Knowledge (XXG)

Pyroelectricity

Source 📝

357:. Normally materials are very nearly electrically neutral on the macroscopic level. However, the positive and negative charges which make up the material are not necessarily distributed in a symmetric manner. If the sum of charge times distance for all elements of the basic cell does not equal zero the cell will have an electric dipole moment (a vector quantity). The dipole moment per unit volume is defined as the dielectric polarization. If this dipole moment changes with the effect of applied temperature changes, applied electric field, or applied pressure, the material is pyroelectric, ferroelectric, or piezoelectric, respectively. 27: 89:. Despite being pyroelectric, novel materials such as boron aluminum nitride (BAlN) and boron gallium nitride (BGaN) have zero piezoelectric response for strain along the c-axis at certain compositions, the two properties being closely related. However, note that some piezoelectric materials have a crystal symmetry that does not allow pyroelectricity. 376:: In a typical demonstration of pyroelectricity, the whole crystal is changed from one temperature to another, and the result is a temporary voltage across the crystal. In a typical demonstration of thermoelectricity, one part of the device is kept at one temperature and the other part at a different temperature, and the result is a 322:, the remaining one being the cubic class 432. Ten of these twenty piezoelectric classes are polar, i.e., they possess a spontaneous polarization, having a dipole in their unit cell, and exhibit pyroelectricity. If this dipole can be reversed by the application of an electric field, the material is said to be 112:
Spontaneous polarization is temperature dependent, so a good perturbation probe is a change in temperature which induces a flow of charge to and from the surfaces. This is the pyroelectric effect. All polar crystals are pyroelectric, so the 10 polar crystal classes are sometimes referred to as the
108:
equivalents of bar magnets because the intrinsic dipole moment is neutralized by "free" electric charge that builds up on the surface by internal conduction or from the ambient atmosphere. Polar crystals only reveal their nature when perturbed in some fashion that momentarily upsets the balance with
368:
The piezoelectric effect is exhibited by crystals (such as quartz or ceramic) for which an electric voltage across the material appears when pressure is applied. Similar to pyroelectric effect, the phenomenon is due to the asymmetric structure of the crystals that allows ions to move more easily
364:
in the absence of an externally applied electric field such that the polarization can be reversed if the electric field is reversed. Since all ferroelectric materials exhibit a spontaneous polarization, all ferroelectric materials are also pyroelectric (but not all pyroelectric materials are
99:
Pyroelectricity is measured as the change in net polarization (a vector) proportional to a change in temperature. The total pyroelectric coefficient measured at constant stress is the sum of the pyroelectric coefficients at constant strain (primary pyroelectric effect) and the piezoelectric
77:
develops on the opposite faces of asymmetric crystals. The direction in which the propagation of the charge tends is usually constant throughout a pyroelectric material, but, in some materials, this direction can be changed by a nearby electric field. These materials are said to exhibit
330:
when an electric field is applied, but a substance which has such a natural charge separation even in the absence of a field is called a polar material. Whether or not a material is polar is determined solely by its crystal structure. Only 10 of the 32 point groups are polar. All
1025:
of Theophrastus with tourmaline, but evidently his opinion is partly based on the attractive properties of heated tourmaline which had recently been discovered. This identification is repeated by various later writers. For example, Dana states that
1235: 45:) is a property of certain crystals which are naturally electrically polarized and as a result contain large electric fields. Pyroelectricity can be described as the ability of certain materials to generate a temporary 1007:
Jacques Curie & Pierre Curie, "Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées", Bulletin de la Société Minéralogique de France, vol. 3 (4), 90-93,
548:, while a different study found a material that could, in theory, reach 84-92% of Carnot efficiency (these efficiency values are for the pyroelectric itself, ignoring losses from heating and cooling the 189: 57:
of the material changes. This polarization change gives rise to a voltage across the crystal. If the temperature stays constant at its new value, the pyroelectric voltage gradually disappears due to
380:
voltage across the device as long as there is a temperature difference. Both effects convert temperature change to electrical potential, but the pyroelectric effect converts temperature change over
1050:… . It has the power of attraction, just as amber has, and some say that it not only attracts straws and bits of wood, but also copper and iron, if the pieces are thin, as Diokles used to explain." 537:) to generate usable electrical power. An example of a heat engine is the movement of the pistons in an internal combustion engine like that found in a gasoline powered automobile. 990:
W. Voigt (1897) "Versuch zur Bestimmung des wahren specifischen electrischen Momentes eines Turmalins" (Experiment to determine the true specific electric moment of a tourmaline),
315: 218:
noticed, as Schmidt had, that small scraps of non-conducting material were first attracted to tourmaline, but then repelled by it once they contacted the stone. In 1747
1030:
is supposed to be the ancient name for common tourmaline. However, the absence of tourmaline among surviving examples of ancient gems is clearly against this view."
415:, a semiconductor. The large electric fields in this material are detrimental in light emitting diodes (LEDs), but useful for the production of power transistors. 369:
along one axis than the others. As pressure is applied, each side of the crystal takes on an opposite charge, resulting in a voltage drop across the crystal.
1352:
Olsen, Randall B.; Evans, Diane (1983). "Pyroelectric energy conversion: Hysteresis loss and temperature sensitivity of a ferroelectric material".
882:(Chemnitz and Leipzig (Germany): Conrad Stössen, 1707), pages 269-270. An English translation of the relevant passage appears in: Sidney B. Lang, 131: 1387:
Pandya, Shishir; Velarde, Gabriel; Zhang, Lei; Wilbur, Joshua D.; Smith, Andrew; Hanrahan, Brendan; Dames, Chris; Martin, Lane W. (2019-06-07).
695: 1046:(Columbus, Ohio: Ohio State University, 1956), page 51, paragraph 28 of the original text: "It is remarkable in its powers, and so is the 525:
are often designed around pyroelectric materials, as the heat of a human or animal from several feet away is enough to generate a voltage.
100:
contribution from thermal expansion (secondary pyroelectric effect). Under normal circumstances, even polar materials do not display a net
1513: 668: 1482: 260:(c. 314 BC) the first record of pyroelectricity. The misconception arose soon after the discovery of the pyroelectric properties of 238: 583:
Although a few patents have been filed for such a device, such generators do not appear to be anywhere close to commercialization.
1485: 1183:
Mart, C.; Kämpfe, T.; Hoffmann, R.; Eßlinger, S.; Kirbach, S.; Kühnel, K.; Czernohorsky, M.; Eng, L.M.; Weinreich, W. (2020).
836:
Damjanovic, Dragan (1998). "Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics".
1260: 1526: 61:. The leakage can be due to electrons moving through the crystal, ions moving through the air, or current leaking through a 26: 1560: 624: 327: 214:
could attract the ashes from the warm or burning coals, as the magnet does iron, but also repelling them again ". In 1717
54: 1185:"Piezoelectric Response of Polycrystalline Silicon-Doped Hafnium Oxide Thin Films Determined by Rapid Temperature Cycles" 1540: 1428:
Kouchachvili, L; Ikura, M (2007). "Pyroelectric conversion—Effects of P(VDF–TrFE) preconditioning on power conversion".
227: 1124:
Naranjo, B.; Gimzewski, J.K.; Putterman, S. (2005). "Observation of nuclear fusion driven by a pyroelectric crystal".
253:, studied pyroelectricity in the 1880s, leading to their discovery of some of the mechanisms behind piezoelectricity. 207: 396:
Although artificial pyroelectric materials have been engineered, the effect was first discovered in minerals such as
128:
The pyroelectric coefficient may be described as the change in the spontaneous polarization vector with temperature:
338:
Piezoelectric crystal classes: 1, 2, m, 222, mm2, 4, -4, 422, 4mm, -42m, 3, 32, 3m, 6, -6, 622, 6mm, -62m, 23, -43m
113:
pyroelectric classes. Pyroelectric materials can be used as infrared and millimeter wavelength radiation detectors.
1565: 49:
when they are heated or cooled. The change in temperature modifies the positions of the atoms slightly within the
715: 1518: 418:
Progress has been made in creating artificial pyroelectric materials, usually in the form of a thin film, using
785:
Darbaniyan, F.; Sharma, P. (2018). "Designing Soft Pyroelectric and Electrocaloric Materials Using Electrets".
1309:
Sebald, Gael; Guyomar, Daniel; Agbossou, Amen (2009). "On thermoelectric and pyroelectric energy harvesting".
1555: 719: 522: 92:
Pyroelectric materials are mostly hard and crystals; however, soft pyroelectricity can be achieved by using
1021:(Columbus, Ohio: Ohio State University, 1956), page 110, line 12 of the commentary: "Watson identifies the 555:
Possible advantages of pyroelectric generators for generating electricity (as compared to the conventional
1535: 335:
are pyroelectric, so the ten polar crystal classes are sometimes referred to as the pyroelectric classes.
101: 618: 571: 361: 58: 1361: 1318: 1275: 1133: 1073: 973:
William Thomson (1878) "On the thermoelastic, thermomagnetic and pyroelectric properties of matter,"
845: 794: 749: 560: 332: 1216:"Target Classification Using Pyroelectric Infrared Sensors in Unattended Wild Ground Environment". 685: 606: 592: 487: 311: 299: 1334: 1291: 1165: 1097: 861: 818: 447: 291: 1570: 1478: 1410: 1157: 1149: 1089: 995: 952: 938: 933:
Aepinus (1756) "Memoire concernant quelques nouvelles experiences électriques remarquables" ,
810: 723: 691: 634: 629: 545: 462: 373: 50: 20: 1508: 887: 1437: 1400: 1369: 1326: 1283: 1261:"Energy harvesting based on Ericsson pyroelectric cycles in a relaxor ferroelectric ceramic" 1196: 1141: 1081: 978: 921: 853: 802: 765: 757: 384:
into electrical potential, while the thermoelectric effect converts temperature change with
354: 350: 319: 86: 79: 904: 737: 597:
Pyroelectric materials have been used to generate large electric fields necessary to steer
1530: 430: 419: 412: 105: 1330: 1287: 1365: 1322: 1279: 1137: 1077: 849: 798: 753: 1039: 602: 541: 483: 458: 451: 295: 242: 234: 490:"). Recently, pyroelectric and piezoelectric properties have been discovered in doped 1549: 1295: 1114:
Gallium Nitride (GaN): Physics, Devices, and Technology.” 2015. CRC Press. October 16
865: 857: 491: 479: 323: 250: 233:
Research into pyroelectricity became more sophisticated in the 19th century. In 1824
219: 1338: 822: 1169: 1101: 307: 303: 275: 257: 246: 215: 658:
Ashcroft, N. W. & Mermin, N. D. Solid State Physics. (Cengage Learning, 1976).
1523: 1502: 1441: 1463: 1459: 1455: 556: 534: 42: 710:
In this article, the term "voltage" is used in the everyday sense, i.e. what a
1405: 1389:"New approach to waste-heat energy harvesting: pyroelectric energy conversion" 1388: 639: 397: 261: 211: 1414: 1153: 1093: 552:, other heat-transfer losses, and all other losses elsewhere in the system). 738:"Wurtzite BAlN and BGaN alloys for heterointerface polarization engineering" 711: 598: 549: 271: 266: 62: 1201: 1184: 1161: 814: 245:
in 1897 helped develop a theory for the processes behind pyroelectricity.
924:. A translation of the relevant passage appears in Lang (1974), page 103. 469: 437: 426: 117: 93: 1145: 770: 521:
Very small changes in temperature can produce a pyroelectric potential.
806: 495: 482:
and pyroelectric properties, which has been used to create small-scale
466: 434: 423: 74: 46: 1061: 761: 1373: 1085: 533:
A pyroelectric can be repeatedly heated and cooled (analogously to a
498: 472: 455: 440: 405: 264:, which made mineralogists of the time associate the legendary stone 360:
The ferroelectric effect is exhibited by materials which possess an
226:, "the electric stone"), although this was not proven until 1756 by 279: 222:
first related the phenomenon to electricity (he called tourmaline
25: 1496: 1509:
DoITPoMS Teaching and Learning Package- "Pyroelectric Materials"
935:
Histoire de l'Académie royale des sciences et des belles lettres
505: 401: 206:
The first record of the pyroelectric effect was made in 1707 by
1218:
International Journal on Smart Sensing and Intelligent Systems
349:
Two effects which are closely related to pyroelectricity are
184:{\displaystyle p_{i}={\frac {\partial P_{S,i}}{\partial T}}} 1536:
Optical and Dielectric Properties of Sr(x)Ba(1-x)Nb(2)O(6)
1259:
Sebald, Gael; Pruvost, Sebastien; Guyomar, Daniel (2008).
920:(Stockholm ("Holmiae"), Sweden: Laurentii Salvii, 1747), 918:
Flora Zeylanica: Sistens Plantas Indicas Zeylonae Insulae
306:
they possess that leave the crystal structure unchanged (
886:, vol. 2 (New York, New York: Gordon and Breach, 1974), 23:, a different thermal effect with a different mechanism. 687:
The measurement, instrumentation, and sensors handbook
198:(CmK) is the vector for the pyroelectric coefficient. 310:). Of the thirty-two crystal classes, twenty-one are 134: 120:
is the electrical equivalent of a permanent magnet.
953:"Observations of the pyro-electricity of minerals" 341:Pyroelectric: 1, 2, m, mm2, 3, 3m, 4, 4mm, 6, 6mm 282:, without specifying any pyroelectric properties. 183: 1541:Dielectric and Electrical Properties of Ce,Mn:SBN 899:"Diverse observations de la physique generale," 326:. Any dielectric material develops a dielectric 540:One group calculated that a pyroelectric in an 318:). Of these twenty-one, twenty exhibit direct 880:Curiöse Speculationes bey Schalflosen Nächten 400:. The pyroelectric effect is also present in 8: 372:Pyroelectricity should not be confused with 237:gave the effect the name it has today. Both 1497:Pyroelectric Detectors for THz applications 85:All known pyroelectric materials are also 1404: 1200: 769: 679: 677: 158: 148: 139: 133: 1062:"Pyroelectric Effect in Bone and Tendon" 16:Voltage created when a crystal is heated 1017:Earle R. Caley and John F.C. Richards, 651: 621:, an opposite effect of pyroelectricity 1524:laser detection with lithium tantalate 7: 901:Histoire de l'Académie des Sciences 669:Introduction to Solid State Physics 504:), which is a standard material in 667:Charles Kittel-8th Edition. 2016. 172: 151: 30:Internals of a pyroelectric sensor 14: 1060:LANG, SIDNEY B. (November 1966). 567:Harvesting energy from waste-heat 109:the compensating surface charge. 104:. As a consequence, there are no 1236:"Heat engine - Energy Education" 957:The Edinburgh Journal of Science 1503:Pyroelectric Infrared Detectors 714:measures. This is actually the 478:) is a crystal exhibiting both 256:It is mistakenly attributed to 1331:10.1088/0964-1726/18/12/125006 1311:Smart Materials and Structures 1288:10.1088/0964-1726/17/01/015012 1268:Smart Materials and Structures 690:. CRC Press. pp. 32–113. 411:The most important example is 1: 1189:Advanced Electronic Materials 916:Carl von Linné ("Linnaeus"), 884:Sourcebook of Pyroelectricity 625:Kelvin probe force microscope 328:polarization (electrostatics) 65:attached across the crystal. 1442:10.1016/j.elstat.2006.07.014 294:belong to one of thirty-two 274:is described in the work of 228:Franz Ulrich Theodor Aepinus 388:into electrical potential. 1587: 1519:Lithium Tantalate (LiTaO3) 1514:Lithium Tantalate (LiTaO3) 1354:Journal of Applied Physics 858:10.1088/0034-4885/61/9/002 605:process. This is known as 590: 18: 1430:Journal of Electrostatics 1406:10.1038/s41427-019-0125-y 716:electrochemical potential 1473:Gautschi, Gustav, 2002, 1042:and John F.C. Richards, 951:Brewster, David (1824). 684:Webster, John G (1999). 523:Passive infrared sensors 124:Mathematical description 19:Not to be confused with 1475:Piezoelectric Sensorics 1044:Theophrastus: On Stones 1019:Theophrastus: On Stones 742:Applied Physics Letters 720:electrostatic potential 298:based on the number of 210:, who noted that the " 73:Pyroelectric charge in 1202:10.1002/aelm.201901015 975:Philosophical Magazine 878:Johann Georg Schmidt, 572:operating temperatures 392:Pyroelectric materials 185: 31: 619:Electrocaloric effect 362:electric polarization 186: 29: 1561:Electrical phenomena 977:, series 5, vol. 5, 736:Liu, Kaikai (2017). 576:Less bulky equipment 561:electrical generator 278:as being similar to 208:Johann Georg Schmidt 132: 1366:1983JAP....54.5941O 1323:2009SMaS...18l5006S 1280:2008SMaS...17a5012S 1146:10.1038/nature03575 1138:2005Natur.434.1115N 1132:(7037): 1115–1117. 1078:1966Natur.212..704L 937:(Berlin), vol. 12, 850:1998RPPh...61.1267D 799:2019SMat...15..262D 754:2017ApPhL.111v2106L 607:pyroelectric fusion 593:Pyroelectric fusion 579:Fewer moving parts. 544:could reach 50% of 488:pyroelectric fusion 448:polyvinyl fluorides 312:non-centrosymmetric 1529:2016-03-03 at the 1393:NPG Asia Materials 1240:energyeducation.ca 992:Annalen der Physik 807:10.1039/C8SM02003E 570:Potentially lower 316:centre of symmetry 292:crystal structures 235:Sir David Brewster 224:Lapidem Electricum 181: 41:(πυρ), "fire" and 32: 1566:Energy conversion 1464:US Patent 5644184 1460:US Patent 6528898 1456:US Patent 4647836 1360:(10): 5941–5944. 1072:(5063): 704–705. 762:10.1063/1.5008451 724:Galvani potential 697:978-0-8493-8347-2 635:Thermoelectricity 630:Lithium tantalate 546:Carnot efficiency 463:Lithium tantalate 450:, derivatives of 374:thermoelectricity 304:reflection planes 249:and his brother, 179: 51:crystal structure 21:thermoelectricity 1578: 1466: 1452: 1446: 1445: 1425: 1419: 1418: 1408: 1384: 1378: 1377: 1374:10.1063/1.331769 1349: 1343: 1342: 1306: 1300: 1299: 1265: 1256: 1250: 1249: 1247: 1246: 1232: 1226: 1225: 1213: 1207: 1206: 1204: 1180: 1174: 1173: 1121: 1115: 1112: 1106: 1105: 1086:10.1038/212704a0 1057: 1051: 1037: 1031: 1015: 1009: 1005: 999: 988: 982: 971: 965: 964: 948: 942: 931: 925: 914: 908: 897: 891: 876: 870: 869: 844:(9): 1267–1324. 833: 827: 826: 782: 776: 775: 773: 733: 727: 708: 702: 701: 681: 672: 665: 659: 656: 529:Power generation 365:ferroelectric). 355:piezoelectricity 351:ferroelectricity 320:piezoelectricity 190: 188: 187: 182: 180: 178: 170: 169: 168: 149: 144: 143: 80:ferroelectricity 1586: 1585: 1581: 1580: 1579: 1577: 1576: 1575: 1546: 1545: 1531:Wayback Machine 1493: 1470: 1469: 1453: 1449: 1427: 1426: 1422: 1386: 1385: 1381: 1351: 1350: 1346: 1308: 1307: 1303: 1263: 1258: 1257: 1253: 1244: 1242: 1234: 1233: 1229: 1215: 1214: 1210: 1182: 1181: 1177: 1123: 1122: 1118: 1113: 1109: 1059: 1058: 1054: 1038: 1034: 1016: 1012: 1006: 1002: 996:pages 368 - 375 989: 985: 972: 968: 950: 949: 945: 932: 928: 915: 911: 898: 894: 877: 873: 838:Rep. Prog. Phys 835: 834: 830: 784: 783: 779: 735: 734: 730: 709: 705: 698: 683: 682: 675: 666: 662: 657: 653: 648: 615: 595: 589: 531: 519: 514: 508:manufacturing. 503: 477: 445: 431:caesium nitrate 420:gallium nitride 413:gallium nitride 394: 347: 345:Related effects 300:rotational axes 296:crystal classes 288: 286:Crystal classes 239:William Thomson 204: 196: 171: 154: 150: 135: 130: 129: 126: 106:electric dipole 71: 59:leakage current 35:Pyroelectricity 24: 17: 12: 11: 5: 1584: 1582: 1574: 1573: 1568: 1563: 1558: 1556:Thermodynamics 1548: 1547: 1544: 1543: 1538: 1533: 1521: 1516: 1511: 1506: 1500: 1492: 1491:External links 1489: 1488: 1487: 1468: 1467: 1447: 1436:(3): 182–188. 1420: 1379: 1344: 1317:(12): 125006. 1301: 1251: 1227: 1208: 1195:(3): 1901015. 1175: 1116: 1107: 1052: 1040:Earle R. Caley 1032: 1010: 1000: 983: 966: 943: 926: 909: 892: 871: 828: 793:(2): 262–277. 777: 748:(22): 222106. 728: 703: 696: 673: 660: 650: 649: 647: 644: 643: 642: 637: 632: 627: 622: 614: 611: 603:nuclear fusion 591:Main article: 588: 587:Nuclear fusion 585: 581: 580: 577: 574: 568: 542:Ericsson cycle 530: 527: 518: 515: 513: 510: 501: 484:nuclear fusion 475: 459:phthalocyanine 452:phenylpyridine 443: 393: 390: 346: 343: 333:polar crystals 314:(not having a 287: 284: 243:Woldemar Voigt 203: 200: 194: 177: 174: 167: 164: 161: 157: 153: 147: 142: 138: 125: 122: 70: 67: 53:, so that the 15: 13: 10: 9: 6: 4: 3: 2: 1583: 1572: 1569: 1567: 1564: 1562: 1559: 1557: 1554: 1553: 1551: 1542: 1539: 1537: 1534: 1532: 1528: 1525: 1522: 1520: 1517: 1515: 1512: 1510: 1507: 1505:DIAS Infrared 1504: 1501: 1498: 1495: 1494: 1490: 1486: 1484: 1483:3-540-42259-5 1480: 1476: 1472: 1471: 1465: 1461: 1457: 1454:For example: 1451: 1448: 1443: 1439: 1435: 1431: 1424: 1421: 1416: 1412: 1407: 1402: 1398: 1394: 1390: 1383: 1380: 1375: 1371: 1367: 1363: 1359: 1355: 1348: 1345: 1340: 1336: 1332: 1328: 1324: 1320: 1316: 1312: 1305: 1302: 1297: 1293: 1289: 1285: 1281: 1277: 1274:(1): 015012. 1273: 1269: 1262: 1255: 1252: 1241: 1237: 1231: 1228: 1223: 1219: 1212: 1209: 1203: 1198: 1194: 1190: 1186: 1179: 1176: 1171: 1167: 1163: 1159: 1155: 1151: 1147: 1143: 1139: 1135: 1131: 1127: 1120: 1117: 1111: 1108: 1103: 1099: 1095: 1091: 1087: 1083: 1079: 1075: 1071: 1067: 1063: 1056: 1053: 1049: 1045: 1041: 1036: 1033: 1029: 1024: 1020: 1014: 1011: 1004: 1001: 997: 993: 987: 984: 980: 976: 970: 967: 962: 958: 954: 947: 944: 940: 939:pages 105-121 936: 930: 927: 923: 919: 913: 910: 906: 905:see pages 7-8 902: 896: 893: 889: 885: 881: 875: 872: 867: 863: 859: 855: 851: 847: 843: 839: 832: 829: 824: 820: 816: 812: 808: 804: 800: 796: 792: 788: 781: 778: 772: 767: 763: 759: 755: 751: 747: 743: 739: 732: 729: 725: 721: 717: 713: 707: 704: 699: 693: 689: 688: 680: 678: 674: 670: 664: 661: 655: 652: 645: 641: 638: 636: 633: 631: 628: 626: 623: 620: 617: 616: 612: 610: 608: 604: 600: 594: 586: 584: 578: 575: 573: 569: 566: 565: 564: 562: 558: 553: 551: 547: 543: 538: 536: 528: 526: 524: 516: 511: 509: 507: 500: 497: 493: 492:hafnium oxide 489: 485: 481: 480:piezoelectric 474: 471: 468: 464: 460: 457: 453: 449: 442: 439: 436: 432: 428: 425: 421: 416: 414: 409: 407: 403: 399: 391: 389: 387: 383: 379: 375: 370: 366: 363: 358: 356: 352: 344: 342: 339: 336: 334: 329: 325: 324:ferroelectric 321: 317: 313: 309: 305: 301: 297: 293: 285: 283: 281: 277: 273: 269: 268: 263: 259: 254: 252: 251:Jacques Curie 248: 244: 240: 236: 231: 229: 225: 221: 217: 213: 209: 201: 199: 197: 175: 165: 162: 159: 155: 145: 140: 136: 123: 121: 119: 114: 110: 107: 103: 102:dipole moment 97: 95: 90: 88: 87:piezoelectric 83: 81: 76: 68: 66: 64: 60: 56: 52: 48: 44: 40: 37:(from Greek: 36: 28: 22: 1477:, Springer, 1474: 1450: 1433: 1429: 1423: 1396: 1392: 1382: 1357: 1353: 1347: 1314: 1310: 1304: 1271: 1267: 1254: 1243:. Retrieved 1239: 1230: 1221: 1217: 1211: 1192: 1188: 1178: 1129: 1125: 1119: 1110: 1069: 1065: 1055: 1047: 1043: 1035: 1027: 1022: 1018: 1013: 1003: 991: 986: 979:pages 4 - 26 974: 969: 960: 956: 946: 934: 929: 917: 912: 900: 895: 883: 879: 874: 841: 837: 831: 790: 786: 780: 771:10754/626289 745: 741: 731: 706: 686: 663: 654: 596: 582: 554: 539: 532: 520: 517:Heat sensors 512:Applications 417: 410: 395: 385: 381: 377: 371: 367: 359: 348: 340: 337: 308:point groups 289: 276:Theophrastus 265: 258:Theophrastus 255: 247:Pierre Curie 241:in 1878 and 232: 223: 216:Louis Lemery 205: 192: 127: 115: 111: 98: 91: 84: 72: 55:polarization 38: 34: 33: 994:, vol. 60, 787:Soft Matter 563:) include: 557:heat engine 535:heat engine 69:Explanation 43:electricity 1550:Categories 1499:WiredSense 1399:(1): 1–5. 1245:2023-09-07 1048:lyngourion 963:: 208–215. 718:, not the 646:References 640:Zinc oxide 601:ions in a 398:tourmaline 262:tourmaline 212:tourmaline 1415:1884-4057 1296:108894876 1154:0028-0836 1094:0028-0836 1028:lyncurium 1023:lyngounon 866:250873563 712:voltmeter 599:deuterium 550:substrate 378:permanent 272:Lyngurium 270:with it. 267:Lyngurium 173:∂ 152:∂ 94:electrets 63:voltmeter 1571:Crystals 1527:Archived 1339:53378208 1162:15858570 903:(1717); 823:56145736 815:30543261 613:See also 386:position 220:Linnaeus 118:electret 75:minerals 1362:Bibcode 1319:Bibcode 1276:Bibcode 1170:4407334 1134:Bibcode 1102:4205482 1074:Bibcode 888:page 96 846:Bibcode 795:Bibcode 750:Bibcode 202:History 47:voltage 1481:  1413:  1337:  1294:  1168:  1160:  1152:  1126:Nature 1100:  1092:  1066:Nature 922:page 8 864:  821:  813:  694:  456:cobalt 454:, and 406:tendon 191:where 1335:S2CID 1292:S2CID 1264:(PDF) 1166:S2CID 1098:S2CID 1008:1880. 862:S2CID 819:S2CID 559:plus 280:amber 1479:ISBN 1411:ISSN 1224:(5). 1158:PMID 1150:ISSN 1090:ISSN 811:PMID 692:ISBN 506:CMOS 404:and 402:bone 382:time 353:and 302:and 290:All 1438:doi 1401:doi 1370:doi 1327:doi 1284:doi 1197:doi 1142:doi 1130:434 1082:doi 1070:212 854:doi 803:doi 766:hdl 758:doi 746:111 446:), 429:), 116:An 39:pyr 1552:: 1462:, 1458:, 1434:65 1432:. 1409:. 1397:11 1395:. 1391:. 1368:. 1358:54 1356:. 1333:. 1325:. 1315:18 1313:. 1290:. 1282:. 1272:17 1270:. 1266:. 1238:. 1220:. 1191:. 1187:. 1164:. 1156:. 1148:. 1140:. 1128:. 1096:. 1088:. 1080:. 1068:. 1064:. 959:. 955:. 860:. 852:. 842:61 840:. 817:. 809:. 801:. 791:15 789:. 764:. 756:. 744:. 740:. 726:). 676:^ 609:. 496:Hf 486:(" 470:Ta 467:Li 461:. 435:Cs 424:Ga 408:. 230:. 96:. 82:. 1444:. 1440:: 1417:. 1403:: 1376:. 1372:: 1364:: 1341:. 1329:: 1321:: 1298:. 1286:: 1278:: 1248:. 1222:6 1205:. 1199:: 1193:6 1172:. 1144:: 1136:: 1104:. 1084:: 1076:: 998:. 981:. 961:1 941:. 907:. 890:. 868:. 856:: 848:: 825:. 805:: 797:: 774:. 768:: 760:: 752:: 722:( 700:. 671:. 502:2 499:O 494:( 476:3 473:O 465:( 444:3 441:O 438:N 433:( 427:N 422:( 195:i 193:p 176:T 166:i 163:, 160:S 156:P 146:= 141:i 137:p

Index

thermoelectricity

electricity
voltage
crystal structure
polarization
leakage current
voltmeter
minerals
ferroelectricity
piezoelectric
electrets
dipole moment
electric dipole
electret
Johann Georg Schmidt
tourmaline
Louis Lemery
Linnaeus
Franz Ulrich Theodor Aepinus
Sir David Brewster
William Thomson
Woldemar Voigt
Pierre Curie
Jacques Curie
Theophrastus
tourmaline
Lyngurium
Lyngurium
Theophrastus

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.