01246435 1809:(219): 1213–1237, 1402:continued fraction 1266: 1252: = 1 or 1225: 890:is Δ = 4 861: 670:of a number field 664: 656: 561:contains a unique 502:on three letters. 348: 284: 213:cyclic cubic field 190:totally real field 137: 2148:Media related to 2099:(13): 2451–2508, 1978:(1551): 405–420, 1962:Davenport, Harold 1906:978-3-540-55640-4 1264: 1222: 1208: 1202: 1176: 1142: 1114: 429:cyclotomic fields 343: 282: 16:(Redirected from 2178: 2147: 2133: 2108: 2087: 2062: 2041: 2010: 1957: 1940: 1917: 1884: 1851: 1832:Bhargava, Manjul 1827: 1818: 1778: 1777: 1769: 1763: 1762: 1754: 1748: 1747:, Conjecture 3.1 1742: 1736: 1735: 1722: 1707:Bhargava, Manjul 1686: 1680: 1675: 1669: 1662: 1656: 1655: 1653: 1620: 1614: 1613: 1611: 1587: 1581: 1580:, chapter 4, §5. 1571: 1565: 1538:Harold Davenport 1531: 1522: 1516: 1507: 1502: 1496: 1490: 1484: 1478: 1472: 1466: 1460: 1454: 1448: 1437:Harold Davenport 1429: 1275: 1273: 1272: 1267: 1265: 1260: 1234: 1232: 1231: 1226: 1224: 1223: 1215: 1209: 1207: 1203: 1195: 1187: 1186: 1177: 1169: 1157: 1156: 1155: 1143: 1135: 1123: 1115: 1113: 1096: 1095: 1086: 1072: 1071: 1015:Harold Davenport 1001:) (respectively 870: 868: 867: 862: 845: 844: 799:Any cubic field 423: 397: 379: 357: 355: 354: 349: 344: 342: 334: 329: 293: 291: 290: 285: 283: 281: 273: 260:pure cubic field 225:Galois extension 219:. Equivalently, 159:cubic polynomial 146: 144: 143: 138: 118: 104: 65:rational numbers 21: 18:Pure cubic field 2186: 2185: 2181: 2180: 2179: 2177: 2176: 2175: 2156: 2155: 2140: 2090: 2044: 2013: 1966:Heilbronn, Hans 1960: 1938:10.2307/2031963 1920: 1907: 1897:Springer-Verlag 1887: 1830: 1800: 1786: 1781: 1771: 1770: 1766: 1756: 1755: 1751: 1743: 1739: 1705: 1698:quadratic field 1687: 1683: 1676: 1672: 1664:G. F. Voronoi, 1663: 1659: 1622: 1621: 1617: 1589: 1588: 1584: 1572: 1568: 1558:Jacob Tsimerman 1554:Manjul Bhargava 1532: 1525: 1517: 1510: 1503: 1499: 1491: 1487: 1479: 1475: 1467: 1463: 1455: 1451: 1430: 1426: 1422: 1399: 1395: 1388: 1377: 1373: 1369: 1362: 1351: 1344: 1333: 1326: 1306: 1254: 1253: 1251: 1244: 1210: 1178: 1158: 1147: 1124: 1097: 1087: 1063: 1058: 1057: 894: − 27 836: 816: 815: 746: 740: 730: 717: 708: 680: 674:is (−1), where 648: 563:quadratic field 508: 501: 494:symmetric group 450: 410: 384: 370: 362:), namely −108. 320: 319: 315: 267: 266: 95: 94: 61:field extension 53: 23: 22: 15: 12: 11: 5: 2184: 2182: 2174: 2173: 2168: 2158: 2157: 2154: 2153: 2139: 2138:External links 2136: 2135: 2134: 2088: 2042: 2025:(1): 565–582, 2011: 1958: 1931:(3): 476–477, 1918: 1905: 1885: 1842:(2): 439–499, 1828: 1798: 1785: 1782: 1780: 1779: 1764: 1749: 1737: 1681: 1670: 1657: 1615: 1602:(4): 579–585. 1582: 1566: 1542:Hans Heilbronn 1523: 1508: 1497: 1485: 1473: 1461: 1449: 1441:Hans Heilbronn 1423: 1421: 1418: 1404:algorithms by 1397: 1393: 1386: 1375: 1371: 1367: 1360: 1349: 1342: 1331: 1324: 1305: 1302: 1290:Gamma function 1263: 1249: 1242: 1236: 1235: 1221: 1218: 1213: 1206: 1201: 1198: 1193: 1190: 1185: 1181: 1175: 1172: 1167: 1164: 1161: 1154: 1150: 1146: 1141: 1138: 1133: 1130: 1127: 1121: 1118: 1112: 1109: 1106: 1103: 1100: 1094: 1090: 1084: 1081: 1078: 1075: 1070: 1066: 1019:Hans Heilbronn 980:Georgy Voronoy 872: 871: 860: 857: 854: 851: 848: 843: 839: 835: 832: 829: 826: 823: 744: 738: 726: 718:| ≤  713: 704: 678: 647: 644: 640:roots of unity 532:if and only if 507: 504: 499: 458:Galois closure 449: 448:Galois closure 446: 445: 444: 435:), where φ is 425: 403: 381: 363: 360:absolute value 347: 341: 337: 332: 328: 314: 311: 280: 276: 207:A cubic field 148: 147: 136: 133: 130: 127: 124: 121: 117: 113: 110: 107: 103: 52: 49: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2183: 2172: 2169: 2167: 2164: 2163: 2161: 2151: 2146: 2142: 2141: 2137: 2132: 2128: 2124: 2120: 2116: 2112: 2107: 2102: 2098: 2094: 2089: 2086: 2082: 2078: 2074: 2070: 2066: 2061: 2056: 2052: 2048: 2043: 2040: 2036: 2032: 2028: 2024: 2021:(in German), 2020: 2016: 2015:Hasse, Helmut 2012: 2009: 2005: 2001: 1997: 1993: 1989: 1985: 1981: 1977: 1973: 1972: 1967: 1963: 1959: 1956: 1952: 1948: 1944: 1939: 1934: 1930: 1926: 1925: 1919: 1916: 1912: 1908: 1902: 1898: 1894: 1890: 1886: 1883: 1879: 1875: 1871: 1867: 1863: 1859: 1855: 1850: 1845: 1841: 1837: 1833: 1829: 1826: 1822: 1817: 1812: 1808: 1804: 1799: 1796: 1792: 1788: 1787: 1783: 1775: 1768: 1765: 1760: 1753: 1750: 1746: 1741: 1738: 1734: 1730: 1726: 1721: 1716: 1712: 1708: 1703: 1699: 1695: 1691: 1685: 1682: 1679: 1674: 1671: 1667: 1661: 1658: 1652: 1647: 1643: 1639: 1635: 1632: 1631: 1626: 1619: 1616: 1610: 1605: 1601: 1597: 1593: 1586: 1583: 1579: 1575: 1570: 1567: 1563: 1559: 1555: 1551: 1547: 1543: 1539: 1535: 1530: 1528: 1524: 1520: 1515: 1513: 1509: 1506: 1501: 1498: 1494: 1489: 1486: 1482: 1477: 1474: 1470: 1465: 1462: 1458: 1453: 1450: 1446: 1442: 1438: 1434: 1428: 1425: 1419: 1417: 1415: 1411: 1407: 1403: 1392: 1385: 1381: 1366: 1359: 1355: 1348: 1341: 1337: 1330: 1323: 1319: 1315: 1311: 1308:According to 1303: 1301: 1299: 1295: 1291: 1287: 1283: 1279: 1261: 1248: 1241: 1219: 1216: 1211: 1199: 1196: 1188: 1183: 1173: 1170: 1159: 1152: 1148: 1139: 1136: 1128: 1125: 1119: 1116: 1107: 1101: 1098: 1092: 1088: 1082: 1076: 1068: 1064: 1056: 1055: 1054: 1052: 1048: 1044: 1040: 1036: 1032: 1028: 1024: 1020: 1016: 1012: 1008: 1004: 1000: 996: 991: 989: 985: 981: 977: 973: 969: 965: 961: 957: 953: 949: 946: 942: 938: 935: 931: 927: 922: 920: 916: 912: 909: 905: 901: 897: 893: 889: 885: 881: 877: 858: 855: 852: 849: 846: 841: 837: 833: 827: 821: 814: 813: 812: 810: 807: =  806: 802: 797: 795: 791: 787: 783: 779: 775: 771: 767: 763: 759: 755: 752:. The number 751: 747: 737: 732: 729: 725: 721: 716: 712: 707: 703: 699: 695: 690: 688: 684: 677: 673: 669: 660: 652: 645: 643: 641: 637: 633: 629: 624: 622: 619: 615: 611: 607: 603: 599: 595: 591: 587: 583: 579: 575: 572:(in the case 571: 567: 564: 560: 556: 552: 548: 544: 540: 536: 533: 529: 525: 521: 517: 513: 505: 503: 498: 495: 491: 487: 483: 479: 475: 471: 467: 463: 459: 455: 447: 442: 438: 434: 430: 426: 421: 417: 413: 408: 404: 401: 395: 391: 387: 382: 377: 373: 368: 364: 361: 339: 335: 317: 316: 312: 310: 308: 304: 300: 297: 278: 274: 265: 261: 256: 254: 250: 246: 242: 238: 234: 230: 226: 222: 218: 214: 210: 205: 203: 199: 195: 191: 187: 183: 179: 176: 172: 168: 164: 160: 157: 153: 128: 122: 115: 108: 93: 92: 91: 89: 85: 81: 77: 73: 69: 66: 62: 58: 50: 48: 46: 42: 38: 34: 30: 19: 2096: 2092: 2060:math/9904190 2050: 2046: 2022: 2018: 1975: 1969: 1928: 1922: 1892: 1889:Cohen, Henri 1839: 1835: 1806: 1802: 1790: 1773: 1767: 1758: 1752: 1745:Roberts 2001 1740: 1732: 1710: 1704:: see, e.g. 1692:part of the 1684: 1673: 1665: 1660: 1633: 1628: 1618: 1599: 1595: 1585: 1577: 1574:H. Minkowski 1569: 1550:Roberts 2001 1500: 1488: 1476: 1464: 1452: 1427: 1390: 1383: 1379: 1364: 1357: 1353: 1346: 1339: 1335: 1328: 1321: 1317: 1313: 1307: 1285: 1277: 1246: 1239: 1237: 1043:Belabas 1997 1030: 1026: 1022: 1010: 1006: 1002: 998: 994: 992: 987: 983: 971: 967: 963: 959: 955: 951: 947: 944: 940: 936: 933: 929: 925: 923: 918: 914: 910: 907: 903: 899: 895: 891: 887: 884:discriminant 879: 875: 873: 808: 804: 800: 798: 793: 789: 785: 781: 777: 773: 769: 765: 761: 758:multiplicity 757: 753: 749: 742: 735: 733: 727: 723: 719: 714: 710: 705: 701: 697: 693: 691: 686: 682: 675: 671: 668:discriminant 665: 646:Discriminant 635: 631: 627: 625: 620: 617: 613: 609: 605: 597: 593: 589: 585: 577: 573: 569: 565: 558: 554: 550: 546: 542: 534: 527: 519: 515: 511: 509: 496: 489: 485: 481: 477: 473: 470:cyclic group 465: 461: 453: 451: 432: 419: 415: 411: 406: 399: 393: 389: 385: 375: 371: 366: 302: 298: 259: 257: 253:discriminant 248: 236: 233:Galois group 228: 220: 216: 212: 211:is called a 208: 206: 201: 200:is called a 197: 193: 185: 184:is called a 181: 170: 166: 163:coefficients 151: 149: 79: 78:is called a 75: 67: 56: 54: 36: 26: 2150:Cubic field 1694:class group 1630:Math. Comp. 1051:conjectured 1045:) and some 1029:) (i.e. as 709:satisfies | 549:itself. If 456:is its own 156:irreducible 82:. Any such 80:cubic field 37:cubic field 29:mathematics 2160:Categories 1784:References 1519:Cohen 1993 1505:Hasse 1930 1493:Cohen 1993 1481:Cohen 1993 1469:Cohen 1993 1457:Cohen 1993 1304:Unit group 1047:heuristics 976:squarefree 626:The field 530:is cyclic 409:a root of 369:a root of 173:has three 88:isomorphic 51:Definition 2106:1102.2914 2039:121649559 2008:122814162 1882:253738365 1849:1005.0672 1720:1401.5875 1690:3-torsion 1435:), while 1433:Cohn 1954 1288:) is the 1280:) is the 1189:ζ 1163:Γ 1153:± 1129:ζ 1102:ζ 1093:± 1083:∼ 1069:± 847:− 582:conductor 264:cube root 2131:16463250 1891:(1993), 1521:, §6.4.5 1284:, and Γ( 986:(θ) and 970:, where 539:subfield 526:. Then, 313:Examples 2123:3127806 2085:7524750 2077:1836927 2000:0491593 1980:Bibcode 1955:0064076 1947:2031963 1915:1228206 1874:3090184 1854:Bibcode 1825:1415795 1797:, 2004. 1725:Bibcode 1638:Bibcode 1414:Faddeev 1406:Voronoi 1037:of the 1035:residue 741:, ..., 600:is the 307:complex 180:, then 63:of the 47:three. 2129:  2121:  2083:  2075:  2037:  2006:  1998:  1953:  1945:  1913:  1903:  1880:  1872:  1823:  1495:, §B.4 1471:, §B.3 1410:Delone 1238:where 906:, the 874:where 596:, and 518:where 241:cyclic 169:. If 154:is an 150:where 72:degree 45:degree 39:is an 2127:S2CID 2101:arXiv 2081:S2CID 2055:arXiv 2035:S2CID 2004:S2CID 1943:JSTOR 1878:S2CID 1844:arXiv 1715:arXiv 1696:of a 1420:Notes 1382:with 1363:= 3, 1356:with 1320:with 908:index 685:into 608:over 588:over 522:is a 294:of a 245:order 235:over 178:roots 161:with 84:field 59:is a 1901:ISBN 1540:and 1439:and 1412:and 1017:and 878:and 441:even 175:real 35:, a 2111:doi 2097:162 2065:doi 2027:doi 1988:doi 1976:322 1933:doi 1862:doi 1840:193 1811:doi 1646:doi 1604:doi 1374:, ε 974:is 954:(θ) 943:(θ) 917:(θ) 902:by 886:of 616:is 604:of 592:is 584:of 557:of 545:is 541:of 427:No 422:− 1 418:− 3 398:to 396:− 1 392:− 2 378:− 1 243:of 239:is 227:of 165:in 86:is 70:of 55:If 43:of 27:In 2162:: 2125:, 2119:MR 2117:, 2109:, 2095:, 2079:, 2073:MR 2071:, 2063:, 2051:70 2049:, 2033:, 2023:31 2002:, 1996:MR 1994:, 1986:, 1974:, 1964:; 1951:MR 1949:, 1941:, 1927:, 1911:MR 1909:, 1899:, 1876:, 1870:MR 1868:, 1860:, 1852:, 1838:, 1821:MR 1819:, 1807:66 1805:, 1793:, 1731:, 1723:, 1713:, 1644:. 1634:58 1627:. 1600:87 1598:. 1594:. 1576:, 1564:). 1526:^ 1511:^ 1447:). 1416:. 1389:= 1345:+ 1338:= 1099:12 932:= 921:. 642:. 623:. 516:df 414:+ 388:+ 374:+ 204:. 2113:: 2103:: 2067:: 2057:: 2029:: 1990:: 1982:: 1935:: 1929:5 1864:: 1856:: 1846:: 1813:: 1727:: 1717:: 1654:. 1648:: 1640:: 1612:. 1606:: 1560:( 1544:( 1398:1 1394:2 1391:r 1387:1 1384:r 1380:K 1376:2 1372:1 1368:2 1365:r 1361:1 1358:r 1354:K 1350:2 1347:r 1343:1 1340:r 1336:r 1332:2 1329:r 1325:1 1322:r 1318:K 1314:r 1286:s 1278:s 1262:3 1250:± 1247:B 1243:± 1240:A 1220:6 1217:5 1212:X 1205:) 1200:3 1197:5 1192:( 1184:3 1180:) 1174:3 1171:2 1166:( 1160:5 1149:B 1145:) 1140:3 1137:1 1132:( 1126:4 1120:+ 1117:X 1111:) 1108:3 1105:( 1089:A 1080:) 1077:X 1074:( 1065:N 1031:X 1027:X 1025:( 1023:N 1011:X 1007:X 1005:( 1003:N 999:X 997:( 995:N 988:f 984:i 972:d 968:K 964:k 960:d 956:f 952:i 948:d 945:f 941:i 937:d 934:f 930:D 926:K 919:D 915:i 911:i 904:D 900:K 896:b 892:a 888:f 880:b 876:a 859:b 856:+ 853:X 850:a 842:3 838:X 834:= 831:) 828:X 825:( 822:f 809:Q 805:K 801:K 794:D 790:m 786:D 782:m 778:D 774:m 770:D 766:m 762:D 754:m 750:D 745:m 743:K 739:1 736:K 728:K 724:D 720:N 715:K 711:D 706:K 702:D 698:K 694:N 687:C 683:K 679:2 676:r 672:K 636:K 632:d 628:K 621:f 618:d 614:N 610:K 606:N 598:f 594:f 590:k 586:N 578:Q 574:d 570:d 566:k 559:K 555:N 551:d 547:Q 543:K 535:d 528:K 520:d 512:K 500:3 497:S 490:Q 488:/ 486:N 482:N 478:Q 474:K 466:Q 464:/ 462:K 454:K 433:n 420:x 416:x 412:x 407:Q 400:Q 394:x 390:x 386:x 376:x 372:x 367:Q 346:) 340:3 336:2 331:( 327:Q 303:Q 299:n 279:3 275:n 249:K 237:Q 229:Q 221:K 217:f 209:K 198:K 194:f 182:K 171:f 167:Q 152:f 135:) 132:) 129:x 126:( 123:f 120:( 116:/ 112:] 109:x 106:[ 102:Q 76:K 68:Q 57:K 20:)

Index

Pure cubic field
mathematics
algebraic number theory
algebraic number field
degree
field extension
rational numbers
degree
field
isomorphic
irreducible
cubic polynomial
coefficients
real
roots
totally real field
Galois extension
Galois group
cyclic
order
discriminant
cube root
cube-free positive integer
complex
absolute value
cyclotomic fields
Euler's totient function
even
Galois closure
cyclic group

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.