Knowledge

Paleomagnetism

Source 📝

35: 2371: 2383: 285: 2395: 488:
by the magnetic field of the steel core barrel. This contaminant is generally parallel to the barrel, and most of it can be removed by heating up to about 400 Â°C or demagnetizing in a small alternating field. In the laboratory, IRM is induced by applying fields of various strengths and is used
369:
are completely crystallized at temperatures below 900 Â°C (1,650 Â°F). Hence, the mineral grains are not rotated physically to align with Earth's magnetic field, but rather they may record the orientation of that field. The record so preserved is called a thermoremanent magnetization (TRM).
517:
The oldest rocks on the ocean floor are 200 Ma: very young when compared with the oldest continental rocks which date from 3.8 Ga. In order to collect paleomagnetic data dating beyond 200 Ma, scientists turn to magnetite-bearing samples on land to reconstruct Earth's ancient field orientation.
225:
first proposed in 1915 that continents had once been joined together and had since moved apart. Although he produced an abundance of circumstantial evidence, his theory met with little acceptance for two reasons: (1) no mechanism for continental drift was known, and (2) there was no way to
38:
Magnetic stripes are the result of reversals of the Earth's field and seafloor spreading. New oceanic crust is magnetized as it forms and then it moves away from the ridge in both directions. The models show a ridge (a) about 5 million years ago (b) about 2 million years ago and (c) in the
508:
materials influenced by a magnetic field for some time. In rocks, this remanence is typically aligned in the direction of the modern-day geomagnetic field. The fraction of a rock’s overall magnetization that is a viscous remanent magnetization is dependent on the magnetic mineralogy.
1047:
Herries, A. I. R.; Kovacheva, M.; Kostadinova, M.; Shaw, J. (2007). "Archaeo-directional and -intensity data from burnt structures at the Thracian site of Halka Bunar (Bulgaria): The effect of magnetic mineralogy, temperature and atmosphere of heating in antiquity".
238:
paths for Europe and North America. These curves diverged but could be reconciled if it was assumed that the continents had been in contact up to 200 million years ago. This provided the first clear geophysical evidence for continental drift. Then in 1963,
558:
Paleomagnetic evidence of both reversals and polar wandering data was instrumental in verifying the theories of continental drift and plate tectonics in the 1960s and 1970s. Some applications of paleomagnetic evidence to reconstruct histories of
715:
it's not improbable that a bolt of lightning produced in the granite that magnetic streak, ) Humboldt thought that this explanation was even more likely in the case of peak in the Oberpfalz because even fragments of the rock were magnetized:
377:
may occur as igneous rocks cool after crystallization, the orientations of Earth's magnetic field are not always accurately recorded, nor is the record necessarily maintained. Nonetheless, the record has been preserved well enough in basalts of
889:
Herries, A. I. R.; Adams, J. W.; Kuykendall, K. L.; Shaw, J. (2006). "Speleology and magnetobiostratigraphic chronology of the GD 2 locality of the Gondolin hominin-bearing paleocave deposits, North West Province, South Africa".
420:. If the magnetization is acquired as the grains are deposited, the result is a depositional detrital remanent magnetization; if it is acquired soon after deposition, it is a post-depositional detrital remanent magnetization. 563:
have continued to arouse controversies. Paleomagnetic evidence is also used in constraining possible ages for rocks and processes and in reconstructions of the deformational histories of parts of the crust.
541:
One way to achieve the first goal is to use a rock coring drill that has an auger tipped with diamond bits. The drill cuts a cylindrical space around some rock. Into this space is inserted a pipe with a
72:
can record the direction and intensity of Earth's magnetic field at the time they formed. This record provides information on the past behavior of the geomagnetic field and the past location of
728: 726: 434:
In a third process, magnetic grains grow during chemical reactions and record the direction of the magnetic field at the time of their formation. The field is said to be recorded by
176:(and lightning strikes do often magnetize surface rocks). 19th century studies of the direction of magnetization in rocks showed that some recent lavas were magnetized parallel to 550:
attached. These provide the orientations. Before this device is removed, a mark is scratched on the sample. After the sample is broken off, the mark can be augmented for clarity.
115:. Paleomagnetic data continues to extend the history of plate tectonics back in time, constraining the ancient position and movement of continents and continental fragments ( 703:
On pp. 136-137 Humboldt found that a peak in the Oberpfalz mountains was magnetic. On p. 138, Humboldt noted that a mountain peak in the Harz Mountains — specifically, the
272:
is constantly shifting relative to the axis of rotation of Earth. Magnetism is a vector and so magnetic field variation is studied by palaeodirectional measurements of
288:
Earth's magnetic polarity reversals in last 5 million years. Dark regions represent normal polarity (same as present field); light regions represent reversed polarity.
219:, a theory that he ultimately rejected; but the astatic magnetometer became the basic tool of paleomagnetism and led to a revival of the theory of continental drift. 1877: 1553: 1050: 2181: 526:"And everywhere, in profusion along this half mile of , there are small, neatly cored holes ... appears to be a Hilton for wrens and purple martins." 2431: 416:
In a completely different process, magnetic grains in sediments may align with the magnetic field during or soon after deposition; this is known as
240: 718:"Nicht bloß das anstehende Gestein, sondern auch jedes noch so klein abgeschlagene StĂŒck hat seine beiden Pole, seine eigene magnetische Achse." 392:, hearths, and burned adobe buildings. The discipline based on the study of thermoremanent magnetisation in archaeological materials is called 1265: 1324: 709:"Bey den Schuarchern ist es nicht unwahrscheinlich, daß ein Blitzstrahl in dem Granit jenen magnetischen Streifen hervorgebracht habe, " 1671: 571:
remains. Conversely, for a fossil of known age, the paleomagnetic data can fix the latitude at which the fossil was laid down. Such a
1872: 1468: 1236: 1202: 1179: 1151: 1128: 1103: 666: 331:
may record past polarity of Earth's magnetic field. Magnetic signatures in rocks can be recorded by several different mechanisms.
1508: 1282: 2174: 1257: 501: 1918: 197: 1666: 264: 575:
provides information about the geological environment at the time of deposition. Paleomagnetic studies are combined with
477:(IRM). Remanence of this sort is not useful for paleomagnetism, but it can be acquired as a result of lightning strikes. 1661: 340: 122:
The field of paleomagnetism also encompasses equivalent measurements of samples from other Solar System bodies, such as
1222: 2426: 1851: 1721: 588: 2245: 2167: 2061: 2041: 1165: 462:. The CRM signatures in red beds can be quite useful, and they are common targets in magnetostratigraphy studies. 2303: 2235: 2051: 2023: 1635: 1171: 1120: 177: 51: 310:. The age and pattern of these reversals is known from the study of sea floor spreading zones and the dating of 2118: 1317: 707:(the snorer) — also showed magnetization. He attributed the magnetization to lightning strikes. From p. 138: 34: 2298: 2006: 2421: 2255: 2056: 1793: 1640: 988: 155: 143: 592: 1956: 1757: 1503: 1402: 959: 393: 165: 2399: 446:. Hematite forms through chemical oxidation reactions of other minerals in the rock including magnetite. 2209: 2204: 1558: 1095: 481:
can be distinguished by its high intensity and rapid variation in direction over scales of centimeters.
382:
to have been critical in the development of theories of sea floor spreading related to plate tectonics.
235: 104: 77: 1991: 518:
Paleomagnetists, like many geologists, gravitate towards outcrops because layers of rock are exposed.
1932: 1908: 1903: 1059: 899: 855: 622: 277: 273: 185: 160:
As early as the 18th century, it was noticed that compass needles deviated near strongly magnetized
2387: 2313: 2018: 1913: 1856: 1831: 1821: 1596: 1493: 1483: 1310: 294: 269: 216: 89: 720:(Not just the outcrop but also every chip, however small, has both poles, its own magnetic axis.) 302:
reversal history of Earth's magnetic field recorded in rocks to determine the age of those rocks.
2230: 2143: 2123: 2001: 1986: 1971: 1893: 1692: 1656: 1458: 871: 248: 112: 2375: 2370: 2323: 1951: 1747: 1742: 1586: 1422: 1261: 1232: 1198: 1175: 1147: 1124: 1099: 915: 690: 662: 650: 354: 299: 212: 189: 100: 2328: 2318: 2148: 2097: 2013: 1961: 1737: 1715: 1581: 1478: 1067: 907: 863: 814: 772: 761:"On the Direction of Magnetization of Basalt in Japan, Tyƍsen [Korea] and Manchuria" 616: 610: 579:
methods to determine absolute ages for rocks in which the magnetic record is preserved. For
567:
Reversal magnetostratigraphy is often used to estimate the age of sites bearing fossils and
519: 307: 244: 231: 204: 173: 108: 85: 1996: 284: 2288: 2250: 2081: 2046: 2033: 1943: 1801: 1696: 1630: 1591: 1428: 1228: 934: 181: 73: 625: â€“ Process of reconstructing the positions of tectonic plates in the geological past 397: 268:
is the small-scale changes in the direction and intensity of Earth's magnetic field. The
1063: 903: 859: 846:
Irving, E. (1956). "Paleomagnetic and palaeoclimatological aspects of polar wandering".
188:
showed that many rocks were magnetized antiparallel to the field. Japanese geophysicist
107:
paths provided the first clear geophysical evidence for continental drift, while marine
2293: 2270: 2240: 1779: 1767: 1711: 1706: 1700: 1625: 1548: 1473: 1143: 628: 505: 490: 429: 222: 135: 69: 2415: 2308: 1898: 1816: 1811: 1762: 1752: 1513: 1392: 1251: 1114: 875: 827:
Runcorn, S. K. (1956). "Paleomagnetic comparisons between Europe and North America".
576: 379: 353:
may preserve the direction of Earth's magnetic field when the rocks cool through the
311: 227: 169: 131: 93: 81: 654: 2333: 1976: 1774: 1488: 1463: 1448: 1414: 1374: 691:"Ueber die merkwĂŒrdige magnetische PolaritĂ€t einer Gebirgskuppe von Serpentinstein" 580: 547: 451: 350: 208: 139: 55: 130:, where it is used to investigate the ancient magnetic fields of those bodies and 911: 2225: 1676: 1573: 1535: 1518: 1453: 1434: 1367: 1347: 1161: 693:[About the strange magnetic polarity of a mountain peak of serpentine]. 405: 401: 1071: 2265: 2190: 1443: 1438: 1333: 1287: 659:
This dynamic earth: the story of plate tectonics (online edition version 1.20)
604: 485: 459: 443: 362: 193: 123: 103:
hypothesis and its transformation into the modern theory of plate tectonics.
17: 2133: 2113: 1846: 1806: 1543: 1352: 1242: 478: 470: 455: 328: 207:
provided a major impetus to paleomagnetism by inventing a sensitive astatic
127: 1292: 919: 777: 760: 2128: 1966: 1610: 1523: 1298:
Paleomagnetic database at the Scripps Institution of Oceanography (MagIC)
447: 439: 192:
showed in the late 1920s that Earth's magnetic field reversed in the mid-
116: 1116:
The Road to Jaramillo: Critical Years of the Revolution in Earth Science
2354: 2138: 1362: 1357: 867: 568: 560: 543: 386: 161: 142:, magnetic fabrics (used as strain indicators in rocks and soils), and 65: 1194: 584: 366: 358: 346: 1563: 374: 283: 33: 2338: 1497: 1379: 404:
do not make pottery, their 700- to 800-year-old steam ovens, or
389: 365:, is about 580 Â°C (1,076 Â°F), whereas most basalt and 324: 2163: 1306: 1397: 2159: 1302: 1297: 458:) are red because of hematite that formed during sedimentary 613: â€“ Study of magnetic properties of chemical compounds 357:
of those minerals. The Curie temperature of magnetite, a
54:
recorded in rocks, sediment, or archeological materials.
226:
reconstruct the movements of the continents over time.
99:
Evidence from paleomagnetism led to the revival of the
1283:
Geomagnetism & Paleomagnetism background material
1224:
Paleomagnetism: Magnetic Domains to Geologic Terranes
1138:
McElhinny, Michael W.; McFadden, Phillip L. (2000).
211:
in 1956. His intent was to test his theory that the
2347: 2279: 2218: 2197: 2106: 2090: 2074: 2032: 1942: 1931: 1886: 1878:
Global Boundary Stratotype Section and Point (GSSP)
1865: 1839: 1830: 1792: 1730: 1685: 1649: 1618: 1609: 1572: 1534: 1413: 1388: 1340: 473:that is acquired at a fixed temperature is called 800:] (in German). Braunschweig, Germany: Vieweg. 747: 259:Paleomagnetism is studied on a number of scales: 534:Retrieve samples with accurate orientations, and 323:The study of paleomagnetism is possible because 306:have occurred at irregular intervals throughout 522:are a convenient man-made source of outcrops. 2175: 1318: 1012: 993:Essentials of Paleomagnetism: Web Edition 3.0 964:MagWiki: A Magnetic Wiki for Earth Scientists 607: â€“ Physics of the Earth and its vicinity 408:, provide adequate archaeomagnetic material. 8: 1051:Physics of the Earth and Planetary Interiors 765:Proceedings of the Imperial Academy of Japan 661:. Washington, D.C.: U.S. Geological Survey. 438:(CRM). A common form is held by the mineral 180:. Early in the 20th century, work by David, 58:who specialize in paleomagnetism are called 743: 741: 619: â€“ Study of changes in ancient climate 134:. Paleomagnetism relies on developments in 2182: 2168: 2160: 1939: 1836: 1615: 1410: 1325: 1311: 1303: 1288:Paleomagnetic Data from NGDC / WDC Boulder 1092:Rock Magnetism: Fundamentals and Frontiers 92:) provides a time-scale that is used as a 1090:Dunlop, David J.; Özdemir, Özden (1997). 776: 1873:Global Standard Stratigraphic Age (GSSA) 982: 980: 794:Die Entstehung der Kontinente und Ozeane 479:Lightning-induced remanent magnetization 960:"Detrital Remanent Magnetization (DRM)" 641: 631: â€“ The study of magnetism in rocks 27:Study of Earth's magnetic field in past 1023: 530:There are two main goals of sampling: 1191:Paleomagnetic Principles and Practice 1140:Paleomagnetism: Continents and Oceans 1035: 7: 2394: 810: 732: 798:The Origin of Continents and Oceans 1672:Adoption of the Gregorian calendar 935:"Maori stones hold magnetic clues" 933:Amos, Jonathan (7 December 2012). 25: 989:"Chemical remanent magnetization" 504:is remanence that is acquired by 475:isothermal remanent magnetization 466:Isothermal remanent magnetization 280:and palaeointensity measurements. 2393: 2382: 2381: 2369: 587:, commonly used methods include 345:Iron-titanium oxide minerals in 2432:Geochronological dating methods 1554:English and British regnal year 537:Reduce statistical uncertainty. 436:chemical remanent magnetization 430:Chemical remanent magnetization 424:Chemical remanent magnetization 418:detrital remanent magnetization 412:Detrital remanent magnetization 1258:University of California Press 502:Viscous remanent magnetization 497:Viscous remanent magnetization 196:, a reversal now known as the 50:) is the study of prehistoric 1: 1667:Old Style and New Style dates 748:McElhinny & McFadden 2000 265:Geomagnetic secular variation 1619:Pre-Julian / Julian 1253:Essentials of Paleomagnetism 912:10.1016/j.jhevol.2006.07.007 385:TRM can also be recorded in 341:Thermoremanent magnetization 335:Thermoremanent magnetization 2329:Precession of the equinoxes 1852:Geological history of Earth 1722:Astronomical year numbering 1293:The Great Magnet, The Earth 987:Tauxe, Lisa (24 May 2016). 759:Matuyama, Motonori (1929). 454:sedimentary rocks (such as 2448: 2246:Geophysical fluid dynamics 1221:Butler, Robert F. (1992). 1167:Annals of the Former World 1072:10.1016/j.pepi.2007.04.006 892:Journal of Human Evolution 689:Humboldt, F.A. v. (1797). 427: 338: 327:-bearing minerals such as 153: 2363: 2024:Thermoluminescence dating 1919:Samarium–neodymium dating 1172:Farrar, Straus and Giroux 1121:Stanford University Press 1013:Dunlop & Özdemir 1997 829:Proc. Geol. Assoc. Canada 241:Morley, Vine and Matthews 198:Brunhes–Matuyama reversal 1738:Chinese sexagenary cycle 792:Wegener, Alfred (1915). 695:Neues Journal der Physik 484:IRM is often induced in 2256:Near-surface geophysics 1952:Amino acid racemisation 655:"Developing the theory" 156:History of geomagnetism 144:environmental magnetism 52:Earth's magnetic fields 2304:Earth's magnetic field 1957:Archaeomagnetic dating 1469:Era of Caesar (Iberia) 1113:Glen, William (1982). 778:10.2183/pjab1912.5.203 649:W. Jacquelyne, Kious; 394:archaeomagnetic dating 289: 247:provided evidence for 178:Earth's magnetic field 166:Alexander von Humboldt 40: 2376:Geophysics portal 2299:Earth's energy budget 1857:Geological time units 1096:Cambridge Univ. Press 489:for many purposes in 287: 236:apparent polar wander 105:Apparent polar wander 78:geomagnetic reversals 37: 1909:Law of superposition 1904:Isotope geochemistry 1250:Tauxe, Lisa (2010). 1245:on 18 February 1999. 1189:Tauxe, Lisa (1998). 711:(In the case of the 623:Plate reconstruction 278:magnetic inclination 274:magnetic declination 186:Paul Louis Mercanton 2348:Related disciplines 2314:Geothermal gradient 2042:Fluorine absorption 2019:Luminescence dating 1914:Luminescence dating 1822:Milankovitch cycles 1662:Proleptic Gregorian 1494:Hindu units of time 1064:2007PEPI..162..199H 904:2006JHumE..51..617H 860:1956GeoPA..33...23I 375:oxidation reactions 295:Magnetostratigraphy 270:magnetic north pole 243:showed that marine 90:magnetostratigraphy 2427:Historical geology 2231:Geophysical survey 2144:Terminus post quem 2124:Synchronoptic view 2091:Linguistic methods 2052:Obsidian hydration 1987:Radiometric dating 1972:Incremental dating 1894:Chronostratigraphy 868:10.1007/BF02629944 848:Geofis. Pura. Appl 651:Robert I., Tilling 355:Curie temperatures 290: 249:seafloor spreading 245:magnetic anomalies 203:British physicist 138:and overlaps with 113:seafloor spreading 109:magnetic anomalies 41: 2409: 2408: 2324:Mantle convection 2157: 2156: 2070: 2069: 1927: 1926: 1788: 1787: 1743:Geologic Calendar 1605: 1604: 1267:978-0-520-26031-3 213:geomagnetic field 190:Motonori Matuyama 174:lightning strikes 111:did the same for 101:continental drift 64:Certain magnetic 16:(Redirected from 2439: 2397: 2396: 2385: 2384: 2374: 2373: 2319:Gravity of Earth 2184: 2177: 2170: 2161: 2149:ASPRO chronology 2098:Glottochronology 2014:Tephrochronology 1962:Dendrochronology 1940: 1837: 1636:Proleptic Julian 1626:Pre-Julian Roman 1616: 1411: 1327: 1320: 1313: 1304: 1271: 1246: 1241:. Archived from 1208: 1185: 1157: 1134: 1109: 1076: 1075: 1058:(3–4): 199–216. 1044: 1038: 1033: 1027: 1026:, pp. 21–22 1021: 1015: 1010: 1004: 1003: 1001: 999: 984: 975: 974: 972: 970: 956: 950: 949: 947: 945: 930: 924: 923: 886: 880: 879: 843: 837: 836: 824: 818: 808: 802: 801: 789: 783: 782: 780: 756: 750: 745: 736: 730: 721: 702: 686: 680: 679: 677: 675: 646: 617:Paleoclimatology 611:Magnetochemistry 577:geochronological 373:Because complex 232:Edward A. Irving 217:Earth's rotation 168:attributed this 86:sedimentary rock 76:. The record of 60:paleomagnetists. 21: 2447: 2446: 2442: 2441: 2440: 2438: 2437: 2436: 2412: 2411: 2410: 2405: 2368: 2359: 2343: 2294:Coriolis effect 2289:Chandler wobble 2281: 2275: 2251:Mineral physics 2214: 2193: 2188: 2158: 2153: 2102: 2086: 2082:Molecular clock 2075:Genetic methods 2066: 2047:Nitrogen dating 2034:Relative dating 2028: 1997:Potassium–argon 1944:Absolute dating 1934: 1923: 1882: 1861: 1826: 1802:Cosmic Calendar 1794:Astronomic time 1784: 1726: 1681: 1645: 1631:Original Julian 1601: 1568: 1530: 1429:Ab urbe condita 1407: 1384: 1336: 1331: 1279: 1274: 1268: 1249: 1239: 1220: 1216: 1214:Further reading 1211: 1205: 1188: 1182: 1160: 1154: 1137: 1131: 1112: 1106: 1089: 1085: 1080: 1079: 1046: 1045: 1041: 1034: 1030: 1022: 1018: 1011: 1007: 997: 995: 986: 985: 978: 968: 966: 958: 957: 953: 943: 941: 932: 931: 927: 888: 887: 883: 845: 844: 840: 826: 825: 821: 809: 805: 791: 790: 786: 758: 757: 753: 746: 739: 731: 724: 688: 687: 683: 673: 671: 669: 648: 647: 643: 638: 601: 595:geochronology. 589:potassium–argon 556: 515: 499: 468: 432: 426: 414: 396:. Although the 343: 337: 321: 308:Earth's history 257: 215:was related to 205:P.M.S. Blackett 182:Bernard Brunhes 158: 152: 74:tectonic plates 48:palaeomagnetism 28: 23: 22: 15: 12: 11: 5: 2445: 2443: 2435: 2434: 2429: 2424: 2422:Paleomagnetism 2414: 2413: 2407: 2406: 2404: 2403: 2391: 2379: 2364: 2361: 2360: 2358: 2357: 2351: 2349: 2345: 2344: 2342: 2341: 2336: 2331: 2326: 2321: 2316: 2311: 2306: 2301: 2296: 2291: 2285: 2283: 2277: 2276: 2274: 2273: 2271:Tectonophysics 2268: 2263: 2261:Paleomagnetism 2258: 2253: 2248: 2243: 2241:Geomathematics 2238: 2233: 2228: 2222: 2220: 2216: 2215: 2213: 2212: 2207: 2201: 2199: 2195: 2194: 2189: 2187: 2186: 2179: 2172: 2164: 2155: 2154: 2152: 2151: 2146: 2141: 2136: 2131: 2126: 2121: 2119:New Chronology 2116: 2110: 2108: 2107:Related topics 2104: 2103: 2101: 2100: 2094: 2092: 2088: 2087: 2085: 2084: 2078: 2076: 2072: 2071: 2068: 2067: 2065: 2064: 2059: 2054: 2049: 2044: 2038: 2036: 2030: 2029: 2027: 2026: 2021: 2016: 2011: 2010: 2009: 2004: 1999: 1994: 1984: 1982:Paleomagnetism 1979: 1974: 1969: 1964: 1959: 1954: 1948: 1946: 1937: 1929: 1928: 1925: 1924: 1922: 1921: 1916: 1911: 1906: 1901: 1896: 1890: 1888: 1884: 1883: 1881: 1880: 1875: 1869: 1867: 1863: 1862: 1860: 1859: 1854: 1849: 1843: 1841: 1834: 1828: 1827: 1825: 1824: 1819: 1814: 1809: 1804: 1798: 1796: 1790: 1789: 1786: 1785: 1783: 1782: 1780:New Earth Time 1777: 1772: 1771: 1770: 1765: 1755: 1750: 1745: 1740: 1734: 1732: 1728: 1727: 1725: 1724: 1719: 1709: 1704: 1689: 1687: 1683: 1682: 1680: 1679: 1674: 1669: 1664: 1659: 1653: 1651: 1647: 1646: 1644: 1643: 1641:Revised Julian 1638: 1633: 1628: 1622: 1620: 1613: 1607: 1606: 1603: 1602: 1600: 1599: 1594: 1589: 1584: 1578: 1576: 1570: 1569: 1567: 1566: 1561: 1559:Lists of kings 1556: 1551: 1549:Canon of Kings 1546: 1540: 1538: 1532: 1531: 1529: 1528: 1527: 1526: 1521: 1516: 1511: 1501: 1491: 1486: 1481: 1476: 1474:Before present 1471: 1466: 1461: 1456: 1451: 1446: 1441: 1432: 1425: 1419: 1417: 1408: 1406: 1405: 1400: 1395: 1389: 1386: 1385: 1383: 1382: 1377: 1372: 1371: 1370: 1360: 1355: 1350: 1344: 1342: 1338: 1337: 1332: 1330: 1329: 1322: 1315: 1307: 1301: 1300: 1295: 1290: 1285: 1278: 1277:External links 1275: 1273: 1272: 1266: 1247: 1237: 1217: 1215: 1212: 1210: 1209: 1203: 1186: 1180: 1158: 1152: 1144:Academic Press 1135: 1129: 1110: 1104: 1086: 1084: 1081: 1078: 1077: 1039: 1028: 1016: 1005: 976: 951: 925: 881: 838: 819: 803: 784: 771:(5): 203–205. 751: 737: 722: 681: 667: 640: 639: 637: 634: 633: 632: 629:Rock magnetism 626: 620: 614: 608: 600: 597: 555: 552: 539: 538: 535: 528: 527: 514: 511: 498: 495: 491:rock magnetism 467: 464: 425: 422: 413: 410: 339:Main article: 336: 333: 320: 317: 316: 315: 312:volcanic rocks 282: 281: 256: 253: 223:Alfred Wegener 154:Main article: 151: 148: 136:rock magnetism 94:geochronologic 46:(occasionally 44:Paleomagnetism 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2444: 2433: 2430: 2428: 2425: 2423: 2420: 2419: 2417: 2402: 2401: 2392: 2390: 2389: 2380: 2378: 2377: 2372: 2366: 2365: 2362: 2356: 2353: 2352: 2350: 2346: 2340: 2337: 2335: 2332: 2330: 2327: 2325: 2322: 2320: 2317: 2315: 2312: 2310: 2307: 2305: 2302: 2300: 2297: 2295: 2292: 2290: 2287: 2286: 2284: 2278: 2272: 2269: 2267: 2264: 2262: 2259: 2257: 2254: 2252: 2249: 2247: 2244: 2242: 2239: 2237: 2234: 2232: 2229: 2227: 2224: 2223: 2221: 2217: 2211: 2210:Geophysicists 2208: 2206: 2203: 2202: 2200: 2196: 2192: 2185: 2180: 2178: 2173: 2171: 2166: 2165: 2162: 2150: 2147: 2145: 2142: 2140: 2137: 2135: 2132: 2130: 2127: 2125: 2122: 2120: 2117: 2115: 2112: 2111: 2109: 2105: 2099: 2096: 2095: 2093: 2089: 2083: 2080: 2079: 2077: 2073: 2063: 2060: 2058: 2055: 2053: 2050: 2048: 2045: 2043: 2040: 2039: 2037: 2035: 2031: 2025: 2022: 2020: 2017: 2015: 2012: 2008: 2005: 2003: 2000: 1998: 1995: 1993: 1990: 1989: 1988: 1985: 1983: 1980: 1978: 1975: 1973: 1970: 1968: 1965: 1963: 1960: 1958: 1955: 1953: 1950: 1949: 1947: 1945: 1941: 1938: 1936: 1933:Chronological 1930: 1920: 1917: 1915: 1912: 1910: 1907: 1905: 1902: 1900: 1899:Geochronology 1897: 1895: 1892: 1891: 1889: 1885: 1879: 1876: 1874: 1871: 1870: 1868: 1864: 1858: 1855: 1853: 1850: 1848: 1845: 1844: 1842: 1838: 1835: 1833: 1832:Geologic time 1829: 1823: 1820: 1818: 1817:Metonic cycle 1815: 1813: 1812:Galactic year 1810: 1808: 1805: 1803: 1800: 1799: 1797: 1795: 1791: 1781: 1778: 1776: 1773: 1769: 1766: 1764: 1761: 1760: 1759: 1756: 1754: 1753:ISO week date 1751: 1749: 1746: 1744: 1741: 1739: 1736: 1735: 1733: 1729: 1723: 1720: 1717: 1713: 1710: 1708: 1705: 1702: 1698: 1694: 1691: 1690: 1688: 1684: 1678: 1675: 1673: 1670: 1668: 1665: 1663: 1660: 1658: 1655: 1654: 1652: 1648: 1642: 1639: 1637: 1634: 1632: 1629: 1627: 1624: 1623: 1621: 1617: 1614: 1612: 1608: 1598: 1595: 1593: 1590: 1588: 1585: 1583: 1580: 1579: 1577: 1575: 1571: 1565: 1562: 1560: 1557: 1555: 1552: 1550: 1547: 1545: 1542: 1541: 1539: 1537: 1533: 1525: 1522: 1520: 1517: 1515: 1512: 1510: 1507: 1506: 1505: 1502: 1499: 1495: 1492: 1490: 1487: 1485: 1482: 1480: 1477: 1475: 1472: 1470: 1467: 1465: 1462: 1460: 1459:Byzantine era 1457: 1455: 1452: 1450: 1447: 1445: 1442: 1440: 1436: 1433: 1431: 1430: 1426: 1424: 1421: 1420: 1418: 1416: 1415:Calendar eras 1412: 1409: 1404: 1401: 1399: 1396: 1394: 1391: 1390: 1387: 1381: 1378: 1376: 1373: 1369: 1366: 1365: 1364: 1361: 1359: 1356: 1354: 1351: 1349: 1346: 1345: 1343: 1339: 1335: 1328: 1323: 1321: 1316: 1314: 1309: 1308: 1305: 1299: 1296: 1294: 1291: 1289: 1286: 1284: 1281: 1280: 1276: 1269: 1263: 1259: 1255: 1254: 1248: 1244: 1240: 1238:0-86542-070-X 1234: 1230: 1226: 1225: 1219: 1218: 1213: 1206: 1204:0-7923-5258-0 1200: 1196: 1192: 1187: 1183: 1181:0-374-10520-0 1177: 1173: 1169: 1168: 1163: 1159: 1155: 1153:0-12-483355-1 1149: 1145: 1141: 1136: 1132: 1130:0-8047-1119-4 1126: 1122: 1118: 1117: 1111: 1107: 1105:0-521-32514-5 1101: 1097: 1093: 1088: 1087: 1082: 1073: 1069: 1065: 1061: 1057: 1053: 1052: 1043: 1040: 1037: 1032: 1029: 1025: 1020: 1017: 1014: 1009: 1006: 994: 990: 983: 981: 977: 965: 961: 955: 952: 940: 936: 929: 926: 921: 917: 913: 909: 905: 901: 898:(6): 617–31. 897: 893: 885: 882: 877: 873: 869: 865: 861: 857: 853: 849: 842: 839: 834: 830: 823: 820: 816: 812: 807: 804: 799: 795: 788: 785: 779: 774: 770: 766: 762: 755: 752: 749: 744: 742: 738: 734: 729: 727: 723: 719: 714: 710: 706: 700: 697:(in German). 696: 692: 685: 682: 670: 668:0-16-048220-8 664: 660: 656: 652: 645: 642: 635: 630: 627: 624: 621: 618: 615: 612: 609: 606: 603: 602: 598: 596: 594: 590: 586: 582: 581:igneous rocks 578: 574: 573:paleolatitude 570: 565: 562: 553: 551: 549: 545: 536: 533: 532: 531: 525: 524: 523: 521: 512: 510: 507: 506:ferromagnetic 503: 496: 494: 492: 487: 482: 480: 476: 472: 465: 463: 461: 457: 453: 449: 445: 441: 437: 431: 423: 421: 419: 411: 409: 407: 403: 399: 395: 391: 388: 383: 381: 380:oceanic crust 376: 371: 368: 364: 360: 356: 352: 351:igneous rocks 348: 342: 334: 332: 330: 326: 318: 313: 309: 305: 301: 297: 296: 292: 291: 286: 279: 275: 271: 267: 266: 262: 261: 260: 254: 252: 250: 246: 242: 237: 233: 229: 228:Keith Runcorn 224: 220: 218: 214: 210: 206: 201: 199: 195: 191: 187: 183: 179: 175: 171: 170:magnetization 167: 163: 157: 149: 147: 145: 141: 137: 133: 132:dynamo theory 129: 125: 120: 118: 114: 110: 106: 102: 97: 95: 91: 87: 83: 80:preserved in 79: 75: 71: 67: 62: 61: 57: 56:Geophysicists 53: 49: 45: 36: 32: 30: 19: 18:Paleomagnetic 2398: 2386: 2367: 2334:Seismic wave 2260: 2236:Geomagnetism 2062:Stratigraphy 2007:Uranium–lead 1981: 1977:Lichenometry 1775:Winter count 1758:Mesoamerican 1686:Astronomical 1504:Mesoamerican 1489:Sothic cycle 1464:Seleucid era 1449:Bosporan era 1437: / 1427: 1375:Paleontology 1252: 1243:the original 1223: 1190: 1166: 1162:McPhee, John 1139: 1115: 1091: 1055: 1049: 1042: 1031: 1019: 1008: 998:18 September 996:. Retrieved 992: 967:. Retrieved 963: 954: 942:. Retrieved 938: 928: 895: 891: 884: 854:(1): 23–41. 851: 847: 841: 832: 828: 822: 806: 797: 793: 787: 768: 764: 754: 717: 712: 708: 704: 698: 694: 684: 672:. Retrieved 658: 644: 572: 566: 557: 554:Applications 548:inclinometer 540: 529: 516: 500: 483: 474: 469: 435: 433: 417: 415: 398:Māori people 384: 372: 344: 322: 303: 293: 263: 258: 234:constructed 221: 209:magnetometer 202: 159: 140:biomagnetism 121: 98: 63: 59: 47: 43: 42: 31: 29: 2226:Geodynamics 2002:Radiocarbon 1677:Dual dating 1536:Regnal year 1514:Short Count 1454:Bostran era 1435:Anno Domini 1368:Big History 1348:Archaeology 1024:McPhee 1998 969:11 November 813:, pp.  735:, p. . 593:argon–argon 486:drill cores 402:New Zealand 164:. In 1797, 88:sequences ( 2416:Categories 2266:Seismology 2191:Geophysics 1597:Vietnamese 1509:Long Count 1444:Anno Mundi 1439:Common Era 1341:Key topics 1334:Chronology 1083:References 1036:Tauxe 1998 944:7 December 713:Schuarcher 705:Schuarcher 701:: 136–140. 674:6 November 605:Geophysics 460:diagenesis 456:sandstones 444:iron oxide 442:, another 428:See also: 363:iron oxide 349:and other 319:Principles 194:Quaternary 128:meteorites 124:Moon rocks 2309:Geodynamo 2282:phenomena 2280:Physical 2219:Subfields 2134:Year zero 2114:Chronicle 2057:Seriation 1992:Lead–lead 1866:Standards 1847:Deep time 1807:Ephemeris 1693:Lunisolar 1657:Gregorian 1650:Gregorian 1611:Calendars 1574:Era names 1544:Anka year 1423:Human Era 1353:Astronomy 1229:Blackwell 876:129781412 811:Glen 1982 733:Glen 1982 520:Road cuts 471:Remanence 329:magnetite 304:Reversals 298:uses the 2388:Category 2198:Overview 2129:Timeline 1967:Ice core 1840:Concepts 1587:Japanese 1519:Tzolk'in 1484:Egyptian 1164:(1998). 939:BBC News 920:16949648 835:: 77–85. 653:(2001). 599:See also 583:such as 561:terranes 513:Sampling 448:Red beds 440:hematite 300:polarity 162:outcrops 117:terranes 82:volcanic 66:minerals 39:present. 2400:Commons 2355:Geodesy 2205:Outline 2139:Floruit 1887:Methods 1748:Iranian 1716:Islamic 1582:Chinese 1393:Periods 1363:History 1358:Geology 1060:Bibcode 900:Bibcode 856:Bibcode 569:hominin 544:compass 452:clastic 387:pottery 361:-group 150:History 1935:dating 1731:Others 1697:Hebrew 1592:Korean 1403:Epochs 1264:  1235:  1201:  1195:Kluwer 1178:  1150:  1127:  1102:  918:  874:  665:  585:basalt 367:gabbro 359:spinel 347:basalt 255:Fields 96:tool. 1768:Aztec 1712:Lunar 1707:Solar 1701:Hindu 1564:Limmu 1524:Haab' 1479:Hijri 872:S2CID 796:[ 636:Notes 406:hāngÄ« 390:kilns 70:rocks 2339:Tide 1763:Maya 1498:Yuga 1398:Eras 1380:Time 1262:ISBN 1233:ISBN 1199:ISBN 1176:ISBN 1148:ISBN 1125:ISBN 1100:ISBN 1000:2017 971:2011 946:2012 916:PMID 676:2016 663:ISBN 591:and 546:and 325:iron 276:and 230:and 184:and 126:and 84:and 1068:doi 1056:162 908:doi 864:doi 815:4–5 773:doi 400:of 172:to 119:). 68:in 2418:: 1699:, 1260:. 1256:. 1231:. 1227:. 1197:. 1193:. 1174:. 1170:. 1146:. 1142:. 1123:. 1119:. 1098:. 1094:. 1066:. 1054:. 991:. 979:^ 962:. 937:. 914:. 906:. 896:51 894:. 870:. 862:. 852:33 850:. 831:. 767:. 763:. 740:^ 725:^ 657:. 493:. 450:, 251:. 200:. 146:. 2183:e 2176:t 2169:v 1718:) 1714:( 1703:) 1695:( 1500:) 1496:( 1326:e 1319:t 1312:v 1270:. 1207:. 1184:. 1156:. 1133:. 1108:. 1074:. 1070:: 1062:: 1002:. 973:. 948:. 922:. 910:: 902:: 878:. 866:: 858:: 833:8 817:. 781:. 775:: 769:5 699:4 678:. 314:. 20:)

Index

Paleomagnetic

Earth's magnetic fields
Geophysicists
minerals
rocks
tectonic plates
geomagnetic reversals
volcanic
sedimentary rock
magnetostratigraphy
geochronologic
continental drift
Apparent polar wander
magnetic anomalies
seafloor spreading
terranes
Moon rocks
meteorites
dynamo theory
rock magnetism
biomagnetism
environmental magnetism
History of geomagnetism
outcrops
Alexander von Humboldt
magnetization
lightning strikes
Earth's magnetic field
Bernard Brunhes

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑