Knowledge (XXG)

Paleomagnetism

Source 📝

24: 2360: 2372: 274: 2384: 477:
by the magnetic field of the steel core barrel. This contaminant is generally parallel to the barrel, and most of it can be removed by heating up to about 400 Â°C or demagnetizing in a small alternating field. In the laboratory, IRM is induced by applying fields of various strengths and is used
358:
are completely crystallized at temperatures below 900 Â°C (1,650 Â°F). Hence, the mineral grains are not rotated physically to align with Earth's magnetic field, but rather they may record the orientation of that field. The record so preserved is called a thermoremanent magnetization (TRM).
506:
The oldest rocks on the ocean floor are 200 Ma: very young when compared with the oldest continental rocks which date from 3.8 Ga. In order to collect paleomagnetic data dating beyond 200 Ma, scientists turn to magnetite-bearing samples on land to reconstruct Earth's ancient field orientation.
214:
first proposed in 1915 that continents had once been joined together and had since moved apart. Although he produced an abundance of circumstantial evidence, his theory met with little acceptance for two reasons: (1) no mechanism for continental drift was known, and (2) there was no way to
27:
Magnetic stripes are the result of reversals of the Earth's field and seafloor spreading. New oceanic crust is magnetized as it forms and then it moves away from the ridge in both directions. The models show a ridge (a) about 5 million years ago (b) about 2 million years ago and (c) in the
497:
materials influenced by a magnetic field for some time. In rocks, this remanence is typically aligned in the direction of the modern-day geomagnetic field. The fraction of a rock’s overall magnetization that is a viscous remanent magnetization is dependent on the magnetic mineralogy.
1036:
Herries, A. I. R.; Kovacheva, M.; Kostadinova, M.; Shaw, J. (2007). "Archaeo-directional and -intensity data from burnt structures at the Thracian site of Halka Bunar (Bulgaria): The effect of magnetic mineralogy, temperature and atmosphere of heating in antiquity".
227:
paths for Europe and North America. These curves diverged but could be reconciled if it was assumed that the continents had been in contact up to 200 million years ago. This provided the first clear geophysical evidence for continental drift. Then in 1963,
547:
Paleomagnetic evidence of both reversals and polar wandering data was instrumental in verifying the theories of continental drift and plate tectonics in the 1960s and 1970s. Some applications of paleomagnetic evidence to reconstruct histories of
704:
it's not improbable that a bolt of lightning produced in the granite that magnetic streak, ) Humboldt thought that this explanation was even more likely in the case of peak in the Oberpfalz because even fragments of the rock were magnetized:
366:
may occur as igneous rocks cool after crystallization, the orientations of Earth's magnetic field are not always accurately recorded, nor is the record necessarily maintained. Nonetheless, the record has been preserved well enough in basalts of
878:
Herries, A. I. R.; Adams, J. W.; Kuykendall, K. L.; Shaw, J. (2006). "Speleology and magnetobiostratigraphic chronology of the GD 2 locality of the Gondolin hominin-bearing paleocave deposits, North West Province, South Africa".
409:. If the magnetization is acquired as the grains are deposited, the result is a depositional detrital remanent magnetization; if it is acquired soon after deposition, it is a post-depositional detrital remanent magnetization. 552:
have continued to arouse controversies. Paleomagnetic evidence is also used in constraining possible ages for rocks and processes and in reconstructions of the deformational histories of parts of the crust.
530:
One way to achieve the first goal is to use a rock coring drill that has an auger tipped with diamond bits. The drill cuts a cylindrical space around some rock. Into this space is inserted a pipe with a
61:
can record the direction and intensity of Earth's magnetic field at the time they formed. This record provides information on the past behavior of the geomagnetic field and the past location of
717: 715: 423:
In a third process, magnetic grains grow during chemical reactions and record the direction of the magnetic field at the time of their formation. The field is said to be recorded by
165:(and lightning strikes do often magnetize surface rocks). 19th century studies of the direction of magnetization in rocks showed that some recent lavas were magnetized parallel to 539:
attached. These provide the orientations. Before this device is removed, a mark is scratched on the sample. After the sample is broken off, the mark can be augmented for clarity.
104:. Paleomagnetic data continues to extend the history of plate tectonics back in time, constraining the ancient position and movement of continents and continental fragments ( 692:
On pp. 136-137 Humboldt found that a peak in the Oberpfalz mountains was magnetic. On p. 138, Humboldt noted that a mountain peak in the Harz Mountains — specifically, the
261:
is constantly shifting relative to the axis of rotation of Earth. Magnetism is a vector and so magnetic field variation is studied by palaeodirectional measurements of
277:
Earth's magnetic polarity reversals in last 5 million years. Dark regions represent normal polarity (same as present field); light regions represent reversed polarity.
208:, a theory that he ultimately rejected; but the astatic magnetometer became the basic tool of paleomagnetism and led to a revival of the theory of continental drift. 1866: 1542: 1039: 2170: 515:"And everywhere, in profusion along this half mile of , there are small, neatly cored holes ... appears to be a Hilton for wrens and purple martins." 2420: 405:
In a completely different process, magnetic grains in sediments may align with the magnetic field during or soon after deposition; this is known as
229: 707:"Nicht bloß das anstehende Gestein, sondern auch jedes noch so klein abgeschlagene StĂŒck hat seine beiden Pole, seine eigene magnetische Achse." 381:, hearths, and burned adobe buildings. The discipline based on the study of thermoremanent magnetisation in archaeological materials is called 1254: 1313: 698:"Bey den Schuarchern ist es nicht unwahrscheinlich, daß ein Blitzstrahl in dem Granit jenen magnetischen Streifen hervorgebracht habe, " 1660: 560:
remains. Conversely, for a fossil of known age, the paleomagnetic data can fix the latitude at which the fossil was laid down. Such a
1861: 1457: 1225: 1191: 1168: 1140: 1117: 1092: 655: 320:
may record past polarity of Earth's magnetic field. Magnetic signatures in rocks can be recorded by several different mechanisms.
1497: 1271: 2163: 1246: 490: 1907: 186: 1655: 253: 564:
provides information about the geological environment at the time of deposition. Paleomagnetic studies are combined with
466:(IRM). Remanence of this sort is not useful for paleomagnetism, but it can be acquired as a result of lightning strikes. 1650: 329: 111:
The field of paleomagnetism also encompasses equivalent measurements of samples from other Solar System bodies, such as
1211: 2415: 1840: 1710: 577: 2234: 2156: 2050: 2030: 1154: 451:. The CRM signatures in red beds can be quite useful, and they are common targets in magnetostratigraphy studies. 2292: 2224: 2040: 2012: 1624: 1160: 1109: 166: 40: 299:. The age and pattern of these reversals is known from the study of sea floor spreading zones and the dating of 2107: 1306: 696:(the snorer) — also showed magnetization. He attributed the magnetization to lightning strikes. From p. 138: 23: 2287: 1995: 2410: 2244: 2045: 1782: 1629: 977: 144: 132: 581: 1945: 1746: 1492: 1391: 948: 382: 154: 2388: 435:. Hematite forms through chemical oxidation reactions of other minerals in the rock including magnetite. 2198: 2193: 1547: 1084: 470:
can be distinguished by its high intensity and rapid variation in direction over scales of centimeters.
371:
to have been critical in the development of theories of sea floor spreading related to plate tectonics.
224: 93: 66: 1980: 507:
Paleomagnetists, like many geologists, gravitate towards outcrops because layers of rock are exposed.
1921: 1897: 1892: 1048: 888: 844: 611: 266: 262: 174: 149:
As early as the 18th century, it was noticed that compass needles deviated near strongly magnetized
2376: 2302: 2007: 1902: 1845: 1820: 1810: 1585: 1482: 1472: 1299: 283: 258: 205: 78: 709:(Not just the outcrop but also every chip, however small, has both poles, its own magnetic axis.) 291:
reversal history of Earth's magnetic field recorded in rocks to determine the age of those rocks.
2219: 2132: 2112: 1990: 1975: 1960: 1882: 1681: 1645: 1447: 860: 237: 101: 2364: 2359: 2312: 1940: 1736: 1731: 1575: 1411: 1250: 1221: 1187: 1164: 1136: 1113: 1088: 904: 679: 651: 639: 343: 288: 201: 178: 89: 2317: 2307: 2137: 2086: 2002: 1950: 1726: 1704: 1570: 1467: 1056: 896: 852: 803: 761: 750:"On the Direction of Magnetization of Basalt in Japan, Tyƍsen [Korea] and Manchuria" 605: 599: 568:
methods to determine absolute ages for rocks in which the magnetic record is preserved. For
556:
Reversal magnetostratigraphy is often used to estimate the age of sites bearing fossils and
508: 296: 233: 220: 193: 162: 97: 74: 1985: 273: 2277: 2239: 2070: 2035: 2022: 1932: 1790: 1685: 1619: 1580: 1417: 1217: 923: 170: 62: 614: â€“ Process of reconstructing the positions of tectonic plates in the geological past 386: 257:
is the small-scale changes in the direction and intensity of Earth's magnetic field. The
1052: 892: 848: 835:
Irving, E. (1956). "Paleomagnetic and palaeoclimatological aspects of polar wandering".
177:
showed that many rocks were magnetized antiparallel to the field. Japanese geophysicist
96:
paths provided the first clear geophysical evidence for continental drift, while marine
2282: 2259: 2229: 1768: 1756: 1700: 1695: 1689: 1614: 1537: 1462: 1132: 617: 494: 479: 418: 211: 124: 58: 2404: 2297: 1887: 1805: 1800: 1751: 1741: 1502: 1381: 1240: 1103: 864: 816:
Runcorn, S. K. (1956). "Paleomagnetic comparisons between Europe and North America".
565: 368: 342:
may preserve the direction of Earth's magnetic field when the rocks cool through the
300: 216: 158: 120: 82: 70: 643: 2322: 1965: 1763: 1477: 1452: 1437: 1403: 1363: 680:"Ueber die merkwĂŒrdige magnetische PolaritĂ€t einer Gebirgskuppe von Serpentinstein" 569: 536: 440: 339: 197: 128: 44: 119:, where it is used to investigate the ancient magnetic fields of those bodies and 900: 2214: 1665: 1562: 1524: 1507: 1442: 1423: 1356: 1336: 1150: 682:[About the strange magnetic polarity of a mountain peak of serpentine]. 394: 390: 1060: 2254: 2179: 1432: 1427: 1322: 1276: 648:
This dynamic earth: the story of plate tectonics (online edition version 1.20)
593: 474: 448: 432: 351: 182: 112: 92:
hypothesis and its transformation into the modern theory of plate tectonics.
2122: 2102: 1835: 1795: 1532: 1341: 1231: 467: 459: 444: 317: 196:
provided a major impetus to paleomagnetism by inventing a sensitive astatic
116: 1281: 908: 766: 749: 2117: 1955: 1599: 1512: 1287:
Paleomagnetic database at the Scripps Institution of Oceanography (MagIC)
436: 428: 181:
showed in the late 1920s that Earth's magnetic field reversed in the mid-
105: 1105:
The Road to Jaramillo: Critical Years of the Revolution in Earth Science
2343: 2127: 1351: 1346: 856: 557: 549: 532: 375: 150: 131:, magnetic fabrics (used as strain indicators in rocks and soils), and 54: 1183: 573: 355: 347: 335: 1552: 363: 272: 22: 2327: 1486: 1368: 393:
do not make pottery, their 700- to 800-year-old steam ovens, or
378: 354:, is about 580 Â°C (1,076 Â°F), whereas most basalt and 313: 2152: 1295: 1386: 2148: 1291: 1286: 447:) are red because of hematite that formed during sedimentary 602: â€“ Study of magnetic properties of chemical compounds 346:
of those minerals. The Curie temperature of magnetite, a
43:
recorded in rocks, sediment, or archeological materials.
215:
reconstruct the movements of the continents over time.
88:
Evidence from paleomagnetism led to the revival of the
1272:
Geomagnetism & Paleomagnetism background material
1213:
Paleomagnetism: Magnetic Domains to Geologic Terranes
1127:
McElhinny, Michael W.; McFadden, Phillip L. (2000).
200:
in 1956. His intent was to test his theory that the
2336: 2268: 2207: 2186: 2095: 2079: 2063: 2021: 1931: 1920: 1875: 1867:
Global Boundary Stratotype Section and Point (GSSP)
1854: 1828: 1819: 1781: 1719: 1674: 1638: 1607: 1598: 1561: 1523: 1402: 1377: 1329: 462:that is acquired at a fixed temperature is called 789:] (in German). Braunschweig, Germany: Vieweg. 736: 248:Paleomagnetism is studied on a number of scales: 523:Retrieve samples with accurate orientations, and 312:The study of paleomagnetism is possible because 295:have occurred at irregular intervals throughout 511:are a convenient man-made source of outcrops. 2164: 1307: 1001: 982:Essentials of Paleomagnetism: Web Edition 3.0 953:MagWiki: A Magnetic Wiki for Earth Scientists 596: â€“ Physics of the Earth and its vicinity 397:, provide adequate archaeomagnetic material. 8: 1040:Physics of the Earth and Planetary Interiors 754:Proceedings of the Imperial Academy of Japan 650:. Washington, D.C.: U.S. Geological Survey. 427:(CRM). A common form is held by the mineral 169:. Early in the 20th century, work by David, 47:who specialize in paleomagnetism are called 732: 730: 608: â€“ Study of changes in ancient climate 123:. Paleomagnetism relies on developments in 2171: 2157: 2149: 1928: 1825: 1604: 1399: 1314: 1300: 1292: 1277:Paleomagnetic Data from NGDC / WDC Boulder 1081:Rock Magnetism: Fundamentals and Frontiers 81:) provides a time-scale that is used as a 1079:Dunlop, David J.; Özdemir, Özden (1997). 765: 1862:Global Standard Stratigraphic Age (GSSA) 971: 969: 783:Die Entstehung der Kontinente und Ozeane 468:Lightning-induced remanent magnetization 949:"Detrital Remanent Magnetization (DRM)" 630: 620: â€“ The study of magnetism in rocks 16:Study of Earth's magnetic field in past 1012: 519:There are two main goals of sampling: 1180:Paleomagnetic Principles and Practice 1129:Paleomagnetism: Continents and Oceans 1024: 7: 2383: 799: 721: 787:The Origin of Continents and Oceans 1661:Adoption of the Gregorian calendar 924:"Maori stones hold magnetic clues" 922:Amos, Jonathan (7 December 2012). 14: 978:"Chemical remanent magnetization" 493:is remanence that is acquired by 464:isothermal remanent magnetization 455:Isothermal remanent magnetization 269:and palaeointensity measurements. 2382: 2371: 2370: 2358: 576:, commonly used methods include 334:Iron-titanium oxide minerals in 2421:Geochronological dating methods 1543:English and British regnal year 526:Reduce statistical uncertainty. 425:chemical remanent magnetization 419:Chemical remanent magnetization 413:Chemical remanent magnetization 407:detrital remanent magnetization 401:Detrital remanent magnetization 1247:University of California Press 491:Viscous remanent magnetization 486:Viscous remanent magnetization 185:, a reversal now known as the 39:) is the study of prehistoric 1: 1656:Old Style and New Style dates 737:McElhinny & McFadden 2000 254:Geomagnetic secular variation 1608:Pre-Julian / Julian 1242:Essentials of Paleomagnetism 901:10.1016/j.jhevol.2006.07.007 374:TRM can also be recorded in 330:Thermoremanent magnetization 324:Thermoremanent magnetization 2318:Precession of the equinoxes 1841:Geological history of Earth 1711:Astronomical year numbering 1282:The Great Magnet, The Earth 976:Tauxe, Lisa (24 May 2016). 748:Matuyama, Motonori (1929). 443:sedimentary rocks (such as 2437: 2235:Geophysical fluid dynamics 1210:Butler, Robert F. (1992). 1156:Annals of the Former World 1061:10.1016/j.pepi.2007.04.006 881:Journal of Human Evolution 678:Humboldt, F.A. v. (1797). 416: 327: 316:-bearing minerals such as 142: 2352: 2013:Thermoluminescence dating 1908:Samarium–neodymium dating 1161:Farrar, Straus and Giroux 1110:Stanford University Press 1002:Dunlop & Özdemir 1997 818:Proc. Geol. Assoc. Canada 230:Morley, Vine and Matthews 187:Brunhes–Matuyama reversal 1727:Chinese sexagenary cycle 781:Wegener, Alfred (1915). 684:Neues Journal der Physik 473:IRM is often induced in 2245:Near-surface geophysics 1941:Amino acid racemisation 644:"Developing the theory" 145:History of geomagnetism 133:environmental magnetism 41:Earth's magnetic fields 2293:Earth's magnetic field 1946:Archaeomagnetic dating 1458:Era of Caesar (Iberia) 1102:Glen, William (1982). 767:10.2183/pjab1912.5.203 638:W. Jacquelyne, Kious; 383:archaeomagnetic dating 278: 236:provided evidence for 167:Earth's magnetic field 155:Alexander von Humboldt 29: 2365:Geophysics portal 2288:Earth's energy budget 1846:Geological time units 1085:Cambridge Univ. Press 478:for many purposes in 276: 225:apparent polar wander 94:Apparent polar wander 67:geomagnetic reversals 26: 1898:Law of superposition 1893:Isotope geochemistry 1239:Tauxe, Lisa (2010). 1234:on 18 February 1999. 1178:Tauxe, Lisa (1998). 700:(In the case of the 612:Plate reconstruction 267:magnetic inclination 263:magnetic declination 175:Paul Louis Mercanton 2337:Related disciplines 2303:Geothermal gradient 2031:Fluorine absorption 2008:Luminescence dating 1903:Luminescence dating 1811:Milankovitch cycles 1651:Proleptic Gregorian 1483:Hindu units of time 1053:2007PEPI..162..199H 893:2006JHumE..51..617H 849:1956GeoPA..33...23I 364:oxidation reactions 284:Magnetostratigraphy 259:magnetic north pole 232:showed that marine 79:magnetostratigraphy 2416:Historical geology 2220:Geophysical survey 2133:Terminus post quem 2113:Synchronoptic view 2080:Linguistic methods 2041:Obsidian hydration 1976:Radiometric dating 1961:Incremental dating 1883:Chronostratigraphy 857:10.1007/BF02629944 837:Geofis. Pura. Appl 640:Robert I., Tilling 344:Curie temperatures 279: 238:seafloor spreading 234:magnetic anomalies 192:British physicist 127:and overlaps with 102:seafloor spreading 98:magnetic anomalies 30: 2398: 2397: 2313:Mantle convection 2146: 2145: 2059: 2058: 1916: 1915: 1777: 1776: 1732:Geologic Calendar 1594: 1593: 1256:978-0-520-26031-3 202:geomagnetic field 179:Motonori Matuyama 163:lightning strikes 100:did the same for 90:continental drift 53:Certain magnetic 2428: 2386: 2385: 2374: 2373: 2363: 2362: 2308:Gravity of Earth 2173: 2166: 2159: 2150: 2138:ASPRO chronology 2087:Glottochronology 2003:Tephrochronology 1951:Dendrochronology 1929: 1826: 1625:Proleptic Julian 1615:Pre-Julian Roman 1605: 1400: 1316: 1309: 1302: 1293: 1260: 1235: 1230:. Archived from 1197: 1174: 1146: 1123: 1098: 1065: 1064: 1047:(3–4): 199–216. 1033: 1027: 1022: 1016: 1015:, pp. 21–22 1010: 1004: 999: 993: 992: 990: 988: 973: 964: 963: 961: 959: 945: 939: 938: 936: 934: 919: 913: 912: 875: 869: 868: 832: 826: 825: 813: 807: 797: 791: 790: 778: 772: 771: 769: 745: 739: 734: 725: 719: 710: 691: 675: 669: 668: 666: 664: 635: 606:Paleoclimatology 600:Magnetochemistry 566:geochronological 362:Because complex 221:Edward A. Irving 206:Earth's rotation 157:attributed this 75:sedimentary rock 65:. The record of 49:paleomagnetists. 2436: 2435: 2431: 2430: 2429: 2427: 2426: 2425: 2401: 2400: 2399: 2394: 2357: 2348: 2332: 2283:Coriolis effect 2278:Chandler wobble 2270: 2264: 2240:Mineral physics 2203: 2182: 2177: 2147: 2142: 2091: 2075: 2071:Molecular clock 2064:Genetic methods 2055: 2036:Nitrogen dating 2023:Relative dating 2017: 1986:Potassium–argon 1933:Absolute dating 1923: 1912: 1871: 1850: 1815: 1791:Cosmic Calendar 1783:Astronomic time 1773: 1715: 1670: 1634: 1620:Original Julian 1590: 1557: 1519: 1418:Ab urbe condita 1396: 1373: 1325: 1320: 1268: 1263: 1257: 1238: 1228: 1209: 1205: 1203:Further reading 1200: 1194: 1177: 1171: 1149: 1143: 1126: 1120: 1101: 1095: 1078: 1074: 1069: 1068: 1035: 1034: 1030: 1023: 1019: 1011: 1007: 1000: 996: 986: 984: 975: 974: 967: 957: 955: 947: 946: 942: 932: 930: 921: 920: 916: 877: 876: 872: 834: 833: 829: 815: 814: 810: 798: 794: 780: 779: 775: 747: 746: 742: 735: 728: 720: 713: 677: 676: 672: 662: 660: 658: 637: 636: 632: 627: 590: 584:geochronology. 578:potassium–argon 545: 504: 488: 457: 421: 415: 403: 385:. Although the 332: 326: 310: 297:Earth's history 246: 204:was related to 194:P.M.S. Blackett 171:Bernard Brunhes 147: 141: 63:tectonic plates 37:palaeomagnetism 17: 12: 11: 5: 2434: 2432: 2424: 2423: 2418: 2413: 2411:Paleomagnetism 2403: 2402: 2396: 2395: 2393: 2392: 2380: 2368: 2353: 2350: 2349: 2347: 2346: 2340: 2338: 2334: 2333: 2331: 2330: 2325: 2320: 2315: 2310: 2305: 2300: 2295: 2290: 2285: 2280: 2274: 2272: 2266: 2265: 2263: 2262: 2260:Tectonophysics 2257: 2252: 2250:Paleomagnetism 2247: 2242: 2237: 2232: 2230:Geomathematics 2227: 2222: 2217: 2211: 2209: 2205: 2204: 2202: 2201: 2196: 2190: 2188: 2184: 2183: 2178: 2176: 2175: 2168: 2161: 2153: 2144: 2143: 2141: 2140: 2135: 2130: 2125: 2120: 2115: 2110: 2108:New Chronology 2105: 2099: 2097: 2096:Related topics 2093: 2092: 2090: 2089: 2083: 2081: 2077: 2076: 2074: 2073: 2067: 2065: 2061: 2060: 2057: 2056: 2054: 2053: 2048: 2043: 2038: 2033: 2027: 2025: 2019: 2018: 2016: 2015: 2010: 2005: 2000: 1999: 1998: 1993: 1988: 1983: 1973: 1971:Paleomagnetism 1968: 1963: 1958: 1953: 1948: 1943: 1937: 1935: 1926: 1918: 1917: 1914: 1913: 1911: 1910: 1905: 1900: 1895: 1890: 1885: 1879: 1877: 1873: 1872: 1870: 1869: 1864: 1858: 1856: 1852: 1851: 1849: 1848: 1843: 1838: 1832: 1830: 1823: 1817: 1816: 1814: 1813: 1808: 1803: 1798: 1793: 1787: 1785: 1779: 1778: 1775: 1774: 1772: 1771: 1769:New Earth Time 1766: 1761: 1760: 1759: 1754: 1744: 1739: 1734: 1729: 1723: 1721: 1717: 1716: 1714: 1713: 1708: 1698: 1693: 1678: 1676: 1672: 1671: 1669: 1668: 1663: 1658: 1653: 1648: 1642: 1640: 1636: 1635: 1633: 1632: 1630:Revised Julian 1627: 1622: 1617: 1611: 1609: 1602: 1596: 1595: 1592: 1591: 1589: 1588: 1583: 1578: 1573: 1567: 1565: 1559: 1558: 1556: 1555: 1550: 1548:Lists of kings 1545: 1540: 1538:Canon of Kings 1535: 1529: 1527: 1521: 1520: 1518: 1517: 1516: 1515: 1510: 1505: 1500: 1490: 1480: 1475: 1470: 1465: 1463:Before present 1460: 1455: 1450: 1445: 1440: 1435: 1430: 1421: 1414: 1408: 1406: 1397: 1395: 1394: 1389: 1384: 1378: 1375: 1374: 1372: 1371: 1366: 1361: 1360: 1359: 1349: 1344: 1339: 1333: 1331: 1327: 1326: 1321: 1319: 1318: 1311: 1304: 1296: 1290: 1289: 1284: 1279: 1274: 1267: 1266:External links 1264: 1262: 1261: 1255: 1236: 1226: 1206: 1204: 1201: 1199: 1198: 1192: 1175: 1169: 1147: 1141: 1133:Academic Press 1124: 1118: 1099: 1093: 1075: 1073: 1070: 1067: 1066: 1028: 1017: 1005: 994: 965: 940: 914: 870: 827: 808: 792: 773: 760:(5): 203–205. 740: 726: 711: 670: 656: 629: 628: 626: 623: 622: 621: 618:Rock magnetism 615: 609: 603: 597: 589: 586: 544: 541: 528: 527: 524: 517: 516: 503: 500: 487: 484: 480:rock magnetism 456: 453: 414: 411: 402: 399: 328:Main article: 325: 322: 309: 306: 305: 304: 301:volcanic rocks 271: 270: 245: 242: 212:Alfred Wegener 143:Main article: 140: 137: 125:rock magnetism 83:geochronologic 35:(occasionally 33:Paleomagnetism 15: 13: 10: 9: 6: 4: 3: 2: 2433: 2422: 2419: 2417: 2414: 2412: 2409: 2408: 2406: 2391: 2390: 2381: 2379: 2378: 2369: 2367: 2366: 2361: 2355: 2354: 2351: 2345: 2342: 2341: 2339: 2335: 2329: 2326: 2324: 2321: 2319: 2316: 2314: 2311: 2309: 2306: 2304: 2301: 2299: 2296: 2294: 2291: 2289: 2286: 2284: 2281: 2279: 2276: 2275: 2273: 2267: 2261: 2258: 2256: 2253: 2251: 2248: 2246: 2243: 2241: 2238: 2236: 2233: 2231: 2228: 2226: 2223: 2221: 2218: 2216: 2213: 2212: 2210: 2206: 2200: 2199:Geophysicists 2197: 2195: 2192: 2191: 2189: 2185: 2181: 2174: 2169: 2167: 2162: 2160: 2155: 2154: 2151: 2139: 2136: 2134: 2131: 2129: 2126: 2124: 2121: 2119: 2116: 2114: 2111: 2109: 2106: 2104: 2101: 2100: 2098: 2094: 2088: 2085: 2084: 2082: 2078: 2072: 2069: 2068: 2066: 2062: 2052: 2049: 2047: 2044: 2042: 2039: 2037: 2034: 2032: 2029: 2028: 2026: 2024: 2020: 2014: 2011: 2009: 2006: 2004: 2001: 1997: 1994: 1992: 1989: 1987: 1984: 1982: 1979: 1978: 1977: 1974: 1972: 1969: 1967: 1964: 1962: 1959: 1957: 1954: 1952: 1949: 1947: 1944: 1942: 1939: 1938: 1936: 1934: 1930: 1927: 1925: 1922:Chronological 1919: 1909: 1906: 1904: 1901: 1899: 1896: 1894: 1891: 1889: 1888:Geochronology 1886: 1884: 1881: 1880: 1878: 1874: 1868: 1865: 1863: 1860: 1859: 1857: 1853: 1847: 1844: 1842: 1839: 1837: 1834: 1833: 1831: 1827: 1824: 1822: 1821:Geologic time 1818: 1812: 1809: 1807: 1806:Metonic cycle 1804: 1802: 1801:Galactic year 1799: 1797: 1794: 1792: 1789: 1788: 1786: 1784: 1780: 1770: 1767: 1765: 1762: 1758: 1755: 1753: 1750: 1749: 1748: 1745: 1743: 1742:ISO week date 1740: 1738: 1735: 1733: 1730: 1728: 1725: 1724: 1722: 1718: 1712: 1709: 1706: 1702: 1699: 1697: 1694: 1691: 1687: 1683: 1680: 1679: 1677: 1673: 1667: 1664: 1662: 1659: 1657: 1654: 1652: 1649: 1647: 1644: 1643: 1641: 1637: 1631: 1628: 1626: 1623: 1621: 1618: 1616: 1613: 1612: 1610: 1606: 1603: 1601: 1597: 1587: 1584: 1582: 1579: 1577: 1574: 1572: 1569: 1568: 1566: 1564: 1560: 1554: 1551: 1549: 1546: 1544: 1541: 1539: 1536: 1534: 1531: 1530: 1528: 1526: 1522: 1514: 1511: 1509: 1506: 1504: 1501: 1499: 1496: 1495: 1494: 1491: 1488: 1484: 1481: 1479: 1476: 1474: 1471: 1469: 1466: 1464: 1461: 1459: 1456: 1454: 1451: 1449: 1448:Byzantine era 1446: 1444: 1441: 1439: 1436: 1434: 1431: 1429: 1425: 1422: 1420: 1419: 1415: 1413: 1410: 1409: 1407: 1405: 1404:Calendar eras 1401: 1398: 1393: 1390: 1388: 1385: 1383: 1380: 1379: 1376: 1370: 1367: 1365: 1362: 1358: 1355: 1354: 1353: 1350: 1348: 1345: 1343: 1340: 1338: 1335: 1334: 1332: 1328: 1324: 1317: 1312: 1310: 1305: 1303: 1298: 1297: 1294: 1288: 1285: 1283: 1280: 1278: 1275: 1273: 1270: 1269: 1265: 1258: 1252: 1248: 1244: 1243: 1237: 1233: 1229: 1227:0-86542-070-X 1223: 1219: 1215: 1214: 1208: 1207: 1202: 1195: 1193:0-7923-5258-0 1189: 1185: 1181: 1176: 1172: 1170:0-374-10520-0 1166: 1162: 1158: 1157: 1152: 1148: 1144: 1142:0-12-483355-1 1138: 1134: 1130: 1125: 1121: 1119:0-8047-1119-4 1115: 1111: 1107: 1106: 1100: 1096: 1094:0-521-32514-5 1090: 1086: 1082: 1077: 1076: 1071: 1062: 1058: 1054: 1050: 1046: 1042: 1041: 1032: 1029: 1026: 1021: 1018: 1014: 1009: 1006: 1003: 998: 995: 983: 979: 972: 970: 966: 954: 950: 944: 941: 929: 925: 918: 915: 910: 906: 902: 898: 894: 890: 887:(6): 617–31. 886: 882: 874: 871: 866: 862: 858: 854: 850: 846: 842: 838: 831: 828: 823: 819: 812: 809: 805: 801: 796: 793: 788: 784: 777: 774: 768: 763: 759: 755: 751: 744: 741: 738: 733: 731: 727: 723: 718: 716: 712: 708: 703: 699: 695: 689: 686:(in German). 685: 681: 674: 671: 659: 657:0-16-048220-8 653: 649: 645: 641: 634: 631: 624: 619: 616: 613: 610: 607: 604: 601: 598: 595: 592: 591: 587: 585: 583: 579: 575: 571: 570:igneous rocks 567: 563: 562:paleolatitude 559: 554: 551: 542: 540: 538: 534: 525: 522: 521: 520: 514: 513: 512: 510: 501: 499: 496: 495:ferromagnetic 492: 485: 483: 481: 476: 471: 469: 465: 461: 454: 452: 450: 446: 442: 438: 434: 430: 426: 420: 412: 410: 408: 400: 398: 396: 392: 388: 384: 380: 377: 372: 370: 369:oceanic crust 365: 360: 357: 353: 349: 345: 341: 340:igneous rocks 337: 331: 323: 321: 319: 315: 307: 302: 298: 294: 290: 286: 285: 281: 280: 275: 268: 264: 260: 256: 255: 251: 250: 249: 243: 241: 239: 235: 231: 226: 222: 218: 217:Keith Runcorn 213: 209: 207: 203: 199: 195: 190: 188: 184: 180: 176: 172: 168: 164: 160: 159:magnetization 156: 152: 146: 138: 136: 134: 130: 126: 122: 121:dynamo theory 118: 114: 109: 107: 103: 99: 95: 91: 86: 84: 80: 76: 72: 69:preserved in 68: 64: 60: 56: 51: 50: 46: 45:Geophysicists 42: 38: 34: 25: 21: 19: 2387: 2375: 2356: 2323:Seismic wave 2249: 2225:Geomagnetism 2051:Stratigraphy 1996:Uranium–lead 1970: 1966:Lichenometry 1764:Winter count 1747:Mesoamerican 1675:Astronomical 1493:Mesoamerican 1478:Sothic cycle 1453:Seleucid era 1438:Bosporan era 1426: / 1416: 1364:Paleontology 1241: 1232:the original 1212: 1179: 1155: 1151:McPhee, John 1128: 1104: 1080: 1044: 1038: 1031: 1020: 1008: 997: 987:18 September 985:. Retrieved 981: 956:. Retrieved 952: 943: 931:. Retrieved 927: 917: 884: 880: 873: 843:(1): 23–41. 840: 836: 830: 821: 817: 811: 795: 786: 782: 776: 757: 753: 743: 706: 701: 697: 693: 687: 683: 673: 661:. Retrieved 647: 633: 561: 555: 546: 543:Applications 537:inclinometer 529: 518: 505: 489: 472: 463: 458: 424: 422: 406: 404: 387:Māori people 373: 361: 333: 311: 292: 282: 252: 247: 223:constructed 210: 198:magnetometer 191: 148: 129:biomagnetism 110: 87: 52: 48: 36: 32: 31: 20: 18: 2215:Geodynamics 1991:Radiocarbon 1666:Dual dating 1525:Regnal year 1503:Short Count 1443:Bostran era 1424:Anno Domini 1357:Big History 1337:Archaeology 1013:McPhee 1998 958:11 November 802:, pp.  724:, p. . 582:argon–argon 475:drill cores 391:New Zealand 153:. In 1797, 77:sequences ( 2405:Categories 2255:Seismology 2180:Geophysics 1586:Vietnamese 1498:Long Count 1433:Anno Mundi 1428:Common Era 1330:Key topics 1323:Chronology 1072:References 1025:Tauxe 1998 933:7 December 702:Schuarcher 694:Schuarcher 690:: 136–140. 663:6 November 594:Geophysics 449:diagenesis 445:sandstones 433:iron oxide 431:, another 417:See also: 352:iron oxide 338:and other 308:Principles 183:Quaternary 117:meteorites 113:Moon rocks 2298:Geodynamo 2271:phenomena 2269:Physical 2208:Subfields 2123:Year zero 2103:Chronicle 2046:Seriation 1981:Lead–lead 1855:Standards 1836:Deep time 1796:Ephemeris 1682:Lunisolar 1646:Gregorian 1639:Gregorian 1600:Calendars 1563:Era names 1533:Anka year 1412:Human Era 1342:Astronomy 1218:Blackwell 865:129781412 800:Glen 1982 722:Glen 1982 509:Road cuts 460:Remanence 318:magnetite 293:Reversals 287:uses the 2377:Category 2187:Overview 2118:Timeline 1956:Ice core 1829:Concepts 1576:Japanese 1508:Tzolk'in 1473:Egyptian 1153:(1998). 928:BBC News 909:16949648 824:: 77–85. 642:(2001). 588:See also 572:such as 550:terranes 502:Sampling 437:Red beds 429:hematite 289:polarity 151:outcrops 106:terranes 71:volcanic 55:minerals 28:present. 2389:Commons 2344:Geodesy 2194:Outline 2128:Floruit 1876:Methods 1737:Iranian 1705:Islamic 1571:Chinese 1382:Periods 1352:History 1347:Geology 1049:Bibcode 889:Bibcode 845:Bibcode 558:hominin 533:compass 441:clastic 376:pottery 350:-group 139:History 1924:dating 1720:Others 1686:Hebrew 1581:Korean 1392:Epochs 1253:  1224:  1190:  1184:Kluwer 1167:  1139:  1116:  1091:  907:  863:  654:  574:basalt 356:gabbro 348:spinel 336:basalt 244:Fields 85:tool. 1757:Aztec 1701:Lunar 1696:Solar 1690:Hindu 1553:Limmu 1513:Haab' 1468:Hijri 861:S2CID 785:[ 625:Notes 395:hāngÄ« 379:kilns 59:rocks 2328:Tide 1752:Maya 1487:Yuga 1387:Eras 1369:Time 1251:ISBN 1222:ISBN 1188:ISBN 1165:ISBN 1137:ISBN 1114:ISBN 1089:ISBN 989:2017 960:2011 935:2012 905:PMID 665:2016 652:ISBN 580:and 535:and 314:iron 265:and 219:and 173:and 115:and 73:and 1057:doi 1045:162 897:doi 853:doi 804:4–5 762:doi 389:of 161:to 108:). 57:in 2407:: 1688:, 1249:. 1245:. 1220:. 1216:. 1186:. 1182:. 1163:. 1159:. 1135:. 1131:. 1112:. 1108:. 1087:. 1083:. 1055:. 1043:. 980:. 968:^ 951:. 926:. 903:. 895:. 885:51 883:. 859:. 851:. 841:33 839:. 820:. 756:. 752:. 729:^ 714:^ 646:. 482:. 439:, 240:. 189:. 135:. 2172:e 2165:t 2158:v 1707:) 1703:( 1692:) 1684:( 1489:) 1485:( 1315:e 1308:t 1301:v 1259:. 1196:. 1173:. 1145:. 1122:. 1097:. 1063:. 1059:: 1051:: 991:. 962:. 937:. 911:. 899:: 891:: 867:. 855:: 847:: 822:8 806:. 770:. 764:: 758:5 688:4 667:. 303:.

Index


Earth's magnetic fields
Geophysicists
minerals
rocks
tectonic plates
geomagnetic reversals
volcanic
sedimentary rock
magnetostratigraphy
geochronologic
continental drift
Apparent polar wander
magnetic anomalies
seafloor spreading
terranes
Moon rocks
meteorites
dynamo theory
rock magnetism
biomagnetism
environmental magnetism
History of geomagnetism
outcrops
Alexander von Humboldt
magnetization
lightning strikes
Earth's magnetic field
Bernard Brunhes
Paul Louis Mercanton

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑