Knowledge (XXG)

Paracompact space

Source đź“ť

4710:
and paracompactness: For paracompactness, "subcover" is replaced by "open refinement" and "finite" by is replaced by "locally finite". Both of these changes are significant: if we take the definition of paracompact and change "open refinement" back to "subcover", or "locally finite" back to "finite",
5129:. The proof that all metrizable spaces are fully normal is easy. When it was proved by A.H. Stone that for Hausdorff spaces full normality and paracompactness are equivalent, he implicitly proved that all metrizable spaces are paracompact. Later 4156: 3378:(by Urysohn's lemma for disjoint closed sets in normal spaces, which a paracompact Hausdorff space is). Note by the support of a function, we here mean the points not mapping to zero (and not the closure of this set). To show that 2930: 1307:, that is, every open cover of a paracompact Hausdorff space has a shrinking: another open cover indexed by the same set such that the closure of every set in the new cover lies inside the corresponding set in the old cover. 909: 2110: 4939: 3932: 73:
of a paracompact space is paracompact. While compact subsets of Hausdorff spaces are always closed, this is not true for paracompact subsets. A space such that every subspace of it is a paracompact space is called
3870: 376: 5093: 4660: 4251: 3376: 1789: 3333: 2616: 1843: 3430: 2732: 2242: 1661: 679: 765: 539: 257: 488: 2348: 1611: 4579: 4617: 4320: 2972: 3182: 3040: 2416: 4282: 1568: 4539: 4079: 5276: 2791: 2165: 3570: 3524: 2300: 2267: 2135: 2031: 2006: 1957: 1932: 1897: 1694: 1509: 4691: 4035: 3213: 2832: 2513: 2440: 1981: 4208: 3277: 1746: 5474: 3732: 3668: 3613: 619: 569: 4417: 2998: 2374: 5369: 5334: 5249: 4465: 3786: 3457: 4381: 1537: 3983: 3762: 4353: 3813: 2670: 2643: 2192: 4960:
is a cover of the same space such that, given any point in the space, the star of the point in the new cover is a subset of some set in the old cover. In symbols,
4507: 4486: 4438: 4004: 3953: 3689: 3634: 3545: 3499: 3478: 1872: 1469: 4084: 3140: 3120: 3100: 3080: 3060: 2761: 2542: 2489: 2469: 2033:
by a locally finite open refinement. One can easily check that each set in this refinement has the same property as that which characterised the original cover.
1039: 1019: 999: 979: 959: 932: 845: 825: 805: 785: 702: 639: 589: 433: 399: 321: 301: 281: 206: 182: 158: 2837: 4714:
Paracompactness has little to do with the notion of compactness, but rather more to do with breaking up topological space entities into manageable pieces.
1217:
is paracompact if every open cover admits a locally finite refinement. (Here, the refinement is not required to be open.) In particular, every regular
5675: 853: 2041: 105:
of any collection of compact topological spaces is compact. However, the product of a paracompact space and a compact space is always paracompact.
4867: 5122:
Without the Hausdorff property, paracompact spaces are not necessarily fully normal. Any compact space that is not regular provides an example.
3875: 5581: 5514: 1425:
Partitions of unity are useful because they often allow one to extend local constructions to the whole space. For instance, the integral of
5241: 5670: 4785:
if every open cover has an open refinement such that the intersection of all the open sets about any point in this refinement is open.
5612: 5554: 5424: 3818: 329: 5195: 5043: 4765:
There are several variations of the notion of paracompactness. To define them, we first need to extend the list of terms above:
1983:. One can check as an exercise that this provides an open refinement, since paracompact Hausdorff spaces are regular, and since 1205:
Paracompactness is weakly hereditary, i.e. every closed subspace of a paracompact space is paracompact. This can be extended to
1115: 4821:" can be added to any of the adjectives "paracompact", "metacompact", and "fully normal" to make the requirement apply only to 4622: 4213: 3338: 1751: 3282: 1340: 1041:. Note that an open cover on a topological space is locally finite iff its a locally finite cover of the underlying locale. 2547: 1794: 5648: 3381: 5115:
space is paracompact. In fact, for Hausdorff spaces, paracompactness and full normality are equivalent. Thus, a fully T
2675: 5643: 5540: 4745:
A paracompact subset of a Hausdorff space need not be closed. In fact, for metric spaces, all subsets are paracompact.
2197: 1616: 644: 4841:
of the point in the cover is the union of all the sets in the cover that contain the point. In symbols, the star of
719: 493: 211: 5665: 1437:
and the integral is well known), and this definition is then extended to the whole space via a partition of unity.
1418:
space is Hausdorff and paracompact if and only if it admits partitions of unity subordinate to any open cover (see
592: 442: 2310: 1573: 1231: 1157: 1119: 40: 4544: 4584: 4287: 2935: 542: 117: 3145: 3003: 2379: 709: 97:
is a paracompact locale, but the product of two paracompact spaces may not be paracompact. Compare this to
5447:. Annals of Mathematics Studies. Vol. 2. Princeton University Press, Princeton, N. J. pp. ix+90. 4256: 1542: 5569: 5535: 4512: 4052: 1150: 1071: 98: 2766: 2140: 1372: 1228:) A topological space is metrizable if and only if it is paracompact, Hausdorff, and locally metrizable. 5638: 5312: 63:
subordinate to any open cover. Sometimes paracompact spaces are defined so as to always be Hausdorff.
3550: 3504: 2272: 2247: 2115: 2011: 1986: 1937: 1912: 1877: 1674: 1489: 4675: 4019: 3197: 2796: 1135: 1131: 1081:
is paracompact, even though it is neither compact, locally compact, second countable, nor metrizable.
94: 2494: 2421: 1962: 5146: 4161: 3230: 1699: 70: 4945:
The notation for the star is not standardised in the literature, and this is just one possibility.
3694: 3639: 3575: 1422:). This property is sometimes used to define paracompact spaces (at least in the Hausdorff case). 5573: 4781: 1332: 941:
This definition extends verbatim to locales, with the exception of locally finite: an open cover
597: 185: 133: 102: 90: 86: 60: 1315: 1168: 547: 4386: 2977: 2353: 1471:
is paracompact if and only if it every open cover admits a subordinate partition of unity. The
5608: 5587: 5577: 5550: 5531: 5520: 5510: 5483: 5469: 5420: 5268: 4810: 4773: 4443: 3767: 3435: 1426: 1292: 1258: 1218: 1186: 1061: 138: 28: 5414: 4358: 1514: 5378: 5343: 5325: 5258: 5210: 5151: 5134: 4749: 3958: 3737: 1339:
is a paracompact Hausdorff space with a given open cover, then there exists a collection of
1311: 1193: 1142: 1103: 113: 36: 5623: 5495: 5452: 5125:
A historical note: fully normal spaces were defined before paracompact spaces, in 1940, by
5028:) if every point of the space belongs to only finitely many sets in the cover. In symbols, 4329: 4151:{\displaystyle \{V{\text{ open }}:(\exists {U\in {\mathcal {O}}}){\bar {V}}\subseteq U\}\,} 3791: 2648: 2621: 2170: 5546: 5491: 5448: 4952: 4792: 4730: 1434: 1328: 1304: 1282: 1246:
Although a product of paracompact spaces need not be paracompact, the following are true:
1182: 1146: 1111: 1107: 1078: 1068: 1065: 120: 52: 4491: 4470: 4422: 3988: 3937: 3673: 3618: 3529: 3483: 3462: 1856: 1453: 1102:
is paracompact. Early proofs were somewhat involved, but an elementary one was found by
16:
Topological space in which every open cover has an open refinement that is locally finite
1402:
such that all but finitely many of the functions in the collection are identically 0 in
5502: 5130: 3125: 3105: 3085: 3065: 3045: 2925:{\displaystyle {\bar {W_{U}}}\subseteq {\bar {A_{1}}}\cup ...\cup {\bar {A_{n}}}\cup C} 2737: 2518: 2474: 2445: 1153: 1024: 1004: 984: 964: 944: 917: 830: 810: 790: 770: 687: 624: 574: 418: 384: 306: 286: 266: 260: 191: 167: 143: 5601: 5348: 5329: 5263: 1419: 5659: 5561: 5292: 5126: 4828:
Every paracompact space is metacompact, and every metacompact space is orthocompact.
4707: 1348: 1251: 1214: 1058: 1051: 48: 5214: 1238:
into nonempty closed convex subsets of Banach spaces admit continuous selection iff
5100: 4734: 1297: 1099: 109: 56: 5383: 5364: 1206: 1161: 1094: 20: 1174:
is a non-paracompact surface. (It is easy to find an uncountable open cover of
5440: 1266: 1085: 904:{\displaystyle \left\{\alpha \in A:U_{\alpha }\cap V\neq \varnothing \right\}} 713: 403: 67: 32: 5524: 5487: 5272: 4419:, we have now — all things remaining the same — that their sum is everywhere 2105:{\displaystyle W_{U}=\bigcup \{A\in {\mathcal {V}}:{\bar {A}}\subseteq U\}\,} 5591: 4934:{\displaystyle \mathbf {U} ^{*}(x):=\bigcup _{U_{\alpha }\ni x}U_{\alpha }.} 4822: 4662:. Thus we have a partition of unity subordinate to the original open cover. 1899:
is an open cover, then there exists a partition of unity subordinate to it.
435:
is a new cover of the same space such that every set in the new cover is a
4803: 3927:{\displaystyle f\upharpoonright N=\sum _{U\in S}f_{U}\upharpoonright N\,} 1430: 408: 79: 5300: 5396: 5394: 4722:
Paracompactness is similar to compactness in the following respects:
1196:
is not paracompact despite being a product of two paracompact spaces.
436: 161: 1696:
is a locally finite open cover, then there are continuous functions
4253:(thus the usual closed version of the support is contained in some 1934:
be the collection of open sets meeting only finitely many sets in
2793:
who don't, which means that they are contained in the closed set
1441:
Proof that paracompact Hausdorff spaces admit partitions of unity
5419:, Progress in Mathematics, vol. 107, Springer, p. 32, 59:, and a Hausdorff space is paracompact if and only if it admits 1138:. (The long line is locally compact, but not second countable.) 5416:
Loop Spaces, Characteristic Classes and Geometric Quantization
3865:{\displaystyle S=\{U\in {\mathcal {O}}:N{\text{ meets }}U\}\,} 1446:(Click "show" at right to see the proof or "hide" to hide it.) 371:{\displaystyle X\subseteq \bigcup _{\alpha \in A}U_{\alpha }.} 4748:
A product of paracompact spaces need not be paracompact. The
1845:
is a continuous function which is always non-zero and finite.
5088:{\displaystyle \left\{\alpha \in A:x\in U_{\alpha }\right\}} 4597: 4519: 4300: 4268: 4117: 4059: 3839: 3556: 3510: 3404: 2778: 2719: 2603: 2500: 2427: 2253: 2225: 2152: 2121: 2072: 2017: 1992: 1968: 1943: 1918: 1883: 1817: 1680: 1644: 1554: 1511:
is a locally finite open cover, then there exists open sets
1495: 1335:
subordinate to any open cover. This means the following: if
1118:
theory is not sufficient to prove it, even after the weaker
3934:, which is a continuous function; hence the preimage under 5119:
space is the same thing as a paracompact Hausdorff space.
4726:
Every closed subset of a paracompact space is paracompact.
4355:
is continuous positive, finite-valued). So replacing each
1126:
Some examples of spaces that are not paracompact include:
938:
if every open cover has a locally finite open refinement.
1406:
and the sum of the nonzero functions is identically 1 in
4777:
if every open cover has an open point-finite refinement.
4655:{\displaystyle \operatorname {supp} ~f_{W}\subseteq W\,} 4246:{\displaystyle \operatorname {supp} ~f_{W}\subseteq W\,} 3371:{\displaystyle \operatorname {supp} ~f_{U}\subseteq U\,} 1784:{\displaystyle \operatorname {supp} ~f_{U}\subseteq U\,} 1433:
is first defined locally (where the manifold looks like
3328:{\displaystyle f_{U}\upharpoonright {\bar {W}}_{U}=1\,} 5046: 4870: 4678: 4625: 4587: 4547: 4515: 4494: 4473: 4446: 4425: 4389: 4361: 4332: 4290: 4259: 4216: 4164: 4087: 4055: 4022: 3991: 3961: 3940: 3878: 3821: 3794: 3770: 3740: 3697: 3676: 3642: 3621: 3578: 3553: 3532: 3507: 3486: 3465: 3438: 3384: 3341: 3285: 3233: 3200: 3148: 3128: 3108: 3088: 3068: 3048: 3006: 2980: 2938: 2840: 2799: 2769: 2740: 2678: 2651: 2624: 2611:{\displaystyle A_{1},...,A_{n},...\in {\mathcal {V}}} 2550: 2521: 2497: 2477: 2448: 2424: 2382: 2356: 2313: 2275: 2250: 2200: 2173: 2143: 2118: 2044: 2014: 1989: 1965: 1940: 1915: 1880: 1859: 1838:{\displaystyle f:=\sum _{U\in {\mathcal {O}}}f_{U}\,} 1797: 1754: 1702: 1677: 1619: 1576: 1545: 1517: 1492: 1456: 1281:
Paracompact spaces are sometimes required to also be
1234:
states that lower semicontinuous multifunctions from
1027: 1007: 987: 967: 947: 920: 856: 833: 813: 793: 773: 722: 690: 647: 627: 600: 577: 550: 496: 445: 421: 387: 332: 309: 289: 269: 214: 194: 170: 146: 3425:{\displaystyle f=\sum _{U\in {\mathcal {O}}}f_{U}\,} 439:
of some set in the old cover. In symbols, the cover
5472:(1944), "Une gĂ©nĂ©ralisation des espaces compacts", 5363:Good, C.; Tree, I. J.; Watson, W. S. (April 1998). 4158:. Applying Lemma 2, we obtain continuous functions 4081:a locally finite subcover of the refinement cover: 85:The notion of paracompact space is also studied in 5600: 5087: 4933: 4685: 4654: 4611: 4573: 4533: 4501: 4480: 4459: 4432: 4411: 4375: 4347: 4314: 4276: 4245: 4202: 4150: 4073: 4029: 3998: 3977: 3947: 3926: 3864: 3807: 3780: 3756: 3726: 3683: 3662: 3628: 3607: 3564: 3539: 3518: 3493: 3472: 3451: 3424: 3370: 3327: 3271: 3207: 3176: 3134: 3114: 3094: 3074: 3054: 3034: 2992: 2966: 2924: 2826: 2785: 2755: 2726: 2664: 2637: 2610: 2536: 2507: 2483: 2463: 2434: 2410: 2368: 2342: 2294: 2261: 2236: 2186: 2159: 2129: 2104: 2025: 2000: 1975: 1951: 1926: 1891: 1866: 1837: 1783: 1740: 1688: 1655: 1605: 1562: 1531: 1503: 1463: 1033: 1013: 993: 973: 953: 926: 903: 839: 819: 799: 779: 759: 696: 673: 633: 613: 583: 563: 533: 482: 427: 393: 370: 315: 295: 275: 251: 200: 176: 152: 89:, where it is more well-behaved. For example, the 4711:we end up with the compact spaces in both cases. 4706:There is a similarity between the definitions of 2727:{\displaystyle A_{1},...,A_{n}\in {\mathcal {V}}} 5370:Proceedings of the American Mathematical Society 5335:Proceedings of the American Mathematical Society 5330:"A new proof that metric spaces are paracompact" 5250:Proceedings of the American Mathematical Society 4326:function which is always finite non-zero (hence 4832:Definition of relevant terms for the variations 2442:to be locally finite, there is a neighbourhood 2237:{\displaystyle \{W_{U}:U\in {\mathcal {O}}\}\,} 1656:{\displaystyle \{W_{U}:U\in {\mathcal {O}}\}\,} 674:{\displaystyle V_{\beta }\subseteq U_{\alpha }} 760:{\displaystyle U=\{U_{\alpha }:\alpha \in A\}} 534:{\displaystyle U=\{U_{\alpha }:\alpha \in A\}} 252:{\displaystyle U=\{U_{\alpha }:\alpha \in A\}} 5203:Bulletin of the American Mathematical Society 1959:, and whose closure is contained in a set in 1269:which is used in the proof that a product of 78:. This is equivalent to requiring that every 8: 5475:Journal de MathĂ©matiques Pures et AppliquĂ©es 5365:"On Stone's theorem and the axiom of choice" 5315:. Bull. Amer. Math. Soc. 54 (1948), 977–982 5099:As the names imply, a fully normal space is 4144: 4088: 3858: 3828: 2230: 2201: 2098: 2061: 1649: 1620: 754: 729: 528: 503: 483:{\displaystyle V=\{V_{\beta }:\beta \in B\}} 477: 452: 246: 221: 5133:gave a direct proof of the latter fact and 2343:{\displaystyle {\bar {W_{U}}}\subseteq U\,} 2302:, this cover is immediately locally finite. 1606:{\displaystyle {\bar {W_{U}}}\subseteq U\,} 1160:is not paracompact; in fact it is not even 1001:that intersect only finitely many opens in 5607:. Reading, Massachusetts: Addison-Wesley. 4574:{\displaystyle f_{W}\upharpoonright N=0\,} 1475:direction is straightforward. Now for the 1367:from the collection, there is an open set 1327:The most important feature of paracompact 767:is locally finite if and only if, for any 5382: 5347: 5262: 5074: 5045: 4922: 4904: 4899: 4877: 4872: 4869: 4718:Comparison of properties with compactness 4682: 4677: 4651: 4639: 4624: 4612:{\displaystyle W\in {\mathcal {O}}^{*}\,} 4608: 4602: 4596: 4595: 4586: 4570: 4552: 4546: 4530: 4524: 4518: 4517: 4514: 4498: 4493: 4477: 4472: 4456: 4445: 4429: 4424: 4408: 4400: 4394: 4388: 4372: 4366: 4360: 4344: 4336: 4331: 4315:{\displaystyle W\in {\mathcal {O}}^{*}\,} 4311: 4305: 4299: 4298: 4289: 4273: 4267: 4266: 4258: 4242: 4230: 4215: 4199: 4169: 4163: 4147: 4127: 4126: 4116: 4115: 4108: 4094: 4086: 4070: 4064: 4058: 4057: 4054: 4026: 4021: 3995: 3990: 3974: 3960: 3944: 3939: 3923: 3911: 3895: 3877: 3861: 3850: 3838: 3837: 3820: 3804: 3793: 3777: 3769: 3753: 3739: 3723: 3702: 3696: 3680: 3675: 3659: 3653: 3641: 3625: 3620: 3604: 3583: 3577: 3561: 3555: 3554: 3552: 3536: 3531: 3515: 3509: 3508: 3506: 3490: 3485: 3469: 3464: 3448: 3437: 3421: 3415: 3403: 3402: 3395: 3383: 3367: 3355: 3340: 3324: 3312: 3301: 3300: 3290: 3284: 3268: 3238: 3232: 3204: 3199: 3162: 3156: 3155: 3147: 3127: 3107: 3087: 3067: 3047: 3020: 3014: 3013: 3005: 2979: 2967:{\displaystyle {\bar {A_{i}}}\subseteq U} 2946: 2940: 2939: 2937: 2904: 2898: 2897: 2870: 2864: 2863: 2848: 2842: 2841: 2839: 2798: 2777: 2776: 2768: 2739: 2718: 2717: 2708: 2683: 2677: 2656: 2650: 2629: 2623: 2602: 2601: 2580: 2555: 2549: 2520: 2499: 2498: 2496: 2476: 2447: 2426: 2425: 2423: 2396: 2390: 2389: 2381: 2355: 2339: 2321: 2315: 2314: 2312: 2280: 2274: 2258: 2252: 2251: 2249: 2233: 2224: 2223: 2208: 2199: 2178: 2172: 2151: 2150: 2142: 2126: 2120: 2119: 2117: 2101: 2081: 2080: 2071: 2070: 2049: 2043: 2022: 2016: 2015: 2013: 1997: 1991: 1990: 1988: 1967: 1966: 1964: 1948: 1942: 1941: 1939: 1923: 1917: 1916: 1914: 1888: 1882: 1881: 1879: 1863: 1858: 1834: 1828: 1816: 1815: 1808: 1796: 1780: 1768: 1753: 1737: 1707: 1701: 1685: 1679: 1678: 1676: 1652: 1643: 1642: 1627: 1618: 1602: 1584: 1578: 1577: 1575: 1559: 1553: 1552: 1544: 1528: 1522: 1516: 1500: 1494: 1493: 1491: 1460: 1455: 1250:The product of a paracompact space and a 1026: 1006: 986: 966: 946: 919: 878: 855: 832: 812: 792: 772: 736: 721: 689: 665: 652: 646: 626: 605: 599: 576: 555: 549: 510: 495: 459: 444: 420: 386: 359: 343: 331: 308: 288: 268: 228: 213: 193: 169: 145: 44: 5400: 5227: 5181: 3082:is the complement of a neighbourhood of 1265:Both these results can be proved by the 5299:, preliminary version available on the 5169: 5162: 2809: 1479:direction, we do this in a few stages. 1303:Every paracompact Hausdorff space is a 1296:) Every paracompact Hausdorff space is 1106:. Existing proofs of this require the 981:is locally finite iff the set of opens 893: 116:if and only if it is a paracompact and 112:is paracompact. A topological space is 5445:Convergence and Uniformity in Topology 3547:belongs to only finitely many sets in 3177:{\displaystyle x\notin {\bar {W_{U}}}} 3035:{\displaystyle x\notin {\bar {A_{i}}}} 2411:{\displaystyle x\notin {\bar {W_{U}}}} 1130:The most famous counterexample is the 4277:{\displaystyle U\in {\mathcal {O}}\,} 2491:such that only finitely many sets in 1563:{\displaystyle U\in {\mathcal {O}}\,} 1064:is paracompact. In particular, every 7: 4665: 4534:{\displaystyle {\mathcal {O}}^{*}\,} 4322:; for which their sum constitutes a 4074:{\displaystyle {\mathcal {O}}^{*}\,} 4009: 3432:is always finite and non-zero, take 3187: 716:many sets in the cover. In symbols, 4741:It is different in these respects: 4509:meeting only finitely many sets in 3501:meeting only finitely many sets in 2786:{\displaystyle A\in {\mathcal {V}}} 2160:{\displaystyle A\in {\mathcal {V}}} 1261:and a compact space is metacompact. 1185:shows that there are 2 topological 5313:Paracompactness and product spaces 4105: 807:, there exists some neighbourhood 708:if every point of the space has a 51:is paracompact. Every paracompact 43:. These spaces were introduced by 14: 5349:10.1090/S0002-9939-1969-0236876-3 5264:10.1090/S0002-9939-1953-0056905-8 5196:"The point of pointless topology" 5137:gave another, elementary, proof. 2515:have non-empty intersection with 1853:In a paracompact Hausdorff space 1310:On paracompact Hausdorff spaces, 5676:Properties of topological spaces 5282:from the original on 2017-08-27. 4873: 4791:if every open cover has an open 4756:is a classical example for this. 3788:. To establish continuity, take 3565:{\displaystyle {\mathcal {O}}\,} 3519:{\displaystyle {\mathcal {O}}\,} 2295:{\displaystyle W_{U}\subseteq U} 2262:{\displaystyle {\mathcal {O}}\,} 2130:{\displaystyle {\mathcal {V}}\,} 2026:{\displaystyle {\mathcal {V}}\,} 2001:{\displaystyle {\mathcal {O}}\,} 1952:{\displaystyle {\mathcal {O}}\,} 1927:{\displaystyle {\mathcal {V}}\,} 1892:{\displaystyle {\mathcal {O}}\,} 1689:{\displaystyle {\mathcal {O}}\,} 1504:{\displaystyle {\mathcal {O}}\,} 1178:with no refinement of any kind.) 1156:. Any infinite set carrying the 5215:10.1090/S0273-0979-1983-15080-2 4837:Given a cover and a point, the 4686:{\displaystyle \blacksquare \,} 4030:{\displaystyle \blacksquare \,} 3208:{\displaystyle \blacksquare \,} 2827:{\displaystyle C:=X\setminus V} 2008:is locally finite. Now replace 1663:is a locally finite refinement. 914:is finite. A topological space 381:A cover of a topological space 5242:"A note on paracompact spaces" 4889: 4883: 4558: 4196: 4184: 4181: 4132: 4123: 4102: 3971: 3965: 3917: 3882: 3750: 3744: 3714: 3708: 3595: 3589: 3306: 3296: 3265: 3253: 3250: 3168: 3026: 2952: 2910: 2876: 2854: 2821: 2815: 2750: 2744: 2645:. Therefore we can decompose 2531: 2525: 2508:{\displaystyle {\mathcal {V}}} 2458: 2452: 2435:{\displaystyle {\mathcal {V}}} 2402: 2327: 2307:Now we want to show that each 2086: 1976:{\displaystyle {\mathcal {O}}} 1734: 1722: 1719: 1590: 1114:case. It has been shown that 1: 5384:10.1090/S0002-9939-98-04163-X 4702:Relationship with compactness 4203:{\displaystyle f_{W}:X\to \,} 3272:{\displaystyle f_{U}:X\to \,} 1741:{\displaystyle f_{U}:X\to \,} 1371:from the cover such that the 490:is a refinement of the cover 93:of any number of paracompact 5413:Brylinski, Jean-Luc (2007), 5403:, pp. 165, Theorem 2.2. 5194:Johnstone, Peter T. (1983). 5184:, pp. 170, Theorem 4.2. 3727:{\displaystyle f_{U}(x)=1\,} 3663:{\displaystyle x\in W_{U}\,} 3608:{\displaystyle f_{U}(x)=0\,} 1285:to extend their properties. 1277:Paracompact Hausdorff spaces 1189:of non-paracompact surfaces. 1141:Another counterexample is a 1134:, which is a nonparacompact 5644:Encyclopedia of Mathematics 5541:Counterexamples in Topology 5509:. Boston: Allyn and Bacon. 5297:Vector bundles and K-theory 5230:, pp. 165 Theorem 2.4. 5032:is point finite if for any 4754:in the lower limit topology 3985:will be a neighbourhood of 2618:those in the definition of 1273:compact spaces is compact. 1226:Smirnov metrization theorem 614:{\displaystyle U_{\alpha }} 5692: 5624:"Topology/Paracompactness" 4802:if it is fully normal and 4581:for all but finitely many 3615:for all but finitely many 1394:, there is a neighborhood 564:{\displaystyle V_{\beta }} 5671:Compactness (mathematics) 5599:Willard, Stephen (1970). 4412:{\displaystyle f_{W}/f\,} 2993:{\displaystyle x\notin U} 2369:{\displaystyle x\notin U} 2244:is an open refinement of 1232:Michael selection theorem 1158:particular point topology 1120:axiom of dependent choice 684:An open cover of a space 82:subspace be paracompact. 5240:Michael, Ernest (1953). 4964:is a star refinement of 4768:A topological space is: 4750:square of the real line 4460:{\displaystyle x\in X\,} 3872:, which is finite; then 3781:{\displaystyle \geq 1\,} 3452:{\displaystyle x\in X\,} 3279:be continuous maps with 101:, which states that the 76:hereditarily paracompact 4376:{\displaystyle f_{W}\,} 1532:{\displaystyle W_{U}\,} 407:if all its members are 5570:Upper Saddle River, NJ 5536:J. Arthur Seebach, Jr. 5089: 4956:of a cover of a space 4935: 4687: 4656: 4613: 4575: 4535: 4503: 4488:be a neighbourhood of 4482: 4461: 4434: 4413: 4377: 4349: 4316: 4278: 4247: 4204: 4152: 4075: 4031: 4000: 3979: 3978:{\displaystyle f(x)\,} 3955:of a neighbourhood of 3949: 3928: 3866: 3809: 3782: 3758: 3757:{\displaystyle f(x)\,} 3728: 3685: 3664: 3630: 3609: 3566: 3541: 3520: 3495: 3474: 3453: 3426: 3372: 3329: 3273: 3227:Applying Lemma 1, let 3209: 3178: 3136: 3116: 3096: 3076: 3056: 3036: 2994: 2968: 2926: 2828: 2787: 2757: 2728: 2666: 2639: 2612: 2538: 2509: 2485: 2465: 2436: 2412: 2370: 2344: 2296: 2263: 2238: 2188: 2161: 2137:guarantees that every 2131: 2106: 2027: 2002: 1977: 1953: 1928: 1893: 1868: 1839: 1785: 1742: 1690: 1657: 1607: 1564: 1533: 1505: 1465: 1072:second-countable space 1035: 1015: 995: 975: 955: 928: 905: 841: 821: 801: 781: 761: 698: 675: 635: 615: 585: 565: 535: 484: 429: 415:of a cover of a space 395: 372: 317: 297: 277: 253: 202: 178: 154: 5090: 4936: 4688: 4657: 4614: 4576: 4536: 4504: 4483: 4462: 4435: 4414: 4378: 4350: 4348:{\displaystyle 1/f\,} 4317: 4279: 4248: 4205: 4153: 4076: 4032: 4001: 3980: 3950: 3929: 3867: 3810: 3808:{\displaystyle x,N\,} 3783: 3759: 3729: 3686: 3665: 3631: 3610: 3567: 3542: 3521: 3496: 3475: 3454: 3427: 3373: 3330: 3274: 3210: 3179: 3137: 3117: 3097: 3077: 3057: 3037: 2995: 2969: 2927: 2829: 2788: 2758: 2729: 2667: 2665:{\displaystyle W_{U}} 2640: 2638:{\displaystyle W_{U}} 2613: 2539: 2510: 2486: 2466: 2437: 2413: 2376:, we will prove that 2371: 2345: 2297: 2264: 2239: 2189: 2187:{\displaystyle W_{U}} 2167:is contained in some 2162: 2132: 2107: 2028: 2003: 1978: 1954: 1929: 1894: 1869: 1840: 1786: 1743: 1691: 1658: 1608: 1565: 1534: 1506: 1466: 1104:M. E. Rudin 1036: 1021:also form a cover of 1016: 996: 976: 956: 929: 906: 842: 822: 802: 782: 762: 712:that intersects only 699: 676: 636: 616: 586: 566: 536: 485: 430: 396: 373: 318: 298: 278: 254: 203: 179: 155: 5044: 4868: 4676: 4623: 4585: 4545: 4513: 4492: 4471: 4444: 4423: 4387: 4359: 4330: 4288: 4257: 4214: 4162: 4085: 4053: 4020: 3989: 3959: 3938: 3876: 3819: 3792: 3768: 3738: 3695: 3674: 3640: 3619: 3576: 3551: 3530: 3505: 3484: 3463: 3436: 3382: 3339: 3283: 3231: 3198: 3146: 3142:. Therefore we have 3126: 3106: 3086: 3066: 3046: 3004: 2978: 2936: 2838: 2797: 2767: 2738: 2676: 2649: 2622: 2548: 2519: 2495: 2475: 2446: 2422: 2380: 2354: 2311: 2273: 2248: 2198: 2171: 2141: 2116: 2042: 2012: 1987: 1963: 1938: 1913: 1878: 1857: 1795: 1752: 1700: 1675: 1617: 1574: 1543: 1515: 1490: 1454: 1136:topological manifold 1025: 1005: 985: 965: 945: 918: 854: 831: 811: 791: 771: 720: 688: 645: 625: 598: 575: 548: 494: 443: 419: 385: 330: 307: 287: 267: 212: 192: 168: 144: 5639:"Paracompact space" 5568:(Second ed.). 5147:a-paracompact space 5016:A cover of a space 4502:{\displaystyle x\,} 4481:{\displaystyle N\,} 4433:{\displaystyle 1\,} 3999:{\displaystyle x\,} 3948:{\displaystyle f\,} 3815:as before, and let 3684:{\displaystyle U\,} 3629:{\displaystyle U\,} 3540:{\displaystyle x\,} 3494:{\displaystyle x\,} 3480:a neighbourhood of 3473:{\displaystyle N\,} 1867:{\displaystyle X\,} 1464:{\displaystyle X\,} 1355:for every function 1347:with values in the 1333:partitions of unity 1331:is that they admit 1323:Partitions of unity 1209:subspaces as well. 1187:equivalence classes 160:is a collection of 99:Tychonoff's theorem 61:partitions of unity 5574:Prentice Hall, Inc 5478:, Neuvième SĂ©rie, 5085: 5006:) is contained in 4931: 4917: 4729:Every paracompact 4683: 4652: 4609: 4571: 4531: 4499: 4478: 4457: 4430: 4409: 4373: 4345: 4312: 4274: 4243: 4200: 4148: 4071: 4027: 3996: 3975: 3945: 3924: 3906: 3862: 3805: 3778: 3754: 3724: 3681: 3660: 3626: 3605: 3562: 3537: 3516: 3491: 3470: 3449: 3422: 3410: 3368: 3325: 3269: 3205: 3174: 3132: 3112: 3092: 3072: 3052: 3032: 2990: 2964: 2922: 2824: 2783: 2753: 2724: 2662: 2635: 2608: 2534: 2505: 2481: 2461: 2432: 2408: 2366: 2340: 2292: 2259: 2234: 2184: 2157: 2127: 2112:. The property of 2102: 2023: 1998: 1973: 1949: 1924: 1889: 1864: 1835: 1823: 1781: 1738: 1686: 1653: 1603: 1560: 1529: 1501: 1461: 1450:A Hausdorff space 1427:differential forms 1149:many copies of an 1031: 1011: 991: 971: 951: 934:is now said to be 924: 901: 847:such that the set 837: 817: 797: 777: 757: 694: 671: 631: 611: 581: 561: 531: 480: 425: 391: 368: 354: 313: 293: 273: 249: 198: 174: 150: 118:locally metrizable 87:pointless topology 5666:Separation axioms 5583:978-0-13-181629-9 5562:Munkres, James R. 5532:Lynn Arthur Steen 5516:978-0-697-06889-7 5328:(February 1969). 5326:Rudin, Mary Ellen 5301:author's homepage 4987:, there exists a 4895: 4811:separation axioms 4697: 4696: 4634: 4225: 4135: 4097: 4041: 4040: 3891: 3853: 3852: meets  3391: 3350: 3309: 3219: 3218: 3171: 3135:{\displaystyle C} 3115:{\displaystyle x} 3095:{\displaystyle x} 3075:{\displaystyle C} 3055:{\displaystyle i} 3029: 2955: 2913: 2879: 2857: 2756:{\displaystyle V} 2537:{\displaystyle V} 2484:{\displaystyle x} 2464:{\displaystyle V} 2418:. Since we chose 2405: 2330: 2089: 1804: 1763: 1593: 1570:, such that each 1259:metacompact space 1257:The product of a 1034:{\displaystyle X} 1014:{\displaystyle U} 994:{\displaystyle V} 974:{\displaystyle X} 954:{\displaystyle U} 927:{\displaystyle X} 840:{\displaystyle x} 820:{\displaystyle V} 800:{\displaystyle X} 780:{\displaystyle x} 697:{\displaystyle X} 634:{\displaystyle U} 593:there exists some 584:{\displaystyle V} 428:{\displaystyle X} 394:{\displaystyle X} 339: 316:{\displaystyle X} 296:{\displaystyle U} 276:{\displaystyle X} 208:. In symbols, if 201:{\displaystyle X} 177:{\displaystyle X} 153:{\displaystyle X} 29:topological space 25:paracompact space 5683: 5652: 5627: 5618: 5606: 5603:General Topology 5595: 5528: 5498: 5457: 5456: 5437: 5431: 5429: 5410: 5404: 5398: 5389: 5388: 5386: 5377:(4): 1211–1218. 5360: 5354: 5353: 5351: 5322: 5316: 5309: 5303: 5290: 5284: 5283: 5281: 5266: 5246: 5237: 5231: 5225: 5219: 5218: 5200: 5191: 5185: 5179: 5173: 5167: 5152:Paranormal space 5094: 5092: 5091: 5086: 5084: 5080: 5079: 5078: 4940: 4938: 4937: 4932: 4927: 4926: 4916: 4909: 4908: 4882: 4881: 4876: 4692: 4690: 4689: 4684: 4666: 4661: 4659: 4658: 4653: 4644: 4643: 4632: 4618: 4616: 4615: 4610: 4607: 4606: 4601: 4600: 4580: 4578: 4577: 4572: 4557: 4556: 4540: 4538: 4537: 4532: 4529: 4528: 4523: 4522: 4508: 4506: 4505: 4500: 4487: 4485: 4484: 4479: 4466: 4464: 4463: 4458: 4439: 4437: 4436: 4431: 4418: 4416: 4415: 4410: 4404: 4399: 4398: 4382: 4380: 4379: 4374: 4371: 4370: 4354: 4352: 4351: 4346: 4340: 4321: 4319: 4318: 4313: 4310: 4309: 4304: 4303: 4283: 4281: 4280: 4275: 4272: 4271: 4252: 4250: 4249: 4244: 4235: 4234: 4223: 4209: 4207: 4206: 4201: 4174: 4173: 4157: 4155: 4154: 4149: 4137: 4136: 4128: 4122: 4121: 4120: 4098: 4096: open  4095: 4080: 4078: 4077: 4072: 4069: 4068: 4063: 4062: 4045:Proof (Theorem): 4036: 4034: 4033: 4028: 4010: 4005: 4003: 4002: 3997: 3984: 3982: 3981: 3976: 3954: 3952: 3951: 3946: 3933: 3931: 3930: 3925: 3916: 3915: 3905: 3871: 3869: 3868: 3863: 3854: 3851: 3843: 3842: 3814: 3812: 3811: 3806: 3787: 3785: 3784: 3779: 3763: 3761: 3760: 3755: 3733: 3731: 3730: 3725: 3707: 3706: 3690: 3688: 3687: 3682: 3669: 3667: 3666: 3661: 3658: 3657: 3635: 3633: 3632: 3627: 3614: 3612: 3611: 3606: 3588: 3587: 3571: 3569: 3568: 3563: 3560: 3559: 3546: 3544: 3543: 3538: 3525: 3523: 3522: 3517: 3514: 3513: 3500: 3498: 3497: 3492: 3479: 3477: 3476: 3471: 3458: 3456: 3455: 3450: 3431: 3429: 3428: 3423: 3420: 3419: 3409: 3408: 3407: 3377: 3375: 3374: 3369: 3360: 3359: 3348: 3334: 3332: 3331: 3326: 3317: 3316: 3311: 3310: 3302: 3295: 3294: 3278: 3276: 3275: 3270: 3243: 3242: 3223:Proof (Lemma 2): 3214: 3212: 3211: 3206: 3188: 3183: 3181: 3180: 3175: 3173: 3172: 3167: 3166: 3157: 3141: 3139: 3138: 3133: 3121: 3119: 3118: 3113: 3101: 3099: 3098: 3093: 3081: 3079: 3078: 3073: 3061: 3059: 3058: 3053: 3041: 3039: 3038: 3033: 3031: 3030: 3025: 3024: 3015: 2999: 2997: 2996: 2991: 2973: 2971: 2970: 2965: 2957: 2956: 2951: 2950: 2941: 2931: 2929: 2928: 2923: 2915: 2914: 2909: 2908: 2899: 2881: 2880: 2875: 2874: 2865: 2859: 2858: 2853: 2852: 2843: 2833: 2831: 2830: 2825: 2792: 2790: 2789: 2784: 2782: 2781: 2762: 2760: 2759: 2754: 2733: 2731: 2730: 2725: 2723: 2722: 2713: 2712: 2688: 2687: 2671: 2669: 2668: 2663: 2661: 2660: 2644: 2642: 2641: 2636: 2634: 2633: 2617: 2615: 2614: 2609: 2607: 2606: 2585: 2584: 2560: 2559: 2543: 2541: 2540: 2535: 2514: 2512: 2511: 2506: 2504: 2503: 2490: 2488: 2487: 2482: 2470: 2468: 2467: 2462: 2441: 2439: 2438: 2433: 2431: 2430: 2417: 2415: 2414: 2409: 2407: 2406: 2401: 2400: 2391: 2375: 2373: 2372: 2367: 2349: 2347: 2346: 2341: 2332: 2331: 2326: 2325: 2316: 2301: 2299: 2298: 2293: 2285: 2284: 2269:. Since we have 2268: 2266: 2265: 2260: 2257: 2256: 2243: 2241: 2240: 2235: 2229: 2228: 2213: 2212: 2193: 2191: 2190: 2185: 2183: 2182: 2166: 2164: 2163: 2158: 2156: 2155: 2136: 2134: 2133: 2128: 2125: 2124: 2111: 2109: 2108: 2103: 2091: 2090: 2082: 2076: 2075: 2054: 2053: 2032: 2030: 2029: 2024: 2021: 2020: 2007: 2005: 2004: 1999: 1996: 1995: 1982: 1980: 1979: 1974: 1972: 1971: 1958: 1956: 1955: 1950: 1947: 1946: 1933: 1931: 1930: 1925: 1922: 1921: 1905:Proof (Lemma 1): 1898: 1896: 1895: 1890: 1887: 1886: 1873: 1871: 1870: 1865: 1844: 1842: 1841: 1836: 1833: 1832: 1822: 1821: 1820: 1790: 1788: 1787: 1782: 1773: 1772: 1761: 1747: 1745: 1744: 1739: 1712: 1711: 1695: 1693: 1692: 1687: 1684: 1683: 1662: 1660: 1659: 1654: 1648: 1647: 1632: 1631: 1612: 1610: 1609: 1604: 1595: 1594: 1589: 1588: 1579: 1569: 1567: 1566: 1561: 1558: 1557: 1538: 1536: 1535: 1530: 1527: 1526: 1510: 1508: 1507: 1502: 1499: 1498: 1470: 1468: 1467: 1462: 1386:for every point 1379:is contained in 1329:Hausdorff spaces 1312:sheaf cohomology 1194:Sorgenfrey plane 1040: 1038: 1037: 1032: 1020: 1018: 1017: 1012: 1000: 998: 997: 992: 980: 978: 977: 972: 960: 958: 957: 952: 933: 931: 930: 925: 910: 908: 907: 902: 900: 896: 883: 882: 846: 844: 843: 838: 826: 824: 823: 818: 806: 804: 803: 798: 786: 784: 783: 778: 766: 764: 763: 758: 741: 740: 703: 701: 700: 695: 680: 678: 677: 672: 670: 669: 657: 656: 640: 638: 637: 632: 620: 618: 617: 612: 610: 609: 590: 588: 587: 582: 570: 568: 567: 562: 560: 559: 541:if and only if, 540: 538: 537: 532: 515: 514: 489: 487: 486: 481: 464: 463: 434: 432: 431: 426: 400: 398: 397: 392: 377: 375: 374: 369: 364: 363: 353: 322: 320: 319: 314: 302: 300: 299: 294: 282: 280: 279: 274: 258: 256: 255: 250: 233: 232: 207: 205: 204: 199: 183: 181: 180: 175: 159: 157: 156: 151: 45:DieudonnĂ© (1944) 5691: 5690: 5686: 5685: 5684: 5682: 5681: 5680: 5656: 5655: 5637: 5634: 5622:Mathew, Akhil. 5621: 5615: 5598: 5584: 5560: 5547:Springer Verlag 5517: 5503:Dugundji, James 5501: 5470:DieudonnĂ©, Jean 5468: 5465: 5460: 5439: 5438: 5434: 5427: 5412: 5411: 5407: 5399: 5392: 5362: 5361: 5357: 5324: 5323: 5319: 5310: 5306: 5291: 5287: 5279: 5244: 5239: 5238: 5234: 5226: 5222: 5198: 5193: 5192: 5188: 5180: 5176: 5172:, pp. 252. 5168: 5164: 5160: 5143: 5118: 5114: 5111:. Every fully T 5110: 5106: 5070: 5051: 5047: 5042: 5041: 5012: 4993: 4974: 4953:star refinement 4918: 4900: 4871: 4866: 4865: 4855: 4834: 4807: 4800: 4793:star refinement 4763: 4731:Hausdorff space 4720: 4704: 4699: 4698: 4674: 4673: 4635: 4621: 4620: 4594: 4583: 4582: 4548: 4543: 4542: 4516: 4511: 4510: 4490: 4489: 4469: 4468: 4442: 4441: 4421: 4420: 4390: 4385: 4384: 4362: 4357: 4356: 4328: 4327: 4297: 4286: 4285: 4255: 4254: 4226: 4212: 4211: 4165: 4160: 4159: 4083: 4082: 4056: 4051: 4050: 4018: 4017: 3987: 3986: 3957: 3956: 3936: 3935: 3907: 3874: 3873: 3817: 3816: 3790: 3789: 3766: 3765: 3736: 3735: 3698: 3693: 3692: 3672: 3671: 3649: 3638: 3637: 3617: 3616: 3579: 3574: 3573: 3549: 3548: 3528: 3527: 3503: 3502: 3482: 3481: 3461: 3460: 3434: 3433: 3411: 3380: 3379: 3351: 3337: 3336: 3299: 3286: 3281: 3280: 3234: 3229: 3228: 3196: 3195: 3158: 3144: 3143: 3124: 3123: 3122:is also not in 3104: 3103: 3084: 3083: 3064: 3063: 3044: 3043: 3016: 3002: 3001: 2976: 2975: 2942: 2934: 2933: 2900: 2866: 2844: 2836: 2835: 2795: 2794: 2765: 2764: 2763:, and the rest 2736: 2735: 2734:who intersect 2704: 2679: 2674: 2673: 2652: 2647: 2646: 2625: 2620: 2619: 2576: 2551: 2546: 2545: 2517: 2516: 2493: 2492: 2473: 2472: 2444: 2443: 2420: 2419: 2392: 2378: 2377: 2352: 2351: 2317: 2309: 2308: 2276: 2271: 2270: 2246: 2245: 2204: 2196: 2195: 2174: 2169: 2168: 2139: 2138: 2114: 2113: 2045: 2040: 2039: 2010: 2009: 1985: 1984: 1961: 1960: 1936: 1935: 1911: 1910: 1876: 1875: 1855: 1854: 1824: 1793: 1792: 1764: 1750: 1749: 1703: 1698: 1697: 1673: 1672: 1623: 1615: 1614: 1580: 1572: 1571: 1541: 1540: 1518: 1513: 1512: 1488: 1487: 1452: 1451: 1447: 1443: 1435:Euclidean space 1429:on paracompact 1417: 1325: 1316:ÄŚech cohomology 1305:shrinking space 1279: 1254:is paracompact. 1242:is paracompact. 1221:is paracompact. 1203: 1183:bagpipe theorem 1169:PrĂĽfer manifold 1108:axiom of choice 1088:is paracompact. 1079:Sorgenfrey line 1074:is paracompact. 1066:locally compact 1054:is paracompact. 1047: 1023: 1022: 1003: 1002: 983: 982: 963: 962: 943: 942: 916: 915: 874: 861: 857: 852: 851: 829: 828: 809: 808: 789: 788: 769: 768: 732: 718: 717: 686: 685: 661: 648: 643: 642: 623: 622: 601: 596: 595: 573: 572: 551: 546: 545: 506: 492: 491: 455: 441: 440: 417: 416: 383: 382: 355: 328: 327: 305: 304: 285: 284: 265: 264: 224: 210: 209: 190: 189: 166: 165: 142: 141: 129: 121:Hausdorff space 53:Hausdorff space 31:in which every 17: 12: 11: 5: 5689: 5687: 5679: 5678: 5673: 5668: 5658: 5657: 5654: 5653: 5633: 5632:External links 5630: 5629: 5628: 5619: 5613: 5596: 5582: 5558: 5529: 5515: 5499: 5464: 5461: 5459: 5458: 5441:Tukey, John W. 5432: 5425: 5405: 5390: 5355: 5317: 5311:Stone, A. H. 5304: 5293:Hatcher, Allen 5285: 5257:(5): 831–838. 5232: 5220: 5186: 5174: 5161: 5159: 5156: 5155: 5154: 5149: 5142: 5139: 5131:Ernest Michael 5116: 5112: 5108: 5104: 5097: 5096: 5083: 5077: 5073: 5069: 5066: 5063: 5060: 5057: 5054: 5050: 5014: 5010: 4991: 4972: 4947: 4946: 4942: 4941: 4930: 4925: 4921: 4915: 4912: 4907: 4903: 4898: 4894: 4891: 4888: 4885: 4880: 4875: 4862: 4861: 4853: 4833: 4830: 4815: 4814: 4805: 4798: 4786: 4778: 4762: 4759: 4758: 4757: 4746: 4739: 4738: 4727: 4719: 4716: 4703: 4700: 4695: 4694: 4681: 4671: 4669: 4664: 4663: 4650: 4647: 4642: 4638: 4631: 4628: 4605: 4599: 4593: 4590: 4569: 4566: 4563: 4560: 4555: 4551: 4527: 4521: 4497: 4476: 4455: 4452: 4449: 4440:. Finally for 4428: 4407: 4403: 4397: 4393: 4369: 4365: 4343: 4339: 4335: 4308: 4302: 4296: 4293: 4270: 4265: 4262: 4241: 4238: 4233: 4229: 4222: 4219: 4198: 4195: 4192: 4189: 4186: 4183: 4180: 4177: 4172: 4168: 4146: 4143: 4140: 4134: 4131: 4125: 4119: 4114: 4111: 4107: 4104: 4101: 4093: 4090: 4067: 4061: 4047: 4039: 4038: 4025: 4015: 4013: 4008: 4007: 3994: 3973: 3970: 3967: 3964: 3943: 3922: 3919: 3914: 3910: 3904: 3901: 3898: 3894: 3890: 3887: 3884: 3881: 3860: 3857: 3849: 3846: 3841: 3836: 3833: 3830: 3827: 3824: 3803: 3800: 3797: 3776: 3773: 3764:is finite and 3752: 3749: 3746: 3743: 3722: 3719: 3716: 3713: 3710: 3705: 3701: 3679: 3656: 3652: 3648: 3645: 3624: 3603: 3600: 3597: 3594: 3591: 3586: 3582: 3558: 3535: 3512: 3489: 3468: 3447: 3444: 3441: 3418: 3414: 3406: 3401: 3398: 3394: 3390: 3387: 3366: 3363: 3358: 3354: 3347: 3344: 3323: 3320: 3315: 3308: 3305: 3298: 3293: 3289: 3267: 3264: 3261: 3258: 3255: 3252: 3249: 3246: 3241: 3237: 3225: 3217: 3216: 3203: 3193: 3191: 3186: 3185: 3170: 3165: 3161: 3154: 3151: 3131: 3111: 3091: 3071: 3051: 3028: 3023: 3019: 3012: 3009: 2989: 2986: 2983: 2963: 2960: 2954: 2949: 2945: 2921: 2918: 2912: 2907: 2903: 2896: 2893: 2890: 2887: 2884: 2878: 2873: 2869: 2862: 2856: 2851: 2847: 2834:. We now have 2823: 2820: 2817: 2814: 2811: 2808: 2805: 2802: 2780: 2775: 2772: 2752: 2749: 2746: 2743: 2721: 2716: 2711: 2707: 2703: 2700: 2697: 2694: 2691: 2686: 2682: 2672:in two parts: 2659: 2655: 2632: 2628: 2605: 2600: 2597: 2594: 2591: 2588: 2583: 2579: 2575: 2572: 2569: 2566: 2563: 2558: 2554: 2544:, and we note 2533: 2530: 2527: 2524: 2502: 2480: 2460: 2457: 2454: 2451: 2429: 2404: 2399: 2395: 2388: 2385: 2365: 2362: 2359: 2338: 2335: 2329: 2324: 2320: 2305: 2303: 2291: 2288: 2283: 2279: 2255: 2232: 2227: 2222: 2219: 2216: 2211: 2207: 2203: 2181: 2177: 2154: 2149: 2146: 2123: 2100: 2097: 2094: 2088: 2085: 2079: 2074: 2069: 2066: 2063: 2060: 2057: 2052: 2048: 2038:Now we define 2035: 2034: 2019: 1994: 1970: 1945: 1920: 1907: 1901: 1900: 1885: 1862: 1847: 1846: 1831: 1827: 1819: 1814: 1811: 1807: 1803: 1800: 1791:and such that 1779: 1776: 1771: 1767: 1760: 1757: 1736: 1733: 1730: 1727: 1724: 1721: 1718: 1715: 1710: 1706: 1682: 1665: 1664: 1651: 1646: 1641: 1638: 1635: 1630: 1626: 1622: 1601: 1598: 1592: 1587: 1583: 1556: 1551: 1548: 1525: 1521: 1497: 1459: 1448: 1445: 1444: 1442: 1439: 1415: 1412: 1411: 1384: 1324: 1321: 1320: 1319: 1308: 1301: 1293:Jean DieudonnĂ© 1278: 1275: 1263: 1262: 1255: 1244: 1243: 1229: 1222: 1219:Lindelöf space 1202: 1199: 1198: 1197: 1190: 1179: 1165: 1154:discrete space 1139: 1124: 1123: 1089: 1082: 1075: 1062:Lindelöf space 1055: 1046: 1043: 1030: 1010: 990: 970: 950: 923: 912: 911: 899: 895: 892: 889: 886: 881: 877: 873: 870: 867: 864: 860: 836: 816: 796: 776: 756: 753: 750: 747: 744: 739: 735: 731: 728: 725: 706:locally finite 693: 668: 664: 660: 655: 651: 630: 608: 604: 580: 558: 554: 530: 527: 524: 521: 518: 513: 509: 505: 502: 499: 479: 476: 473: 470: 467: 462: 458: 454: 451: 448: 424: 390: 379: 378: 367: 362: 358: 352: 349: 346: 342: 338: 335: 312: 303:is a cover of 292: 272: 263:of subsets of 261:indexed family 248: 245: 242: 239: 236: 231: 227: 223: 220: 217: 197: 173: 149: 128: 125: 41:locally finite 15: 13: 10: 9: 6: 4: 3: 2: 5688: 5677: 5674: 5672: 5669: 5667: 5664: 5663: 5661: 5650: 5646: 5645: 5640: 5636: 5635: 5631: 5625: 5620: 5616: 5614:0-486-43479-6 5610: 5605: 5604: 5597: 5593: 5589: 5585: 5579: 5575: 5571: 5567: 5563: 5559: 5556: 5555:3-540-90312-7 5552: 5548: 5544: 5542: 5537: 5533: 5530: 5526: 5522: 5518: 5512: 5508: 5504: 5500: 5497: 5493: 5489: 5485: 5481: 5477: 5476: 5471: 5467: 5466: 5462: 5454: 5450: 5446: 5442: 5436: 5433: 5428: 5426:9780817647308 5422: 5418: 5417: 5409: 5406: 5402: 5401:Dugundji 1966 5397: 5395: 5391: 5385: 5380: 5376: 5372: 5371: 5366: 5359: 5356: 5350: 5345: 5341: 5337: 5336: 5331: 5327: 5321: 5318: 5314: 5308: 5305: 5302: 5298: 5294: 5289: 5286: 5278: 5274: 5270: 5265: 5260: 5256: 5252: 5251: 5243: 5236: 5233: 5229: 5228:Dugundji 1966 5224: 5221: 5216: 5212: 5208: 5204: 5197: 5190: 5187: 5183: 5182:Dugundji 1966 5178: 5175: 5171: 5166: 5163: 5157: 5153: 5150: 5148: 5145: 5144: 5140: 5138: 5136: 5132: 5128: 5127:John W. Tukey 5123: 5120: 5103:and a fully T 5102: 5081: 5075: 5071: 5067: 5064: 5061: 5058: 5055: 5052: 5048: 5039: 5035: 5031: 5027: 5023: 5019: 5015: 5009: 5005: 5001: 4997: 4990: 4986: 4982: 4979:} if for any 4978: 4975: : α in 4971: 4967: 4963: 4959: 4955: 4954: 4949: 4948: 4944: 4943: 4928: 4923: 4919: 4913: 4910: 4905: 4901: 4896: 4892: 4886: 4878: 4864: 4863: 4859: 4856: : α in 4852: 4848: 4844: 4840: 4836: 4835: 4831: 4829: 4826: 4825:open covers. 4824: 4820: 4812: 4808: 4801: 4794: 4790: 4787: 4784: 4783: 4779: 4776: 4775: 4771: 4770: 4769: 4766: 4760: 4755: 4753: 4747: 4744: 4743: 4742: 4736: 4732: 4728: 4725: 4724: 4723: 4717: 4715: 4712: 4709: 4701: 4679: 4672: 4670: 4668: 4667: 4648: 4645: 4640: 4636: 4629: 4626: 4603: 4591: 4588: 4567: 4564: 4561: 4553: 4549: 4525: 4495: 4474: 4453: 4450: 4447: 4426: 4405: 4401: 4395: 4391: 4367: 4363: 4341: 4337: 4333: 4325: 4306: 4294: 4291: 4263: 4260: 4239: 4236: 4231: 4227: 4220: 4217: 4193: 4190: 4187: 4178: 4175: 4170: 4166: 4141: 4138: 4129: 4112: 4109: 4099: 4091: 4065: 4048: 4046: 4043: 4042: 4023: 4016: 4014: 4012: 4011: 3992: 3968: 3962: 3941: 3920: 3912: 3908: 3902: 3899: 3896: 3892: 3888: 3885: 3879: 3855: 3847: 3844: 3834: 3831: 3825: 3822: 3801: 3798: 3795: 3774: 3771: 3747: 3741: 3720: 3717: 3711: 3703: 3699: 3677: 3654: 3650: 3646: 3643: 3622: 3601: 3598: 3592: 3584: 3580: 3533: 3487: 3466: 3445: 3442: 3439: 3416: 3412: 3399: 3396: 3392: 3388: 3385: 3364: 3361: 3356: 3352: 3345: 3342: 3321: 3318: 3313: 3303: 3291: 3287: 3262: 3259: 3256: 3247: 3244: 3239: 3235: 3226: 3224: 3221: 3220: 3201: 3194: 3192: 3190: 3189: 3163: 3159: 3152: 3149: 3129: 3109: 3089: 3069: 3049: 3021: 3017: 3010: 3007: 2987: 2984: 2981: 2961: 2958: 2947: 2943: 2919: 2916: 2905: 2901: 2894: 2891: 2888: 2885: 2882: 2871: 2867: 2860: 2849: 2845: 2818: 2812: 2806: 2803: 2800: 2773: 2770: 2747: 2741: 2714: 2709: 2705: 2701: 2698: 2695: 2692: 2689: 2684: 2680: 2657: 2653: 2630: 2626: 2598: 2595: 2592: 2589: 2586: 2581: 2577: 2573: 2570: 2567: 2564: 2561: 2556: 2552: 2528: 2522: 2478: 2455: 2449: 2397: 2393: 2386: 2383: 2363: 2360: 2357: 2336: 2333: 2322: 2318: 2306: 2304: 2289: 2286: 2281: 2277: 2220: 2217: 2214: 2209: 2205: 2179: 2175: 2147: 2144: 2095: 2092: 2083: 2077: 2067: 2064: 2058: 2055: 2050: 2046: 2037: 2036: 1908: 1906: 1903: 1902: 1860: 1852: 1849: 1848: 1829: 1825: 1812: 1809: 1805: 1801: 1798: 1777: 1774: 1769: 1765: 1758: 1755: 1731: 1728: 1725: 1716: 1713: 1708: 1704: 1670: 1667: 1666: 1639: 1636: 1633: 1628: 1624: 1599: 1596: 1585: 1581: 1549: 1546: 1523: 1519: 1485: 1482: 1481: 1480: 1478: 1474: 1457: 1440: 1438: 1436: 1432: 1428: 1423: 1421: 1409: 1405: 1401: 1397: 1393: 1389: 1385: 1382: 1378: 1374: 1370: 1366: 1363: â†’  1362: 1358: 1354: 1353: 1352: 1350: 1349:unit interval 1346: 1343:functions on 1342: 1338: 1334: 1330: 1322: 1317: 1313: 1309: 1306: 1302: 1299: 1295: 1294: 1288: 1287: 1286: 1284: 1276: 1274: 1272: 1271:finitely many 1268: 1260: 1256: 1253: 1252:compact space 1249: 1248: 1247: 1241: 1237: 1233: 1230: 1227: 1223: 1220: 1216: 1215:regular space 1212: 1211: 1210: 1208: 1200: 1195: 1191: 1188: 1184: 1180: 1177: 1173: 1170: 1166: 1163: 1159: 1155: 1152: 1148: 1144: 1140: 1137: 1133: 1129: 1128: 1127: 1121: 1117: 1113: 1109: 1105: 1101: 1097: 1096: 1090: 1087: 1083: 1080: 1076: 1073: 1070: 1067: 1063: 1060: 1056: 1053: 1052:compact space 1049: 1048: 1044: 1042: 1028: 1008: 988: 968: 948: 939: 937: 921: 897: 890: 887: 884: 879: 875: 871: 868: 865: 862: 858: 850: 849: 848: 834: 814: 794: 774: 751: 748: 745: 742: 737: 733: 726: 723: 715: 711: 707: 691: 682: 666: 662: 658: 653: 649: 628: 606: 602: 594: 578: 556: 552: 544: 525: 522: 519: 516: 511: 507: 500: 497: 474: 471: 468: 465: 460: 456: 449: 446: 438: 422: 414: 410: 406: 405: 388: 365: 360: 356: 350: 347: 344: 340: 336: 333: 326: 325: 324: 310: 290: 270: 262: 243: 240: 237: 234: 229: 225: 218: 215: 195: 187: 171: 163: 147: 140: 136: 135: 126: 124: 122: 119: 115: 111: 106: 104: 100: 96: 92: 88: 83: 81: 77: 72: 69: 64: 62: 58: 54: 50: 49:compact space 46: 42: 38: 34: 30: 26: 22: 5642: 5602: 5565: 5539: 5506: 5479: 5473: 5444: 5435: 5415: 5408: 5374: 5368: 5358: 5339: 5333: 5320: 5307: 5296: 5288: 5254: 5248: 5235: 5223: 5209:(1): 41–53. 5206: 5202: 5189: 5177: 5170:Munkres 2000 5165: 5124: 5121: 5098: 5037: 5033: 5029: 5026:point finite 5025: 5022:point-finite 5021: 5017: 5007: 5003: 4999: 4995: 4988: 4984: 4980: 4976: 4969: 4965: 4961: 4957: 4951: 4857: 4850: 4846: 4842: 4838: 4827: 4818: 4817:The adverb " 4816: 4796: 4789:fully normal 4788: 4782:orthocompact 4780: 4772: 4767: 4764: 4751: 4740: 4721: 4713: 4705: 4323: 4044: 3222: 3062:. And since 2350:. For every 2194:. Therefore 1904: 1850: 1668: 1483: 1476: 1472: 1449: 1424: 1414:In fact, a T 1413: 1407: 1403: 1399: 1395: 1391: 1387: 1380: 1376: 1368: 1364: 1360: 1356: 1344: 1336: 1326: 1290: 1280: 1270: 1264: 1245: 1239: 1235: 1225: 1204: 1175: 1171: 1125: 1110:for the non- 1100:metric space 1092: 940: 935: 913: 710:neighborhood 705: 683: 412: 402: 380: 132: 130: 110:metric space 107: 84: 75: 65: 35:has an open 24: 18: 4774:metacompact 4708:compactness 4619:since each 4284:, for each 3636:; moreover 1351:such that: 1291:Theorem of 1162:metacompact 1147:uncountably 1095:A. H. Stone 1093:Theorem of 936:paracompact 21:mathematics 5660:Categories 5463:References 5342:(2): 603. 5135:M.E. Rudin 5107:space is T 5095:is finite. 5040:, the set 4998:such that 4761:Variations 4541:, we have 4467:, letting 4324:continuous 3459:, and let 3042:for every 3000:, we have 1748:such that 1341:continuous 1318:are equal. 1267:tube lemma 1201:Properties 1086:CW complex 641:such that 413:refinement 127:Definition 114:metrizable 37:refinement 33:open cover 5649:EMS Press 5525:395340485 5488:0021-7824 5482:: 65–76, 5273:0002-9939 5076:α 5068:∈ 5056:∈ 5053:α 4924:α 4911:∋ 4906:α 4897:⋃ 4879:∗ 4823:countable 4819:countably 4680:◼ 4646:⊆ 4630:⁡ 4604:∗ 4592:∈ 4559:↾ 4526:∗ 4451:∈ 4307:∗ 4295:∈ 4264:∈ 4237:⊆ 4221:⁡ 4182:→ 4139:⊆ 4133:¯ 4113:∈ 4106:∃ 4066:∗ 4024:◼ 3918:↾ 3900:∈ 3893:∑ 3883:↾ 3835:∈ 3772:≥ 3670:for some 3647:∈ 3443:∈ 3400:∈ 3393:∑ 3362:⊆ 3346:⁡ 3307:¯ 3297:↾ 3251:→ 3202:◼ 3169:¯ 3153:∉ 3027:¯ 3011:∉ 2985:∉ 2959:⊆ 2953:¯ 2917:∪ 2911:¯ 2895:∪ 2883:∪ 2877:¯ 2861:⊆ 2855:¯ 2810:∖ 2774:∈ 2715:∈ 2599:∈ 2403:¯ 2387:∉ 2361:∉ 2334:⊆ 2328:¯ 2287:⊆ 2221:∈ 2148:∈ 2093:⊆ 2087:¯ 2068:∈ 2059:⋃ 1813:∈ 1806:∑ 1775:⊆ 1759:⁡ 1720:→ 1640:∈ 1597:⊆ 1591:¯ 1550:∈ 1539:for each 1431:manifolds 1283:Hausdorff 1132:long line 1122:is added. 1112:separable 1069:Hausdorff 894:∅ 891:≠ 885:∩ 880:α 866:∈ 863:α 749:∈ 746:α 738:α 667:α 659:⊆ 654:β 607:α 557:β 543:for every 523:∈ 520:α 512:α 472:∈ 469:β 461:β 409:open sets 361:α 348:∈ 345:α 341:⋃ 337:⊆ 241:∈ 238:α 230:α 188:contains 5592:42683260 5566:Topology 5564:(2000). 5557:. P.23. 5549:, 1978, 5507:Topology 5505:(1966). 5443:(1940). 5277:Archived 5141:See also 2932:. Since 1851:Theorem: 1669:Lemma 2: 1484:Lemma 1: 1151:infinite 1098:) Every 1045:Examples 714:finitely 71:subspace 47:. Every 39:that is 5651:, 2001 5496:0013297 5453:0002515 4797:fully T 4037:(Lem 2) 3691:, thus 3572:; thus 3526:; thus 3215:(Lem 1) 1477:only if 1373:support 1359::  1207:F-sigma 1143:product 1059:regular 283:, then 162:subsets 103:product 95:locales 91:product 5611:  5590:  5580:  5553:  5543:(2 ed) 5523:  5513:  5494:  5486:  5451:  5423:  5271:  5101:normal 4795:, and 4735:normal 4633:  4224:  3349:  1762:  1298:normal 1084:Every 1057:Every 1050:Every 437:subset 259:is an 184:whose 108:Every 68:closed 66:Every 57:normal 5280:(PDF) 5245:(PDF) 5199:(PDF) 5158:Notes 4809:(see 4693:(Thm) 4210:with 4049:Take 3734:; so 1874:, if 1420:below 186:union 137:of a 134:cover 27:is a 5609:ISBN 5588:OCLC 5578:ISBN 5551:ISBN 5534:and 5521:OCLC 5511:ISBN 5484:ISSN 5421:ISBN 5269:ISSN 5024:(or 4860:} is 4839:star 4627:supp 4218:supp 3343:supp 3335:and 2974:and 1909:Let 1756:supp 1613:and 1314:and 1192:The 1181:The 1167:The 1077:The 411:. A 404:open 80:open 23:, a 5379:doi 5375:126 5344:doi 5259:doi 5211:doi 5036:in 5020:is 4994:in 4983:in 4968:= { 4849:= { 4845:in 4733:is 4383:by 2471:of 1671:If 1486:If 1398:of 1390:in 1375:of 1145:of 961:of 827:of 787:in 704:is 621:in 571:in 401:is 323:if 164:of 139:set 55:is 19:In 5662:: 5647:, 5641:, 5586:. 5576:. 5572:: 5545:, 5538:, 5519:. 5492:MR 5490:, 5480:23 5449:MR 5393:^ 5373:. 5367:. 5340:20 5338:. 5332:. 5295:, 5275:. 5267:. 5253:. 5247:. 5205:. 5201:. 4950:A 4893::= 4813:). 3102:, 2804::= 1802::= 1473:if 1213:A 1116:ZF 681:. 591:, 131:A 123:. 5626:. 5617:. 5594:. 5527:. 5455:. 5430:. 5387:. 5381:: 5352:. 5346:: 5261:: 5255:4 5217:. 5213:: 5207:8 5117:4 5113:4 5109:4 5105:4 5082:} 5072:U 5065:x 5062:: 5059:A 5049:{ 5038:X 5034:x 5030:U 5018:X 5013:. 5011:α 5008:U 5004:x 5002:( 5000:V 4996:U 4992:α 4989:U 4985:X 4981:x 4977:A 4973:α 4970:U 4966:U 4962:V 4958:X 4929:. 4920:U 4914:x 4902:U 4890:) 4887:x 4884:( 4874:U 4858:A 4854:α 4851:U 4847:U 4843:x 4806:1 4804:T 4799:4 4752:R 4737:. 4649:W 4641:W 4637:f 4598:O 4589:W 4568:0 4565:= 4562:N 4554:W 4550:f 4520:O 4496:x 4475:N 4454:X 4448:x 4427:1 4406:f 4402:/ 4396:W 4392:f 4368:W 4364:f 4342:f 4338:/ 4334:1 4301:O 4292:W 4269:O 4261:U 4240:W 4232:W 4228:f 4197:] 4194:1 4191:, 4188:0 4185:[ 4179:X 4176:: 4171:W 4167:f 4145:} 4142:U 4130:V 4124:) 4118:O 4110:U 4103:( 4100:: 4092:V 4089:{ 4060:O 4006:. 3993:x 3972:) 3969:x 3966:( 3963:f 3942:f 3921:N 3913:U 3909:f 3903:S 3897:U 3889:= 3886:N 3880:f 3859:} 3856:U 3848:N 3845:: 3840:O 3832:U 3829:{ 3826:= 3823:S 3802:N 3799:, 3796:x 3775:1 3751:) 3748:x 3745:( 3742:f 3721:1 3718:= 3715:) 3712:x 3709:( 3704:U 3700:f 3678:U 3655:U 3651:W 3644:x 3623:U 3602:0 3599:= 3596:) 3593:x 3590:( 3585:U 3581:f 3557:O 3534:x 3511:O 3488:x 3467:N 3446:X 3440:x 3417:U 3413:f 3405:O 3397:U 3389:= 3386:f 3365:U 3357:U 3353:f 3322:1 3319:= 3314:U 3304:W 3292:U 3288:f 3266:] 3263:1 3260:, 3257:0 3254:[ 3248:X 3245:: 3240:U 3236:f 3184:. 3164:U 3160:W 3150:x 3130:C 3110:x 3090:x 3070:C 3050:i 3022:i 3018:A 3008:x 2988:U 2982:x 2962:U 2948:i 2944:A 2920:C 2906:n 2902:A 2892:. 2889:. 2886:. 2872:1 2868:A 2850:U 2846:W 2822:] 2819:x 2816:[ 2813:V 2807:X 2801:C 2779:V 2771:A 2751:] 2748:x 2745:[ 2742:V 2720:V 2710:n 2706:A 2702:, 2699:. 2696:. 2693:. 2690:, 2685:1 2681:A 2658:U 2654:W 2631:U 2627:W 2604:V 2596:. 2593:. 2590:. 2587:, 2582:n 2578:A 2574:, 2571:. 2568:. 2565:. 2562:, 2557:1 2553:A 2532:] 2529:x 2526:[ 2523:V 2501:V 2479:x 2459:] 2456:x 2453:[ 2450:V 2428:V 2398:U 2394:W 2384:x 2364:U 2358:x 2337:U 2323:U 2319:W 2290:U 2282:U 2278:W 2254:O 2231:} 2226:O 2218:U 2215:: 2210:U 2206:W 2202:{ 2180:U 2176:W 2153:V 2145:A 2122:V 2099:} 2096:U 2084:A 2078:: 2073:V 2065:A 2062:{ 2056:= 2051:U 2047:W 2018:V 1993:O 1969:O 1944:O 1919:V 1884:O 1861:X 1830:U 1826:f 1818:O 1810:U 1799:f 1778:U 1770:U 1766:f 1735:] 1732:1 1729:, 1726:0 1723:[ 1717:X 1714:: 1709:U 1705:f 1681:O 1650:} 1645:O 1637:U 1634:: 1629:U 1625:W 1621:{ 1600:U 1586:U 1582:W 1555:O 1547:U 1524:U 1520:W 1496:O 1458:X 1416:1 1410:. 1408:V 1404:V 1400:x 1396:V 1392:X 1388:x 1383:; 1381:U 1377:f 1369:U 1365:R 1361:X 1357:f 1345:X 1337:X 1300:. 1289:( 1240:X 1236:X 1224:( 1176:P 1172:P 1164:. 1091:( 1029:X 1009:U 989:V 969:X 949:U 922:X 898:} 888:V 876:U 872:: 869:A 859:{ 835:x 815:V 795:X 775:x 755:} 752:A 743:: 734:U 730:{ 727:= 724:U 692:X 663:U 650:V 629:U 603:U 579:V 553:V 529:} 526:A 517:: 508:U 504:{ 501:= 498:U 478:} 475:B 466:: 457:V 453:{ 450:= 447:V 423:X 389:X 366:. 357:U 351:A 334:X 311:X 291:U 271:X 247:} 244:A 235:: 226:U 222:{ 219:= 216:U 196:X 172:X 148:X

Index

mathematics
topological space
open cover
refinement
locally finite
Dieudonné (1944)
compact space
Hausdorff space
normal
partitions of unity
closed
subspace
open
pointless topology
product
locales
Tychonoff's theorem
product
metric space
metrizable
locally metrizable
Hausdorff space
cover
set
subsets
union
indexed family
open
open sets
subset

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑