Knowledge (XXG)

PM3 (chemistry)

Source 📝

20: 58:
method. The only differences are: 1) PM3 uses two Gaussian functions for the core repulsion function, instead of the variable number used by AM1 (which uses between one and four Gaussians per element); 2) the numerical values of the parameters are different. The other differences lie in the
23:
Ball-and-stick model of the aplysin molecule, C15H19BrO. Colour code: Carbon, C: black Hydrogen, H: white Bromine, Br: red-brown Oxygen, O: red Structure calculated with Spartan Student 4.1, using the PM3 semi-empirical method.
59:
philosophy and methodology used during the parameterization: whereas AM1 takes some of the parameter values from spectroscopical measurements, PM3 treats them as optimizable values.
469: 384:
Stewart, James J. P. (2004). "Optimization of parameters for semiempirical methods IV: Extension of MNDO, AM1, and PM3 to more main group elements".
36: 353:"Optimization of parameters for semiempirical methods. III Extension of PM3 to Be, Mg, Zn, Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, and Bi" 431:
Freire, Ricardo O.; Rocha, Gerd B.; Simas, Alfredo M. (2006). "Modeling rare earth complexes: Sparkle/PM3 parameters for thulium(III)".
177: 119: 44: 280: 322:
Stewart, James J. P. (1989). "Optimization of parameters for semiempirical methods II. Applications".
440: 180:
program includes PM3tm with additional extensions for transition metals supporting calculations on
83: 62:
The method was developed by J. J. P. Stewart and first published in 1989. It is implemented in the
409: 372: 339: 310: 293:
Stewart, James J. P. (1989). "Optimization of parameters for semiempirical methods I. Method".
19: 401: 111: 40: 448: 393: 364: 331: 302: 115: 67: 444: 71: 55: 463: 413: 376: 343: 314: 276:. Many other elements, mostly metals, have been parameterized in subsequent work. 452: 95: 91: 66:
program (of which the older versions are public domain), along with the related
397: 273: 229: 225: 154: 125:
The original PM3 publication included parameters for the following elements:
241: 233: 221: 197: 99: 405: 368: 335: 306: 269: 253: 249: 193: 189: 185: 162: 146: 142: 134: 126: 265: 257: 245: 237: 181: 166: 150: 261: 213: 209: 205: 170: 158: 138: 130: 103: 352: 107: 79: 63: 18: 279:
A model for the PM3 calculation of lanthanide complexes, called
217: 201: 87: 75: 48: 54:
The PM3 method uses the same formalism and equations as the
43:calculation of molecular electronic structure in 82:methods, and in several other programs such as 8: 49:Neglect of Differential Diatomic Overlap 470:Semiempirical quantum chemistry methods 424:Encyclopedia of Computational Chemistry 7: 357:Journal of Computational Chemistry 14: 422:Stewart, J. J. P. (1998). "PM3". 16:Method in computational chemistry 176:The PM3 implementation in the 1: 386:Journal of Molecular Modeling 351:Stewart, James J. P. (1991). 453:10.1016/j.cplett.2006.04.103 486: 398:10.1007/s00894-004-0183-z 51:integral approximation. 433:Chemical Physics Letters 283:, was also introduced. 45:computational chemistry 47:. It is based on the 25: 420:For a recent review, 369:10.1002/jcc.540120306 336:10.1002/jcc.540100209 307:10.1002/jcc.540100208 22: 445:2006CPL...425..138F 33:Parametric Method 3 26: 477: 456: 439:(1–3): 138–141. 427: 417: 380: 347: 318: 485: 484: 480: 479: 478: 476: 475: 474: 460: 459: 430: 421: 383: 350: 324:J. Comput. Chem 321: 295:J. Comput. Chem 292: 289: 39:method for the 17: 12: 11: 5: 483: 481: 473: 472: 462: 461: 458: 457: 428: 418: 381: 363:(3): 320–341. 348: 330:(2): 221–264. 319: 301:(2): 209–220. 288: 285: 37:semi-empirical 15: 13: 10: 9: 6: 4: 3: 2: 482: 471: 468: 467: 465: 454: 450: 446: 442: 438: 434: 429: 425: 419: 415: 411: 407: 403: 399: 395: 392:(2): 155–64. 391: 387: 382: 378: 374: 370: 366: 362: 358: 354: 349: 345: 341: 337: 333: 329: 325: 320: 316: 312: 308: 304: 300: 296: 291: 290: 286: 284: 282: 277: 275: 271: 267: 263: 259: 255: 251: 247: 243: 239: 235: 231: 227: 223: 219: 215: 211: 207: 203: 199: 195: 191: 187: 183: 179: 174: 172: 168: 164: 160: 156: 152: 148: 144: 140: 136: 132: 128: 123: 121: 117: 113: 109: 105: 101: 97: 93: 89: 85: 81: 77: 73: 69: 65: 60: 57: 52: 50: 46: 42: 38: 34: 30: 21: 436: 432: 423: 389: 385: 360: 356: 327: 323: 298: 294: 278: 175: 124: 61: 53: 32: 28: 27: 281:Sparkle/PM3 96:GAMESS (UK) 92:GAMESS (US) 287:References 100:PC GAMESS 464:Category 426:. Wiley. 414:11617476 406:14997367 377:94913344 344:98850840 315:36907984 112:ArgusLab 84:Gaussian 35:, is a 441:Bibcode 178:SPARTAN 120:SPARTAN 41:quantum 412:  404:  375:  342:  313:  272:, and 169:, and 118:, and 104:Chem3D 410:S2CID 373:S2CID 340:S2CID 311:S2CID 108:AMPAC 80:MINDO 64:MOPAC 31:, or 402:PMID 116:BOSS 88:CP2K 78:and 76:MNDO 449:doi 437:425 394:doi 365:doi 332:doi 303:doi 173:. 72:AM1 68:RM1 56:AM1 29:PM3 466:: 447:. 435:. 408:. 400:. 390:10 388:. 371:. 361:12 359:. 355:. 338:. 328:10 326:. 309:. 299:10 297:. 274:Gd 270:Pt 268:, 266:Ir 264:, 262:Os 260:, 258:Re 256:, 252:, 250:Ta 248:, 246:Hf 244:, 242:Pd 240:, 238:Rh 236:, 234:Ru 232:, 230:Tc 228:, 226:Mo 224:, 222:Zr 220:, 218:Zn 216:, 214:Cu 212:, 210:Ni 208:, 206:Co 204:, 202:Fe 200:, 198:Mn 196:, 194:Cr 192:, 188:, 186:Ti 184:, 182:Ca 167:Br 165:, 163:Cl 161:, 157:, 153:, 151:Si 149:, 147:Al 145:, 141:, 137:, 133:, 129:, 122:. 114:, 110:, 106:, 102:, 98:, 94:, 90:, 86:, 74:, 70:, 455:. 451:: 443:: 416:. 396:: 379:. 367:: 346:. 334:: 317:. 305:: 254:W 190:V 171:I 159:S 155:P 143:F 139:O 135:N 131:C 127:H

Index


semi-empirical
quantum
computational chemistry
Neglect of Differential Diatomic Overlap
AM1
MOPAC
RM1
AM1
MNDO
MINDO
Gaussian
CP2K
GAMESS (US)
GAMESS (UK)
PC GAMESS
Chem3D
AMPAC
ArgusLab
BOSS
SPARTAN
H
C
N
O
F
Al
Si
P
S

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.