Knowledge (XXG)

Parabolic reflector

Source 📝

31: 1443:. This is a paraboloidal mirror which is rotated about axes that pass through its centre of mass, but this does not coincide with the focus, which is outside the dish. If the reflector were a rigid paraboloid, the focus would move as the dish turns. To avoid this, the reflector is flexible, and is bent as it rotates so as to keep the focus stationary. Ideally, the reflector would be exactly paraboloidal at all times. In practice, this cannot be achieved exactly, so the Scheffler reflector is not suitable for purposes that require high accuracy. It is used in applications such as 1285: 1383: 1456: 1619: 46: 1670: 1515: 230: 1313:.) Because many types of energy can be reflected in this way, parabolic reflectors can be used to collect and concentrate energy entering the reflector at a particular angle. Similarly, energy radiating from the focus to the dish can be transmitted outward in a beam that is parallel to the axis of the dish. 1476:
intersects the paraboloid. However, if the reflector is used to focus incoming energy onto a receiver, the shadow of the receiver falls onto the vertex of the paraboloid, which is part of the reflector, so part of the reflector is wasted. This can be avoided by making the reflector from a segment of
1324:
that becomes stronger as the ratio of the beam diameter to the focal distance becomes larger, parabolic reflectors can be made to accommodate beams of any width. However, if the incoming beam makes a non-zero angle with the axis (or if the emitting point source is not placed in the focus), parabolic
1336:
The precision to which a parabolic dish must be made in order to focus energy well depends on the wavelength of the energy. If the dish is wrong by a quarter of a wavelength, then the reflected energy will be wrong by a half wavelength, which means that it will interfere destructively with energy
1353:
of a wavelength. The wavelength range of visible light is between about 400 and 700 nanometres (nm), so in order to focus all visible light well, a reflector must be correct to within about 20 nm. For comparison, the diameter of a human hair is usually about 50,000 nm, so the required
1477:
the paraboloid which is offset from the vertex and the axis of symmetry. The whole reflector receives energy, which is then focused onto the receiver. This is frequently done, for example, in satellite-TV receiving dishes, and also in some types of astronomical telescope (
1434:
The focus-balanced configuration (see above) requires the depth of the reflector dish to be greater than its focal length, so the focus is within the dish. This can lead to the focus being difficult to access. An alternative approach is exemplified by the
488:. This is sometimes called the "linear diameter", and equals the diameter of a flat, circular sheet of material, usually metal, which is the right size to be cut and bent to make the dish. Two intermediate results are useful in the calculation: 1704:, which is a virtually identical copy of the original that appears in the opening. The quality of the image is dependent upon the precision of the optics. Some such illusions are manufactured to tolerances of millionths of an inch. 1459:
The vertex of the paraboloid is below the bottom edge of the dish. The curvature of the dish is greatest near the vertex. The axis, which is aimed at the satellite, passes through the vertex and the receiver module, which is at the
1009:
is the aperture area of the dish, the area enclosed by the rim, which is proportional to the amount of sunlight the reflector dish can intercept. The area of the concave surface of the dish can be found using the area formula for a
1555:. This seems unlikely to be true, however, as the claim does not appear in sources before the 2nd century CE, and Diocles does not mention it in his book. Parabolic mirrors and reflectors were also studied extensively by the 1500:, in which the container of molten glass is offset from the axis of rotation. To make less accurate ones, suitable as satellite dishes, the shape is designed by a computer, then multiple dishes are stamped out of sheet metal. 1132: 1288:
Parallel rays coming into a parabolic mirror are focused at a point F. The vertex is V, and the axis of symmetry passes through V and F. For off-axis reflectors (with just the part of the paraboloid between the points
480:
is the radius of the dish from the center. All units used for the radius, focal point and depth must be the same. If two of these three quantities are known, this equation can be used to calculate the third.
699: 1402:. This allows it to be easily turned so it can be aimed at a moving source of light, such as the Sun in the sky, while its focus, where the target is located, is stationary. The dish is rotated around 1369:
Microwaves, such as are used for satellite-TV signals, have wavelengths of the order of ten millimetres, so dishes to focus these waves can be wrong by half a millimetre or so and still perform well.
1214: 1511:
somewhere above the equator stand steeper than a coaxial reflector. The effect is, that the arm to hold the dish can be shorter and snow tends less to accumulate in (the lower part of) the dish.
1414:
represents the focal length of the paraboloid, this "focus-balanced" condition occurs if the depth of the dish, measured along the axis of the paraboloid from the vertex to the plane of the
978: 891: 794: 614: 561: 1363: 315:
If a parabola is positioned in Cartesian coordinates with its vertex at the origin and its axis of symmetry along the y-axis, so the parabola opens upward, its equation is
839: 1700:. These consist of two opposing parabolic mirrors, with an opening in the center of the top mirror. When an object is placed on the bottom mirror, the mirrors create a 1007: 416: 352: 1158: 733: 1259: 1237: 923: 1279: 515: 1910: 1563: 478: 458: 438: 372: 1776:
The closeness of this number to the value of "e", the base of natural logarithms, is just an accidental coincidence, but it does make a useful mnemonic.
1017: 296:. A parabola is the two-dimensional figure. (The distinction is like that between a sphere and a circle.) However, in informal language, the word 35: 1846: 30: 1464:
A circular paraboloid is theoretically unlimited in size. Any practical reflector uses just a segment of it. Often, the segment includes the
1333:. This is primarily of interest in telescopes because most other applications do not require sharp resolution off the axis of the parabola. 1663: 1590:"; but according to his own confession, Gregory had no practical skill and he could find no optician capable of actually constructing one. 251: 1718:
Parabolic reflectors are also a popular alternative for increasing wireless signal strength. Even with simple ones, users have reported 3
1707:
A parabolic reflector pointing upward can be formed by rotating a reflective liquid, like mercury, around a vertical axis. This makes the
185: 2113: 1602:
also commonly used parabolic mirrors to collimate a point of light from a lantern into a beam, before being replaced by more efficient
2026: 1897: 1876: 634: 277: 1354:
accuracy for a reflector to focus visible light is about 2500 times less than the diameter of a hair. For example, the flaw in the
1337:
that has been reflected properly from another part of the dish. To prevent this, the dish must be made correctly to within about
1623: 255: 2166: 1163: 2142: 2183: 1440: 1326: 1552: 136:
are reversible, parabolic reflectors can also be used to collimate radiation from an isotropic source into a parallel
1819: 240: 1486: 1918: 259: 244: 1655: 1297:), the receiver is still placed at the focus of the paraboloid, but it does not cast a shadow onto the reflector. 744: 165: 931: 1736: 1708: 1544: 1532: 1508: 1284: 847: 460:
is the depth of the dish (measured along the axis of symmetry from the vertex to the plane of the rim), and
753: 128:
Parabolic reflectors are used to collect energy from a distant source (for example sound waves or incoming
1355: 1301:
The parabolic reflector functions due to the geometric properties of the paraboloidal shape: any incoming
569: 1011: 193: 1382: 521: 1643: 1635: 1583: 1579: 1575: 1571: 1482: 1359: 1321: 205: 149: 1968:
pp. 465, 468, 469, A Pioneer in Anaclastics: Ibn Sahl on Burning Mirrors and Lenses, Roshdi Rashed,
1689:, and is then transported to the venue of the Games. Parabolic mirrors are one of many shapes for a 796:
where the symbols are defined as above. This can be compared with the formulae for the volumes of a
378:".) Correspondingly, the dimensions of a symmetrical paraboloidal dish are related by the equation: 1595: 1587: 1528: 1447:, where sunlight has to be focused well enough to strike a cooking pot, but not to an exact point. 1317: 797: 133: 98: 2092: 1798: 2203: 1757: 1387: 2118:
Do-It-Yourself Wireless Antennas Update and Wi-Fi Resource Center | WiFi Wireless Q & A
1455: 802: 2022: 1893: 1872: 1742: 1618: 1160:. The fraction of light reflected by the dish, from a light source in the focus, is given by 736: 630:
are defined as above. The diameter of the dish, measured along the surface, is then given by:
177: 2171: 2016: 2198: 2121: 2001: 1977: 1952: 1747: 1712: 1697: 1497: 1473: 1399: 145: 982: 382: 318: 1914: 1682: 1639: 926: 122: 45: 1137: 1241: 1219: 706: 1943: 1868: 1651: 1631: 1607: 1465: 1395: 1306: 1264: 896: 189: 118: 110: 491: 2192: 1752: 1731: 1690: 1678: 1493: 1330: 153: 137: 2066: 1890:
The forgotten revolution: how science was born in 300 BC and why it had to be reborn
1939: 1647: 1603: 1594:
knew about the properties of parabolic mirrors but chose a spherical shape for his
1591: 1444: 1305:
that is parallel to the axis of the dish will be reflected to a central point, or "
1302: 463: 443: 423: 357: 114: 2048: 1995: 1669: 1514: 1610:, a German physicist, constructed the world's first parabolic reflector antenna. 1559: 1407: 229: 161: 1426:. The angular radius of the rim as seen from the focal point is 72.68 degrees. 1701: 1599: 1548: 1540: 292: 181: 157: 106: 94: 17: 1127:{\textstyle A={\frac {\pi R}{6D^{2}}}\left((R^{2}+4D^{2})^{3/2}-R^{3}\right)} 1659: 1556: 1469: 1406:
that pass through the focus and around which it is balanced. If the dish is
213: 209: 201: 169: 1823: 105:
revolving around its axis. The parabolic reflector transforms an incoming
1686: 1504: 1496:
and other non-critical applications, can be made quite simply by using a
1310: 375: 113:
converging toward the focus. Conversely, a spherical wave generated by a
102: 1358:
mirror (too flat by about 2,200 nm at its perimeter) caused severe
1719: 1630:
The most common modern applications of the parabolic reflector are in
1543:
in the third century BCE studied paraboloids as part of his study of
484:
A more complex calculation is needed to find the diameter of the dish
842: 141: 82: 78: 39: 1403: 212:, in sports reporting, and to eavesdrop on private conversations in 2067:"ALMA Doubles its Power in New Phase of More Advanced Observations" 1981: 1956: 290:
Strictly, the three-dimensional shape of the reflector is called a
2177: 1668: 1617: 1513: 1454: 1415: 197: 173: 90: 86: 44: 29: 1551:
that he used reflectors to set the Roman fleet alight during the
129: 694:{\textstyle {\frac {RQ}{P}}+P\ln \left({\frac {R+Q}{P}}\right)} 2018:
Electronic Imaging in Astronomy: Detectors and Instrumentation
223: 1527:
The principle of parabolic reflectors has been known since
1410:
and made of uniform material of constant thickness, and if
196:
stations, and to locate aircraft, ships, and vehicles in
34:
One of the world's largest solar parabolic dishes at the
1539:
and proved that they focus a parallel beam to a point.
1209:{\textstyle 1-{\frac {\arctan {\frac {R}{D-F}}}{\pi }}} 1166: 1140: 1020: 985: 934: 899: 850: 805: 756: 709: 637: 572: 524: 494: 466: 446: 426: 385: 360: 321: 1938:
p. 72, The Geometry of Burning-Mirrors in Antiquity,
1696:
Parabolic reflectors are popular for use in creating
1673:
Lighting the Olympic Flame with a parabolic reflector
1267: 1244: 1222: 1865:
Apollonius of Perga's Conica: text, context, subtext
2184:
Make Big Paraboloid Reflectors Using Plane Segments
1586:. The design he came up with bears his name: the " 1273: 1253: 1231: 1208: 1152: 1126: 1001: 972: 917: 885: 833: 788: 727: 693: 608: 555: 509: 472: 452: 432: 410: 366: 346: 121:is reflected into a plane wave propagating as a 1574:with a mirror that was parabolic would correct 1997:A biographical dictionary of eminent Scotsmen 8: 2120:. Binarywolf.com. 2009-08-26. Archived from 1685:, using a parabolic reflector concentrating 27:Reflector that has the shape of a paraboloid 2167:Java demonstration of a parabolic reflector 258:. Unsourced material may be challenged and 208:are used to record faraway sounds such as 2143:"Slideshow: Wi-Fi Shootout in the Desert" 1492:Accurate off-axis reflectors, for use in 1266: 1243: 1221: 1182: 1173: 1165: 1139: 1113: 1096: 1092: 1082: 1066: 1045: 1027: 1019: 993: 984: 955: 938: 933: 898: 871: 854: 849: 816: 804: 774: 757: 755: 708: 669: 638: 636: 598: 585: 579: 571: 537: 531: 523: 493: 465: 445: 425: 402: 384: 376:Parabola#In a cartesian coordinate system 359: 338: 320: 278:Learn how and when to remove this message 2178:Animations demonstrating parabola mirror 1711:possible. The same technique is used in 1503:Off-axis-reflectors heading from medium 1381: 1283: 973:{\textstyle ({\frac {1}{3}}\pi R^{2}D).} 2114:"Parabolic Reflector Free WiFi Booster" 1789: 1769: 1422:. The radius of the rim is 2.7187  1398:of a reflector dish coincides with its 1390:of a focus-balanced parabolic reflector 886:{\textstyle ({\frac {2}{3}}\pi R^{2}D,} 36:Ben-Gurion National Solar Energy Center 789:{\textstyle {\frac {1}{2}}\pi R^{2}D,} 101:, that is, the surface generated by a 180:are used to radiate a narrow beam of 7: 1976:, #3 (September 1990), pp. 464–491, 609:{\textstyle Q={\sqrt {P^{2}+R^{2}}}} 256:adding citations to reliable sources 2091:Fitzpatrick, Richard (2007-07-14). 1917:. November 26, 1973. Archived from 1797:Fitzpatrick, Richard (2007-07-14). 1309:". (For a geometrical proof, click 750:The volume of the dish is given by 81:surface used to collect or project 1739:, paraboloids produced by rotation 556:{\textstyle P={\frac {R^{2}}{2D}}} 25: 1892:, Lucio Russo, Birkhäuser, 2004, 1598:mirror to simplify construction. 156:, and project a beam of light in 109:travelling along the axis into a 228: 132:light). Since the principles of 2049:"Prehistory of Radio Astronomy" 1624:Atacama Large Millimeter Array 1606:in the 19th century. In 1888, 1394:It is sometimes useful if the 1089: 1059: 964: 935: 909: 851: 825: 806: 743:, i.e. its logarithm to base " 722: 716: 1: 2000:. Oxford University. p.  1468:of the paraboloid, where its 1418:of the dish, is 1.8478 times 300:and its associated adjective 2172:Parabolic Reflector Antennas 2015:McLean, Ian S (2008-07-29). 1951:#1 (March 1983), pp. 53–73, 1439:, named after its inventor, 148:are used to gather light in 1570:(1663), pointed out that a 1535:described them in his book 1472:is greatest, and where the 374:is its focal length. (See " 304:are often used in place of 2220: 1715:to make solid reflectors. 1626:on the Chajnantor Plateau 1509:geostationary TV satellite 1487:James Webb Space Telescope 1325:reflectors suffer from an 834:{\textstyle (\pi R^{2}D),} 486:measured along its surface 1994:Chambers, Robert (1875). 1847:"The Scheffler-Reflector" 1531:, when the mathematician 97:. Its shape is part of a 1681:is traditionally lit at 1562:in the 13th century AD. 1378:Focus-balanced reflector 2095:. Farside.ph.utexas.edu 1867:, Michael N. Fried and 1801:. Farside.ph.utexas.edu 1737:Liquid-mirror telescope 1709:liquid-mirror telescope 1545:hydrostatic equilibrium 1518:Off-axis satellite dish 2174:www.antenna-theory.com 1851:www.solare-bruecke.org 1822:. NASA. Archived from 1674: 1627: 1519: 1461: 1391: 1356:Hubble Space Telescope 1320:, which suffer from a 1298: 1281:are defined as above. 1275: 1255: 1233: 1210: 1154: 1128: 1003: 1002:{\textstyle \pi R^{2}} 974: 919: 887: 835: 790: 729: 695: 610: 557: 511: 474: 454: 434: 412: 411:{\textstyle 4FD=R^{2}} 368: 348: 347:{\textstyle 4fy=x^{2}} 50: 42: 1820:"Servicing Mission 1" 1672: 1644:parabolic microphones 1636:reflecting telescopes 1621: 1584:refracting telescopes 1517: 1458: 1385: 1362:until corrected with 1287: 1276: 1256: 1234: 1211: 1155: 1129: 1012:surface of revolution 1004: 975: 920: 888: 836: 791: 730: 696: 611: 558: 512: 475: 455: 440:is the focal length, 435: 413: 369: 349: 216:and law enforcement. 206:parabolic microphones 150:reflecting telescopes 48: 33: 1911:"Archimedes' Weapon" 1580:chromatic aberration 1576:spherical aberration 1572:reflecting telescope 1483:Green Bank Telescope 1360:spherical aberration 1322:spherical aberration 1318:spherical reflectors 1265: 1242: 1220: 1164: 1153:{\textstyle D\neq 0} 1138: 1018: 983: 932: 897: 848: 803: 754: 707: 635: 570: 522: 517:(or the equivalent: 492: 464: 444: 424: 383: 358: 319: 252:improve this section 2145:. Wired. 2004-08-03 2093:"Spherical Mirrors" 1921:on October 12, 2007 1799:"Spherical Mirrors" 1596:Newtonian telescope 1588:Gregorian telescope 1566:, in his 1663 book 1529:classical antiquity 1451:Off-axis reflectors 1437:Scheffler reflector 1430:Scheffler reflector 728:{\textstyle \ln(x)} 99:circular paraboloid 49:Circular paraboloid 1758:Toroidal reflector 1675: 1666:and LED housings. 1628: 1547:, and it has been 1537:On Burning Mirrors 1520: 1462: 1441:Wolfgang Scheffler 1392: 1388:oblique projection 1299: 1271: 1254:{\displaystyle D,} 1251: 1232:{\displaystyle F,} 1229: 1206: 1150: 1124: 999: 970: 918:{\textstyle D=R),} 915: 883: 831: 786: 725: 691: 606: 553: 507: 470: 450: 430: 408: 364: 344: 188:communications in 178:parabolic antennas 51: 43: 1826:on April 20, 2008 1743:Parabolic antenna 1713:rotating furnaces 1698:optical illusions 1553:Siege of Syracuse 1316:In contrast with 1274:{\displaystyle R} 1204: 1198: 1052: 946: 862: 765: 737:natural logarithm 685: 651: 604: 551: 510:{\textstyle P=2F} 288: 287: 280: 146:parabolic mirrors 16:(Redirected from 2211: 2154: 2153: 2151: 2150: 2139: 2133: 2132: 2130: 2129: 2110: 2104: 2103: 2101: 2100: 2088: 2082: 2081: 2079: 2077: 2071:ESO Announcement 2063: 2057: 2056: 2045: 2039: 2038: 2036: 2035: 2012: 2006: 2005: 1991: 1985: 1966: 1960: 1936: 1930: 1929: 1927: 1926: 1907: 1901: 1886: 1880: 1861: 1855: 1854: 1842: 1836: 1835: 1833: 1831: 1816: 1810: 1809: 1807: 1806: 1794: 1777: 1774: 1748:Parabolic trough 1654:devices such as 1640:radio telescopes 1632:satellite dishes 1622:Antennas of the 1498:rotating furnace 1474:axis of symmetry 1352: 1350: 1349: 1346: 1343: 1280: 1278: 1277: 1272: 1260: 1258: 1257: 1252: 1238: 1236: 1235: 1230: 1215: 1213: 1212: 1207: 1205: 1200: 1199: 1197: 1183: 1174: 1159: 1157: 1156: 1151: 1133: 1131: 1130: 1125: 1123: 1119: 1118: 1117: 1105: 1104: 1100: 1087: 1086: 1071: 1070: 1053: 1051: 1050: 1049: 1036: 1028: 1008: 1006: 1005: 1000: 998: 997: 979: 977: 976: 971: 960: 959: 947: 939: 924: 922: 921: 916: 892: 890: 889: 884: 876: 875: 863: 855: 840: 838: 837: 832: 821: 820: 795: 793: 792: 787: 779: 778: 766: 758: 742: 734: 732: 731: 726: 702: 700: 698: 697: 692: 690: 686: 681: 670: 652: 647: 639: 629: 625: 621: 617: 615: 613: 612: 607: 605: 603: 602: 590: 589: 580: 564: 562: 560: 559: 554: 552: 550: 542: 541: 532: 516: 514: 513: 508: 479: 477: 476: 471: 459: 457: 456: 451: 439: 437: 436: 431: 419: 417: 415: 414: 409: 407: 406: 373: 371: 370: 365: 353: 351: 350: 345: 343: 342: 283: 276: 272: 269: 263: 232: 224: 190:satellite dishes 166:stage spotlights 125:along the axis. 21: 2219: 2218: 2214: 2213: 2212: 2210: 2209: 2208: 2189: 2188: 2163: 2158: 2157: 2148: 2146: 2141: 2140: 2136: 2127: 2125: 2112: 2111: 2107: 2098: 2096: 2090: 2089: 2085: 2075: 2073: 2065: 2064: 2060: 2047: 2046: 2042: 2033: 2031: 2029: 2014: 2013: 2009: 1993: 1992: 1988: 1967: 1963: 1937: 1933: 1924: 1922: 1909: 1908: 1904: 1887: 1883: 1871:, Brill, 2001, 1862: 1858: 1845:Administrator. 1844: 1843: 1839: 1829: 1827: 1818: 1817: 1813: 1804: 1802: 1796: 1795: 1791: 1786: 1781: 1780: 1775: 1771: 1766: 1728: 1722:or more gains. 1683:Olympia, Greece 1616: 1578:as well as the 1525: 1453: 1432: 1380: 1375: 1347: 1344: 1341: 1340: 1338: 1296: 1292: 1263: 1262: 1240: 1239: 1218: 1217: 1187: 1175: 1162: 1161: 1136: 1135: 1109: 1088: 1078: 1062: 1058: 1054: 1041: 1037: 1029: 1016: 1015: 989: 981: 980: 951: 930: 929: 895: 894: 867: 846: 845: 812: 801: 800: 770: 752: 751: 740: 705: 704: 671: 665: 640: 633: 632: 631: 627: 623: 619: 594: 581: 568: 567: 566: 543: 533: 520: 519: 518: 490: 489: 462: 461: 442: 441: 422: 421: 398: 381: 380: 379: 356: 355: 334: 317: 316: 284: 273: 267: 264: 249: 233: 222: 194:microwave relay 123:collimated beam 28: 23: 22: 15: 12: 11: 5: 2217: 2215: 2207: 2206: 2201: 2191: 2190: 2187: 2186: 2181: 2175: 2169: 2162: 2161:External links 2159: 2156: 2155: 2134: 2105: 2083: 2058: 2040: 2027: 2007: 1986: 1982:10.1086/355456 1961: 1957:10.1086/353176 1931: 1902: 1881: 1869:Sabetai Unguru 1856: 1837: 1811: 1788: 1787: 1785: 1782: 1779: 1778: 1768: 1767: 1765: 1762: 1761: 1760: 1755: 1750: 1745: 1740: 1734: 1727: 1724: 1660:car headlights 1615: 1612: 1608:Heinrich Hertz 1604:Fresnel lenses 1568:Optica Promota 1524: 1521: 1494:solar furnaces 1452: 1449: 1431: 1428: 1396:centre of mass 1379: 1376: 1374: 1371: 1294: 1290: 1270: 1250: 1247: 1228: 1225: 1203: 1196: 1193: 1190: 1186: 1181: 1178: 1172: 1169: 1149: 1146: 1143: 1122: 1116: 1112: 1108: 1103: 1099: 1095: 1091: 1085: 1081: 1077: 1074: 1069: 1065: 1061: 1057: 1048: 1044: 1040: 1035: 1032: 1026: 1023: 996: 992: 988: 969: 966: 963: 958: 954: 950: 945: 942: 937: 914: 911: 908: 905: 902: 882: 879: 874: 870: 866: 861: 858: 853: 830: 827: 824: 819: 815: 811: 808: 785: 782: 777: 773: 769: 764: 761: 724: 721: 718: 715: 712: 689: 684: 680: 677: 674: 668: 664: 661: 658: 655: 650: 646: 643: 601: 597: 593: 588: 584: 578: 575: 549: 546: 540: 536: 530: 527: 506: 503: 500: 497: 473:{\textstyle R} 469: 453:{\textstyle D} 449: 433:{\textstyle F} 429: 405: 401: 397: 394: 391: 388: 367:{\textstyle f} 363: 341: 337: 333: 330: 327: 324: 286: 285: 236: 234: 227: 221: 218: 186:point-to-point 170:car headlights 154:solar furnaces 117:placed in the 111:spherical wave 26: 24: 18:Parabolic dish 14: 13: 10: 9: 6: 4: 3: 2: 2216: 2205: 2202: 2200: 2197: 2196: 2194: 2185: 2182: 2179: 2176: 2173: 2170: 2168: 2165: 2164: 2160: 2144: 2138: 2135: 2124:on 2019-06-09 2123: 2119: 2115: 2109: 2106: 2094: 2087: 2084: 2072: 2068: 2062: 2059: 2054: 2050: 2044: 2041: 2030: 2028:9783540765820 2024: 2020: 2019: 2011: 2008: 2003: 1999: 1998: 1990: 1987: 1983: 1979: 1975: 1971: 1965: 1962: 1958: 1954: 1950: 1947: 1946: 1941: 1935: 1932: 1920: 1916: 1915:Time Magazine 1912: 1906: 1903: 1899: 1898:3-540-20068-1 1895: 1891: 1885: 1882: 1878: 1877:90-04-11977-9 1874: 1870: 1866: 1863:pp. 162–164, 1860: 1857: 1852: 1848: 1841: 1838: 1825: 1821: 1815: 1812: 1800: 1793: 1790: 1783: 1773: 1770: 1763: 1759: 1756: 1754: 1753:Solar furnace 1751: 1749: 1746: 1744: 1741: 1738: 1735: 1733: 1732:John D. Kraus 1730: 1729: 1725: 1723: 1721: 1716: 1714: 1710: 1705: 1703: 1699: 1694: 1692: 1691:burning glass 1688: 1684: 1680: 1679:Olympic Flame 1671: 1667: 1665: 1661: 1657: 1653: 1649: 1648:solar cookers 1645: 1641: 1637: 1633: 1625: 1620: 1613: 1611: 1609: 1605: 1601: 1597: 1593: 1589: 1585: 1581: 1577: 1573: 1569: 1565: 1564:James Gregory 1561: 1558: 1554: 1550: 1546: 1542: 1538: 1534: 1530: 1522: 1516: 1512: 1510: 1506: 1501: 1499: 1495: 1490: 1488: 1484: 1480: 1475: 1471: 1467: 1457: 1450: 1448: 1446: 1445:solar cooking 1442: 1438: 1429: 1427: 1425: 1421: 1417: 1413: 1409: 1405: 1401: 1397: 1389: 1384: 1377: 1372: 1370: 1367: 1365: 1361: 1357: 1334: 1332: 1328: 1323: 1319: 1314: 1312: 1308: 1304: 1286: 1282: 1268: 1248: 1245: 1226: 1223: 1201: 1194: 1191: 1188: 1184: 1179: 1176: 1170: 1167: 1147: 1144: 1141: 1120: 1114: 1110: 1106: 1101: 1097: 1093: 1083: 1079: 1075: 1072: 1067: 1063: 1055: 1046: 1042: 1038: 1033: 1030: 1024: 1021: 1013: 994: 990: 986: 967: 961: 956: 952: 948: 943: 940: 928: 912: 906: 903: 900: 880: 877: 872: 868: 864: 859: 856: 844: 828: 822: 817: 813: 809: 799: 783: 780: 775: 771: 767: 762: 759: 748: 746: 738: 719: 713: 710: 687: 682: 678: 675: 672: 666: 662: 659: 656: 653: 648: 644: 641: 599: 595: 591: 586: 582: 576: 573: 547: 544: 538: 534: 528: 525: 504: 501: 498: 495: 487: 482: 467: 447: 427: 403: 399: 395: 392: 389: 386: 377: 361: 339: 335: 331: 328: 325: 322: 313: 311: 307: 303: 299: 295: 294: 282: 279: 271: 268:November 2012 261: 257: 253: 247: 246: 242: 237:This section 235: 231: 226: 225: 219: 217: 215: 211: 207: 203: 199: 195: 191: 187: 183: 179: 175: 171: 167: 163: 159: 155: 151: 147: 143: 139: 135: 131: 126: 124: 120: 116: 112: 108: 104: 100: 96: 92: 88: 84: 80: 76: 72: 68: 64: 60: 56: 47: 41: 37: 32: 19: 2147:. Retrieved 2137: 2126:. Retrieved 2122:the original 2117: 2108: 2097:. Retrieved 2086: 2074:. Retrieved 2070: 2061: 2053:www.nrao.edu 2052: 2043: 2032:. Retrieved 2017: 2010: 1996: 1989: 1973: 1969: 1964: 1948: 1944: 1940:Wilbur Knorr 1934: 1923:. Retrieved 1919:the original 1905: 1889: 1884: 1864: 1859: 1850: 1840: 1828:. Retrieved 1824:the original 1814: 1803:. Retrieved 1792: 1772: 1717: 1706: 1695: 1676: 1629: 1614:Applications 1592:Isaac Newton 1567: 1536: 1526: 1502: 1491: 1478: 1463: 1436: 1433: 1423: 1419: 1411: 1393: 1368: 1335: 1315: 1300: 1134:. providing 1014:which gives 749: 485: 483: 314: 310:paraboloidal 309: 305: 301: 297: 291: 289: 274: 265: 250:Please help 238: 162:searchlights 127: 115:point source 74: 70: 66: 63:paraboloidal 62: 58: 54: 52: 1888:pp. 73–74, 1650:, and many 1600:Lighthouses 1560:Roger Bacon 1408:symmetrical 182:radio waves 158:flashlights 95:radio waves 2193:Categories 2149:2012-11-08 2128:2012-11-08 2099:2012-11-08 2076:11 January 2034:2012-11-08 1925:2007-08-12 1805:2012-11-08 1784:References 1702:real image 1656:spotlights 1541:Archimedes 1373:Variations 1327:aberration 843:hemisphere 735:means the 306:paraboloid 293:paraboloid 210:bird calls 200:sets. In 134:reflection 107:plane wave 79:reflective 59:paraboloid 2204:Parabolas 1830:April 26, 1764:Footnotes 1664:PAR lamps 1557:physicist 1505:latitudes 1470:curvature 1202:π 1192:− 1180:⁡ 1171:− 1145:≠ 1107:− 1031:π 987:π 949:π 865:π 810:π 768:π 714:⁡ 663:⁡ 302:parabolic 239:does not 214:espionage 202:acoustics 67:reflector 55:parabolic 1726:See also 1687:sunlight 1652:lighting 1582:seen in 1216:, where 798:cylinder 354:, where 298:parabola 103:parabola 85:such as 2199:Mirrors 1549:claimed 1533:Diocles 1523:History 1351:⁠ 1339:⁠ 1329:called 260:removed 245:sources 77:) is a 2180:by QED 2025:  1896:  1875:  1485:, the 1481:, the 1466:vertex 1460:focus. 1364:COSTAR 1177:arctan 925:and a 893:where 703:where 626:, and 618:where 420:where 220:Theory 172:. In 168:, and 142:optics 140:. In 83:energy 75:mirror 40:Israel 1507:to a 1400:focus 1307:focus 1293:and P 198:radar 174:radio 119:focus 93:, or 91:sound 87:light 2078:2013 2023:ISBN 1970:Isis 1945:Isis 1894:ISBN 1873:ISBN 1832:2008 1677:The 1479:e.g. 1404:axes 1331:coma 1311:here 1261:and 927:cone 565:and 308:and 243:any 241:cite 192:and 184:for 152:and 138:beam 130:star 71:dish 69:(or 57:(or 2002:175 1978:doi 1953:doi 1489:). 1416:rim 1386:An 1303:ray 747:". 739:of 254:by 73:or 61:or 38:in 2195:: 2116:. 2069:. 2051:. 2021:. 1974:81 1972:, 1949:74 1942:, 1913:. 1849:. 1720:dB 1693:. 1662:, 1658:, 1646:, 1642:, 1638:, 1634:, 1366:. 1348:20 841:a 711:ln 660:ln 622:, 312:. 204:, 176:, 164:, 160:, 144:, 89:, 65:) 53:A 2152:. 2131:. 2102:. 2080:. 2055:. 2037:. 2004:. 1984:. 1980:: 1959:. 1955:: 1928:. 1900:. 1879:. 1853:. 1834:. 1808:. 1424:F 1420:F 1412:F 1345:/ 1342:1 1295:3 1291:1 1289:P 1269:R 1249:, 1246:D 1227:, 1224:F 1195:F 1189:D 1185:R 1168:1 1148:0 1142:D 1121:) 1115:3 1111:R 1102:2 1098:/ 1094:3 1090:) 1084:2 1080:D 1076:4 1073:+ 1068:2 1064:R 1060:( 1056:( 1047:2 1043:D 1039:6 1034:R 1025:= 1022:A 995:2 991:R 968:. 965:) 962:D 957:2 953:R 944:3 941:1 936:( 913:, 910:) 907:R 904:= 901:D 881:, 878:D 873:2 869:R 860:3 857:2 852:( 829:, 826:) 823:D 818:2 814:R 807:( 784:, 781:D 776:2 772:R 763:2 760:1 745:e 741:x 723:) 720:x 717:( 701:, 688:) 683:P 679:Q 676:+ 673:R 667:( 657:P 654:+ 649:P 645:Q 642:R 628:R 624:D 620:F 616:, 600:2 596:R 592:+ 587:2 583:P 577:= 574:Q 563:) 548:D 545:2 539:2 535:R 529:= 526:P 505:F 502:2 499:= 496:P 468:R 448:D 428:F 418:, 404:2 400:R 396:= 393:D 390:F 387:4 362:f 340:2 336:x 332:= 329:y 326:f 323:4 281:) 275:( 270:) 266:( 262:. 248:. 20:)

Index

Parabolic dish

Ben-Gurion National Solar Energy Center
Israel

reflective
energy
light
sound
radio waves
circular paraboloid
parabola
plane wave
spherical wave
point source
focus
collimated beam
star
reflection
beam
optics
parabolic mirrors
reflecting telescopes
solar furnaces
flashlights
searchlights
stage spotlights
car headlights
radio
parabolic antennas

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.