Knowledge (XXG)

Parameterized approximation algorithm

Source 📝

2498: 225:. This approach aims to overcome the limitations of both traditional approaches by having stronger guarantees on the solution quality compared to traditional approximations while still having efficient running times as in FPT algorithms. An overview of the research area studying parameterized approximation algorithms can be found in the survey of Marx and the more recent survey by Feldmann et al. 1679:. For the more general version with vertex capacities, an EPAS exists for the parameterization by k and the doubling dimension, but not when using k and the highway dimension as the parameter. Regarding the pathwidth, k-Center admits an EPAS even for the more general 52:-approximation, in polynomial time. On the other hand, parameterized algorithms are designed to find exact solutions to problems, but with the constraint that the running time of the algorithm is polynomial in the input size and a function of a specific parameter 1161: 2219:. However the guaranteed approximate kernel might be of exponential size (or worse) in the input parameter. Hence it becomes interesting to find problems that admit polynomial sized approximate kernels. Furthermore, a 2358:), but a PSAKS exists. When parameterizing Steiner Tree by the number of non-terminals in the optimum solution, the problem is W-hard (and thus admits no exact kernel at all, unless FPT=W), but still admits a PSAKS. 56:. The parameter describes some property of the input and is small in typical applications. The problem is said to be fixed-parameter tractable (FPT) if there is an algorithm that can find the optimum solution in 2214:
As for regular (non-approximate) kernels, a problem admits an α-approximate kernelization algorithm if and only if it has a parameterized α-approximation algorithm. The proof of this fact is very similar to
2356: 2322: 1037: 467: 2797:
Feldmann, Andreas Emil; Lampis, Michael (2024). "Parameterized Algorithms for Steiner Forest in Bounded Width Graphs". In Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola (eds.).
791: 332: 900: 1221: 671: 1852: 1484: 1438: 2285: 754: 585: 381: 1641: 1303: 1076: 960: 831: 728: 617: 413: 512: 2259: 1271: 1995: 1532: 1351: 552: 532: 287: 190: 102: 3027:
Cohen-Addad, Vincent; Gupta, Anupam; Kumar, Amit; Lee, Euiwoong; Li, Jason (2019). Baier, Christel; Chatzigiannakis, Ioannis; Flocchini, Paola; Leonardi, Stefano (eds.).
2916:
Chitnis, Rajesh; Hajiaghayi, MohammadTaghi; Kortsarz, Guy (2013). "Fixed-Parameter and Approximation Algorithms: A New Look". In Gutin, Gregory; Szeider, Stefan (eds.).
1902: 2195: 2166: 2130: 2105: 2080: 2055: 1748: 140:
A parameterized approximation algorithm aims to find a balance between these two approaches by finding approximate solutions in FPT time: the algorithm computes an
1947: 219: 131: 1780: 678: 1081: 2290:
For example, while the Connected Vertex Cover problem is FPT parameterized by the solution size, it does not admit a (regular) polynomial sized kernel (unless
2324:), but a PSAKS exists. Similarly, the Steiner Tree problem is FPT parameterized by the number of terminals, does not admit a polynomial sized kernel (unless 3078:
Kolliopoulos, Stavros G.; Rao, Satish (1999). "A Nearly Linear-Time Approximation Scheme for the Euclidean k-median Problem". In Nešetřil, Jaroslav (ed.).
34:
in polynomial time in the input size and a function of a specific parameter. These algorithms are designed to combine the best aspects of both traditional
2205:
in polynomial time. This notion was introduced by Lokshtanov et al., but there are other related notions in the literature such as Turing kernels and
477:. This then circumvents the lower bounds in terms of polynomial-time approximation and fixed-parameter tractability. A PAS is similar in spirit to a 1542:. Matching parameterized approximation algorithms exist, but it is not known whether matching approximations can be computed in polynomial time. 3791: 3734: 3679: 3587: 3540: 3429: 3228: 3183: 3138: 3095: 3054: 2943: 2892: 478: 2518:"Inapproximability of Maximum Biclique Problems, Minimum k-Cut and Densest At-Least-k-Subgraph from the Small Set Expansion Hypothesis" 3921: 3916: 2327: 2293: 2024:
problem in order to remove "easy parts" and reveal the NP-hard core of the instance. A kernelization algorithm takes an instance
1711: 1644: 1545:
Clustering is often considered in settings of low dimensional data, and thus a practically relevant parameterization is by the
1224: 294: 2367: 794: 3515:"Polynomial-Time Approximation Schemes for k-center, k-median, and Capacitated Vehicle Routing in Bounded Highway Dimension" 965: 2372: 418: 3082:. Lecture Notes in Computer Science. Vol. 1643. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 378–389. 1859: 1539: 1358: 759: 300: 836: 534:
is assumed to be arbitrary but constant in order for the PAS to run in FPT time. If this assumption is unsatisfying,
2799:
51st International Colloquium on Automata, Languages, and Programming, ICALP 2024, July 8–12, 2024, Tallinn, Estonia
2740:
Dvořák, Pavel; Feldmann, Andreas E.; Knop, Dušan; Masařík, Tomáš; Toufar, Tomáš; Veselý, Pavel (January 1, 2021).
3770: 3564:. Lecture Notes in Computer Science. Vol. 13453. Cham: Springer International Publishing. pp. 215–229. 2920:. Lecture Notes in Computer Science. Vol. 8246. Cham: Springer International Publishing. pp. 110–122. 1178: 2017: 1574: 919: 622: 350: 339: 39: 3513:
Becker, Amariah; Klein, Philip N.; Saulpic, David (2018). Azar, Yossi; Bast, Hannah; Herman, Grzegorz (eds.).
2143:
is a variation of this technique that is used in parameterized approximation algorithms. It returns a kernel
1789: 1751: 914:
is FPT parameterized by the number of terminals. However, for the "dual" parameter consisting of the number
35: 2568: 1917: 1443: 1397: 3560:-Center: Distinguishing Doubling and Highway Dimension". In Bekos, Michael A.; Kaufmann, Michael (eds.). 1039:
time. The more general Steiner Forest problem is NP-hard on graphs of treewidth 3. However, on graphs of
44:
In traditional approximation algorithms, the goal is to find solutions that are at most a certain factor
1595:
a 2-approximation can be computed in polynomial time. However, when parameterizing by either the number
2264: 1171:
It is known that the Strongly Connected Steiner Subgraph problem is W-hard parameterized by the number
733: 564: 360: 3867: 3604: 3310: 2699: 1614: 1276: 1049: 933: 804: 701: 590: 386: 1696: 911: 488: 234: 31: 2238: 3911: 1230: 1952: 1489: 1308: 537: 517: 244: 147: 59: 3844: 3797: 3740: 3712: 3685: 3616: 3565: 3495: 3469: 3435: 3390: 3364: 3291: 3265: 3234: 3189: 3144: 3116: 3060: 3006: 2980: 2949: 2921: 2898: 2802: 2801:. LIPIcs. Vol. 297. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. pp. 61:1–61:20. 2779: 2753: 2631: 2529: 2466: 1384: 1865: 3815:
Hermelin, Danny; Kratsch, Stefan; Sołtys, Karolina; Wahlström, Magnus; Wu, Xi (March 1, 2015).
2383:
Ariel Kulik. Two-variable Recurrence Relations with Application to Parameterized Approximations
3887: 3836: 3787: 3730: 3675: 3634: 3583: 3536: 3487: 3425: 3382: 3330: 3283: 3224: 3179: 3134: 3091: 3050: 2998: 2939: 2888: 2853: 2771: 2719: 2649: 2604: 2549: 2486: 1676: 1660: 1608: 1570: 2742:"Parameterized Approximation Schemes for Steiner Trees with Small Number of Steiner Vertices" 2668: 3879: 3828: 3779: 3722: 3665: 3626: 3575: 3526: 3479: 3417: 3374: 3322: 3275: 3216: 3171: 3126: 3083: 3040: 2990: 2931: 2880: 2845: 2812: 2763: 2711: 2680: 2641: 2594: 2584: 2539: 2476: 2435: 1604: 1377: 2229:-approximate kernelization algorithm that computes a polynomial-sized kernel and for which 1721: 2502: 2497: 1923: 1589: 1554: 1156:{\displaystyle 2^{O({\frac {t^{2}}{\varepsilon }}\log {\frac {t}{\varepsilon }})}n^{O(1)}} 195: 107: 3711:. STOC 2018. New York, NY, USA: Association for Computing Machinery. pp. 1283–1296. 1757: 3111:
Cohen-Addad, Vincent (2018). "A Fast Approximation Scheme for Low-Dimensional k-Means".
2501: This article incorporates text from this source, which is available under the 2175: 2146: 2110: 2085: 2060: 2035: 3863: 3778:. STOC 2017. New York, NY, USA: Association for Computing Machinery. pp. 224–237. 1855: 1700: 1656: 1600: 1566: 923: 3765:
Lokshtanov, Daniel; Panolan, Fahad; Ramanujan, M. S.; Saurabh, Saket (June 19, 2017).
3353:"Fixed-Parameter Approximations for k-Center Problems in Low Highway Dimension Graphs" 3311:"Polynomial time approximation schemes for clustering in low highway dimension graphs" 3215:. STOC '11. New York, NY, USA: Association for Computing Machinery. pp. 569–578. 2879:. STOC '03. New York, NY, USA: Association for Computing Machinery. pp. 585–594. 2589: 2573:"Cutting Up Is Hard To Do: The Parameterised Complexity of k-Cut and Related Problems" 2572: 233:
The full potential of parameterized approximation algorithms is utilized when a given
3905: 3848: 3295: 3064: 3028: 3010: 2216: 2013: 692: 3801: 3653: 3514: 3394: 3168:
Proceedings of the twenty-third annual symposium on Computational geometry - SCG '07
3148: 3744: 3689: 3664:. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik: 36:1–36:20. 3499: 3414:
Proceedings of the twentieth annual ACM symposium on Theory of computing - STOC '88
3238: 3193: 3039:. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik: 42:1–42:14. 2953: 2902: 2783: 2393:
Vincent Cohen-Added: On the Parameterized Complexity of Various Clustering Problems
2378:
Karthik C. S.: Recent Hardness of Approximation results in Parameterized Complexity
1684: 1648: 1550: 485:. Since the degree of the polynomial in the runtime of a PAS depends on a function 3439: 3033:
46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)
3579: 3525:. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik: 8:1–8:15. 3252:
Cohen-Addad, Vincent; Feldmann, Andreas Emil; Saulpic, David (October 31, 2021).
3115:. Proceedings. Society for Industrial and Applied Mathematics. pp. 430–440. 3045: 2935: 2817: 1557:, the k-Median and k-Means problems admit an EPAS parameterized by the dimension 3670: 2969:"Parameterized Approximation Algorithms for Bidirected Steiner Network Problems" 2741: 2623: 2455:"A Survey on Approximation in Parameterized Complexity: Hardness and Algorithms" 2373:
Tuukka Korhonen: Single-Exponential Time 2-Approximation Algorithm for Treewidth
2021: 1671:
with the doubling dimension an EPAS exists, and the same is true when combining
28: 3883: 3603:
Katsikarelis, Ioannis; Lampis, Michael; Paschos, Vangelis Th. (July 15, 2019).
3483: 3458:"The Parameterized Hardness of the k-Center Problem in Transportation Networks" 3326: 3130: 3113:
Proceedings of the 2018 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)
2833: 2622:
Lokshtanov, Daniel; Saurabh, Saket; Surianarayanan, Vaishali (April 25, 2022).
2453:
Feldmann, Andreas Emil; Karthik C. S; Lee, Euiwoong; Manurangsi, Pasin (2020).
3832: 3630: 3531: 3378: 2715: 2402: 2397: 2392: 2387: 2382: 2377: 3891: 3840: 3638: 3491: 3457: 3386: 3334: 3287: 3087: 3002: 2967:
Chitnis, Rajesh; Feldmann, Andreas Emil; Manurangsi, Pasin (April 19, 2021).
2857: 2775: 2723: 2653: 2608: 2553: 2490: 2403:
Andreas Emil Feldmann. Approximate Kernelization Schemes for Steiner Networks
3816: 3783: 3726: 3416:. New York, NY, USA: Association for Computing Machinery. pp. 434–444. 3352: 3220: 3175: 2439: 2398:
Fahad Panolan. Parameterized Approximation for Independent Set of Rectangles
1680: 1664: 1546: 1040: 24: 3254:"Near-linear Time Approximation Schemes for Clustering in Doubling Metrics" 2877:
Proceedings of the thirty-fifth annual ACM symposium on Theory of computing
2684: 3772:
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing
3766: 3709:
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing
3704: 3213:
Proceedings of the forty-third annual ACM symposium on Theory of computing
3208: 3170:. New York, NY, USA: Association for Computing Machinery. pp. 11–18. 3163: 2884: 3605:"Structural parameters, tight bounds, and approximation for (k,r)-center" 3703:
S., Karthik C.; Laekhanukit, Bundit; Manurangsi, Pasin (June 20, 2018).
3421: 2872: 2423: 1565:. The former was generalized to an EPAS for the parameterization by the 2767: 2645: 2599: 3658:
9th Innovations in Theoretical Computer Science Conference (ITCS 2018)
3409: 3162:
Feldman, Dan; Monemizadeh, Morteza; Sohler, Christian (June 6, 2007).
2849: 2544: 2517: 2481: 2454: 3868:"Parameterized approximation via fidelity preserving transformations" 2368:
Daniel Lokshtanov: A Parameterized Approximation Scheme for k-Min Cut
3279: 2994: 2834:"Parameterized Complexity of Arc-Weighted Directed Steiner Problems" 3717: 3654:"ETH-Hardness of Approximating 2-CSPs and Directed Steiner Network" 3621: 3570: 3474: 3369: 3270: 3121: 2985: 2807: 2758: 2636: 2534: 2471: 918:
of non-terminals contained in the optimum solution, the problem is
3253: 2968: 2926: 1718:
vertices with maximum number of edges. It is not hard to obtain a
289:
time, while in contrast the problem neither has a polynomial-time
3705:"On the parameterized complexity of approximating dominating set" 801:
of required components. However an EPAS exists, which computes a
2832:
Guo, Jiong; Niedermeier, Rolf; Suchý, Ondřej (January 1, 2011).
2567:
G. Downey, Rodney; Estivill-Castro, Vladimir; Fellows, Michael;
2700:"The Steiner tree problem on graphs: Inapproximability results" 1782:
in the given input graph, since the maximum number of edges on
3652:
Dinur, Irit; Manurangsi, Pasin (2018). Karlin, Anna R. (ed.).
927: 346: 3817:"A Completeness Theory for Polynomial (Turing) Kernelization" 3660:. Leibniz International Proceedings in Informatics (LIPIcs). 3521:. Leibniz International Proceedings in Informatics (LIPIcs). 3035:. Leibniz International Proceedings in Informatics (LIPIcs). 2351:{\displaystyle {\textsf {NP}}\subseteq {\textsf {coNP/poly}}} 2317:{\displaystyle {\textsf {NP}}\subseteq {\textsf {coNP/poly}}} 1904:-approximation can be computed in FPT time parameterized by 3611:. Combinatorial Optimization: between Practice and Theory. 3309:
Feldmann, Andreas Emil; Saulpic, David (December 1, 2021).
3209:"A unified framework for approximating and clustering data" 3556:
Feldmann, Andreas Emil; Vu, Tung Anh (2022). "Generalized
2698:
Chlebík, Miroslav; Chlebíková, Janka (October 31, 2008).
2579:. CATS'03, Computing: the Australasian Theory Symposium. 2221:
polynomial-sized approximate kernelization scheme (PSAKS)
2624:"A Parameterized Approximation Scheme for Min $ k$ -Cut" 3519:
26th Annual European Symposium on Algorithms (ESA 2018)
2424:"Parameterized Complexity and Approximation Algorithms" 679:
efficient polynomial-time approximation scheme (EPTAS).
3862:
Fellows, Michael R.; Kulik, Ariel; Rosamond, Frances;
3164:"A PTAS for k-means clustering based on weak coresets" 1647:. Furthermore, the k-Center problem is W-hard even on 3456:
Feldmann, Andreas Emil; Marx, Dániel (July 1, 2020).
2330: 2296: 2267: 2241: 2178: 2149: 2113: 2088: 2063: 2038: 1955: 1926: 1868: 1792: 1760: 1724: 1617: 1492: 1446: 1400: 1311: 1279: 1233: 1181: 1084: 1052: 1032:{\displaystyle 2^{O(k^{2}/\varepsilon ^{4})}n^{O(1)}} 968: 936: 839: 807: 762: 736: 704: 625: 593: 567: 540: 520: 491: 421: 389: 363: 303: 247: 198: 150: 110: 62: 2871:
Halperin, Eran; Krauthgamer, Robert (June 9, 2003).
1651:
when simultaneously parameterizing it by the number
462:{\displaystyle f(k,\varepsilon )n^{g(\varepsilon )}} 3029:"Tight FPT Approximations for k-Median and k-Means" 1376:For the well-studied metric clustering problems of 1273:time. Furthermore, this is best possible, since no 2350: 2316: 2279: 2253: 2189: 2160: 2124: 2099: 2074: 2049: 1989: 1941: 1896: 1846: 1774: 1742: 1635: 1526: 1478: 1432: 1345: 1297: 1265: 1223:-approximation in polynomial time (under standard 1215: 1155: 1070: 1031: 954: 894: 825: 785: 748: 722: 665: 611: 579: 546: 526: 506: 461: 407: 375: 326: 281: 213: 184: 125: 96: 1809: 1796: 3408:Feder, Tomás; Greene, Daniel (January 1, 1988). 3207:Feldman, Dan; Langberg, Michael (June 6, 2011). 2577:Electronic Notes in Theoretical Computer Science 2136:, and the algorithm runs in polynomial time. An 2132:is bounded as a function of the input parameter 1643:-approximation algorithm exists, under standard 1227:). However a 2-approximation can be computed in 797:. It is also W-hard parameterized by the number 786:{\displaystyle {\mathsf {P}}\neq {\mathsf {NP}}} 334:), nor an FPT algorithm for the given parameter 327:{\displaystyle {\mathsf {P}}\neq {\mathsf {NP}}} 3410:"Optimal algorithms for approximate clustering" 895:{\displaystyle (k/\varepsilon )^{O(k)}n^{O(1)}} 554:is treated as a parameter as well to obtain an 1486:-approximation for k-Means can be computed in 1573:parameter, only an approximation scheme with 8: 3562:Graph-Theoretic Concepts in Computer Science 481:but additionally exploits a given parameter 221:is a function independent of the input size 133:is a function independent of the input size 48:away from the optimal solution, known as an 2706:. Algorithmic Aspects of Global Computing. 1714:), where the task is to find a subgraph on 479:polynomial-time approximation scheme (PTAS) 27:that aims to find approximate solutions to 1216:{\displaystyle O(\log ^{2-\varepsilon }n)} 3716: 3669: 3620: 3569: 3530: 3473: 3368: 3269: 3120: 3044: 2984: 2925: 2816: 2806: 2757: 2635: 2598: 2588: 2543: 2533: 2480: 2470: 2343: 2342: 2341: 2333: 2332: 2331: 2329: 2309: 2308: 2307: 2299: 2298: 2297: 2295: 2266: 2240: 2177: 2148: 2112: 2087: 2062: 2037: 1972: 1954: 1925: 1873: 1867: 1836: 1808: 1795: 1793: 1791: 1764: 1759: 1723: 1616: 1509: 1491: 1459: 1445: 1413: 1399: 1328: 1310: 1278: 1248: 1238: 1232: 1192: 1180: 1175:of terminals, and also does not admit an 1138: 1119: 1102: 1096: 1089: 1083: 1051: 1014: 999: 990: 984: 973: 967: 935: 877: 858: 846: 838: 806: 774: 773: 764: 763: 761: 735: 703: 666:{\displaystyle f(k,\varepsilon )n^{O(1)}} 648: 624: 592: 566: 559:parameterized approximation scheme (EPAS) 539: 519: 490: 444: 420: 388: 362: 315: 314: 305: 304: 302: 264: 246: 197: 167: 149: 109: 79: 61: 3351:Feldmann, Andreas Emil (March 1, 2019). 2571:; Rosamund, Frances A. (April 1, 2003). 930:. However, there is an EPAS computing a 355:parameterized approximation scheme (PAS) 3872:Journal of Computer and System Sciences 3315:Journal of Computer and System Sciences 2414: 2667:Dreyfus, S. E.; Wagner, R. A. (1971). 1847:{\displaystyle {k \choose 2}=k(k-1)/2} 922:(due to a folklore reduction from the 778: 775: 765: 319: 316: 306: 3760: 3758: 3756: 3754: 3451: 3449: 3346: 3344: 3022: 3020: 2362:Talks on parameterized approximations 2201:-approximation to the input instance 293:-approximation algorithm (under some 21:parameterized approximation algorithm 7: 2838:SIAM Journal on Discrete Mathematics 2746:SIAM Journal on Discrete Mathematics 2735: 2733: 2141:-approximate kernelization algorithm 1710:-Subgraph problem (which is a 2-ary 1561:, and also an EPAS parameterized by 1479:{\displaystyle (1+8/e-\varepsilon )} 1433:{\displaystyle (1+2/e-\varepsilon )} 926:). Steiner Tree is also known to be 345:For example, some problems that are 241:-approximation algorithm running in 2918:Parameterized and Exact Computation 2873:"Polylogarithmic inapproximability" 1440:-approximation for k-Median and no 1167:Strongly-connected Steiner subgraph 1800: 1305:-approximation can be computed in 677:. This is similar in spirit to an 415:-approximation can be computed in 14: 2280:{\displaystyle \varepsilon >0} 2020:to pre-process an instance of an 1750:-approximation by just picking a 749:{\displaystyle \varepsilon >0} 730:-approximation algorithm for any 580:{\displaystyle \varepsilon >0} 376:{\displaystyle \varepsilon >0} 2496: 2388:Meirav Zehavi. FPT Approximation 1636:{\displaystyle (2-\varepsilon )} 1394:of centers, it is known that no 1298:{\displaystyle (2-\varepsilon )} 1071:{\displaystyle (1+\varepsilon )} 955:{\displaystyle (1+\varepsilon )} 826:{\displaystyle (1+\varepsilon )} 723:{\displaystyle (2-\varepsilon )} 612:{\displaystyle (1+\varepsilon )} 408:{\displaystyle (1+\varepsilon )} 2669:"The steiner problem in graphs" 1712:Constraint Satisfaction problem 698:problem has no polynomial-time 507:{\displaystyle g(\varepsilon )} 229:Obtainable approximation ratios 2973:ACM Transactions on Algorithms 2254:{\displaystyle 1+\varepsilon } 1982: 1976: 1965: 1959: 1936: 1930: 1889: 1883: 1833: 1821: 1737: 1725: 1630: 1618: 1519: 1513: 1502: 1496: 1473: 1447: 1427: 1401: 1338: 1332: 1321: 1315: 1292: 1280: 1258: 1252: 1210: 1185: 1148: 1142: 1129: 1093: 1065: 1053: 1024: 1018: 1005: 977: 949: 937: 887: 881: 868: 862: 855: 840: 820: 808: 795:small set expansion hypothesis 717: 705: 658: 652: 641: 629: 606: 594: 501: 495: 454: 448: 437: 425: 402: 390: 274: 268: 257: 251: 208: 202: 177: 171: 160: 154: 120: 114: 89: 83: 72: 66: 1: 2590:10.1016/S1571-0661(04)81014-4 2032:, and returns a new instance 1266:{\displaystyle 3^{k}n^{O(1)}} 40:fixed-parameter tractability. 3609:Discrete Applied Mathematics 3580:10.1007/978-3-031-15914-5_16 3046:10.4230/LIPIcs.ICALP.2019.42 2936:10.1007/978-3-319-03898-8_11 2818:10.4230/LIPICS.ICALP.2024.61 2704:Theoretical Computer Science 2018:fixed-parameter tractability 1990:{\displaystyle f(k)n^{O(1)}} 1920:it is W-hard to compute any 1603:(in fact the dimension of a 1527:{\displaystyle f(k)n^{O(1)}} 1390:parameterized by the number 1346:{\displaystyle f(k)n^{O(1)}} 547:{\displaystyle \varepsilon } 527:{\displaystyle \varepsilon } 282:{\displaystyle f(k)n^{O(1)}} 185:{\displaystyle f(k)n^{O(1)}} 97:{\displaystyle f(k)n^{O(1)}} 3671:10.4230/LIPIcs.ITCS.2018.36 2217:the one for regular kernels 1786:vertices is always at most 3938: 3884:10.1016/j.jcss.2017.11.001 3484:10.1007/s00453-020-00683-w 3327:10.1016/j.jcss.2021.06.002 3131:10.1137/1.9781611975031.29 2516:Manurangsi, Pasin (2018). 1897:{\displaystyle k^{1-o(1)}} 1667:. However, when combining 1577:runtime is known to date. 1569:. For the loosely related 3833:10.1007/s00453-014-9910-8 3631:10.1016/j.dam.2018.11.002 3532:10.4230/LIPIcs.ESA.2018.8 3379:10.1007/s00453-018-0455-0 2716:10.1016/j.tcs.2008.06.046 2628:SIAM Journal on Computing 2211:-fidelity kernelization. 2197:can be converted into an 2009:Approximate kernelization 1858:optimal, since under Gap- 3922:Parameterized complexity 3917:Approximation algorithms 3088:10.1007/3-540-48481-7_33 1683:parameter, and also for 469:time for some functions 36:approximation algorithms 3784:10.1145/3055399.3055456 3727:10.1145/3188745.3188896 3221:10.1145/1993636.1993712 3176:10.1145/1247069.1247072 2016:is a technique used in 1997:time for any functions 673:time for some function 2685:10.1002/net.3230010302 2352: 2318: 2281: 2255: 2191: 2162: 2126: 2101: 2082:such that the size of 2076: 2051: 1991: 1943: 1918:Dominating set problem 1898: 1848: 1776: 1744: 1645:complexity assumptions 1637: 1534:time for any function 1528: 1480: 1434: 1353:time for any function 1347: 1299: 1267: 1225:complexity assumptions 1217: 1157: 1072: 1046:an EPAS can compute a 1033: 956: 924:Dominating Set problem 896: 827: 787: 750: 724: 667: 613: 581: 548: 528: 508: 463: 409: 377: 338:(i.e., it is at least 328: 283: 215: 186: 127: 98: 3767:"Lossy kernelization" 2885:10.1145/780542.780628 2440:10.1093/comjnl/bxm048 2422:Marx, Daniel (2008). 2353: 2319: 2282: 2256: 2192: 2163: 2127: 2102: 2077: 2052: 1992: 1944: 1899: 1849: 1777: 1745: 1743:{\displaystyle (k-1)} 1638: 1529: 1481: 1435: 1348: 1300: 1268: 1218: 1158: 1073: 1034: 957: 897: 828: 788: 751: 725: 668: 614: 582: 549: 529: 509: 464: 410: 378: 329: 295:complexity assumption 284: 237:is shown to admit an 216: 187: 128: 99: 32:optimization problems 3080:Algorithms - ESA' 99 2428:The Computer Journal 2328: 2294: 2265: 2239: 2176: 2147: 2111: 2086: 2061: 2036: 1953: 1942:{\displaystyle g(k)} 1924: 1866: 1790: 1758: 1722: 1615: 1490: 1444: 1398: 1309: 1277: 1231: 1179: 1082: 1050: 966: 934: 912:Steiner Tree problem 837: 805: 760: 734: 702: 623: 591: 565: 538: 518: 489: 419: 387: 361: 301: 245: 235:optimization problem 214:{\displaystyle f(k)} 196: 148: 126:{\displaystyle f(k)} 108: 60: 3422:10.1145/62212.62255 1775:{\displaystyle k/2} 1611:, no parameterized 3258:Journal of the ACM 2768:10.1137/18M1209489 2646:10.1137/20M1383197 2348: 2314: 2277: 2251: 2190:{\displaystyle I'} 2187: 2172:-approximation in 2161:{\displaystyle I'} 2158: 2125:{\displaystyle k'} 2122: 2100:{\displaystyle I'} 2097: 2075:{\displaystyle k'} 2072: 2050:{\displaystyle I'} 2047: 1987: 1949:-approximation in 1939: 1894: 1844: 1772: 1740: 1657:doubling dimension 1633: 1601:doubling dimension 1567:doubling dimension 1549:of the underlying 1524: 1476: 1430: 1343: 1295: 1263: 1213: 1153: 1078:-approximation in 1068: 1029: 962:-approximation in 952: 892: 833:-approximation in 823: 783: 746: 720: 663: 619:-approximation in 609: 577: 544: 524: 504: 459: 405: 373: 324: 279: 211: 182: 144:-approximation in 123: 94: 3793:978-1-4503-4528-6 3736:978-1-4503-5559-9 3681:978-3-95977-060-6 3589:978-3-031-15914-5 3542:978-3-95977-081-1 3431:978-0-89791-264-8 3264:(6): 44:1–44:34. 3230:978-1-4503-0691-1 3185:978-1-59593-705-6 3140:978-1-61197-503-1 3097:978-3-540-66251-8 3056:978-3-95977-109-2 2979:(2): 12:1–12:68. 2945:978-3-319-03898-8 2894:978-1-58113-674-6 2850:10.1137/100794560 2545:10.3390/a11010010 2482:10.3390/a13060146 2345: 2335: 2311: 2301: 1807: 1677:highway dimension 1661:highway dimension 1609:highway dimension 1571:highway dimension 1127: 1111: 16:Type of algorithm 3929: 3896: 3895: 3859: 3853: 3852: 3812: 3806: 3805: 3777: 3762: 3749: 3748: 3720: 3700: 3694: 3693: 3673: 3649: 3643: 3642: 3624: 3600: 3594: 3593: 3573: 3559: 3553: 3547: 3546: 3534: 3510: 3504: 3503: 3477: 3468:(7): 1989–2005. 3453: 3444: 3443: 3405: 3399: 3398: 3372: 3363:(3): 1031–1052. 3348: 3339: 3338: 3306: 3300: 3299: 3273: 3249: 3243: 3242: 3204: 3198: 3197: 3159: 3153: 3152: 3124: 3108: 3102: 3101: 3075: 3069: 3068: 3048: 3024: 3015: 3014: 2988: 2964: 2958: 2957: 2929: 2913: 2907: 2906: 2868: 2862: 2861: 2829: 2823: 2822: 2820: 2810: 2794: 2788: 2787: 2761: 2737: 2728: 2727: 2695: 2689: 2688: 2664: 2658: 2657: 2639: 2619: 2613: 2612: 2602: 2592: 2564: 2558: 2557: 2547: 2537: 2513: 2507: 2500: 2494: 2484: 2474: 2450: 2444: 2443: 2419: 2357: 2355: 2354: 2349: 2347: 2346: 2337: 2336: 2323: 2321: 2320: 2315: 2313: 2312: 2303: 2302: 2286: 2284: 2283: 2278: 2260: 2258: 2257: 2252: 2233: 2227: 2209: 2204: 2200: 2196: 2194: 2193: 2188: 2186: 2171: 2167: 2165: 2164: 2159: 2157: 2140: 2135: 2131: 2129: 2128: 2123: 2121: 2106: 2104: 2103: 2098: 2096: 2081: 2079: 2078: 2073: 2071: 2056: 2054: 2053: 2048: 2046: 2031: 2028:and a parameter 2027: 2004: 2000: 1996: 1994: 1993: 1988: 1986: 1985: 1948: 1946: 1945: 1940: 1907: 1903: 1901: 1900: 1895: 1893: 1892: 1853: 1851: 1850: 1845: 1840: 1814: 1813: 1812: 1799: 1785: 1781: 1779: 1778: 1773: 1768: 1749: 1747: 1746: 1741: 1717: 1691:Densest subgraph 1674: 1670: 1655:of centers, the 1654: 1642: 1640: 1639: 1634: 1605:Manhattan metric 1599:of centers, the 1598: 1564: 1560: 1537: 1533: 1531: 1530: 1525: 1523: 1522: 1485: 1483: 1482: 1477: 1463: 1439: 1437: 1436: 1431: 1417: 1393: 1356: 1352: 1350: 1349: 1344: 1342: 1341: 1304: 1302: 1301: 1296: 1272: 1270: 1269: 1264: 1262: 1261: 1243: 1242: 1222: 1220: 1219: 1214: 1203: 1202: 1174: 1162: 1160: 1159: 1154: 1152: 1151: 1133: 1132: 1128: 1120: 1112: 1107: 1106: 1097: 1077: 1075: 1074: 1069: 1045: 1038: 1036: 1035: 1030: 1028: 1027: 1009: 1008: 1004: 1003: 994: 989: 988: 961: 959: 958: 953: 917: 901: 899: 898: 893: 891: 890: 872: 871: 850: 832: 830: 829: 824: 800: 792: 790: 789: 784: 782: 781: 769: 768: 755: 753: 752: 747: 729: 727: 726: 721: 676: 672: 670: 669: 664: 662: 661: 618: 616: 615: 610: 586: 584: 583: 578: 561:, which for any 553: 551: 550: 545: 533: 531: 530: 525: 513: 511: 510: 505: 484: 476: 472: 468: 466: 465: 460: 458: 457: 414: 412: 411: 406: 382: 380: 379: 374: 357:, i.e., for any 337: 333: 331: 330: 325: 323: 322: 310: 309: 292: 288: 286: 285: 280: 278: 277: 240: 224: 220: 218: 217: 212: 191: 189: 188: 183: 181: 180: 143: 136: 132: 130: 129: 124: 103: 101: 100: 95: 93: 92: 55: 51: 47: 3937: 3936: 3932: 3931: 3930: 3928: 3927: 3926: 3902: 3901: 3900: 3899: 3866:(May 1, 2018). 3864:Shachnai, Hadas 3861: 3860: 3856: 3814: 3813: 3809: 3794: 3775: 3764: 3763: 3752: 3737: 3702: 3701: 3697: 3682: 3651: 3650: 3646: 3602: 3601: 3597: 3590: 3557: 3555: 3554: 3550: 3543: 3512: 3511: 3507: 3455: 3454: 3447: 3432: 3407: 3406: 3402: 3350: 3349: 3342: 3308: 3307: 3303: 3280:10.1145/3477541 3251: 3250: 3246: 3231: 3206: 3205: 3201: 3186: 3161: 3160: 3156: 3141: 3110: 3109: 3105: 3098: 3077: 3076: 3072: 3057: 3026: 3025: 3018: 2995:10.1145/3447584 2966: 2965: 2961: 2946: 2915: 2914: 2910: 2895: 2870: 2869: 2865: 2831: 2830: 2826: 2796: 2795: 2791: 2739: 2738: 2731: 2697: 2696: 2692: 2666: 2665: 2661: 2621: 2620: 2616: 2566: 2565: 2561: 2515: 2514: 2510: 2452: 2451: 2447: 2421: 2420: 2416: 2411: 2364: 2326: 2325: 2292: 2291: 2263: 2262: 2237: 2236: 2231: 2225: 2207: 2202: 2198: 2179: 2174: 2173: 2169: 2150: 2145: 2144: 2138: 2133: 2114: 2109: 2108: 2089: 2084: 2083: 2064: 2059: 2058: 2057:with parameter 2039: 2034: 2033: 2029: 2025: 2011: 2002: 1998: 1968: 1951: 1950: 1922: 1921: 1914: 1905: 1869: 1864: 1863: 1854:. This is also 1794: 1788: 1787: 1783: 1756: 1755: 1720: 1719: 1715: 1706:is the Densest 1704:-Clique problem 1699:variant of the 1693: 1672: 1668: 1652: 1613: 1612: 1596: 1593:-center problem 1588:For the metric 1586: 1562: 1558: 1555:Euclidean space 1535: 1505: 1488: 1487: 1442: 1441: 1396: 1395: 1391: 1374: 1354: 1324: 1307: 1306: 1275: 1274: 1244: 1234: 1229: 1228: 1188: 1177: 1176: 1172: 1169: 1134: 1098: 1085: 1080: 1079: 1048: 1047: 1043: 1010: 995: 980: 969: 964: 963: 932: 931: 915: 908: 873: 854: 835: 834: 803: 802: 798: 758: 757: 732: 731: 700: 699: 689: 674: 644: 621: 620: 589: 588: 563: 562: 536: 535: 516: 515: 514:, the value of 487: 486: 482: 474: 470: 440: 417: 416: 385: 384: 359: 358: 335: 299: 298: 290: 260: 243: 242: 238: 231: 222: 194: 193: 163: 146: 145: 141: 134: 106: 105: 75: 58: 57: 53: 49: 45: 17: 12: 11: 5: 3935: 3933: 3925: 3924: 3919: 3914: 3904: 3903: 3898: 3897: 3854: 3827:(3): 702–730. 3807: 3792: 3750: 3735: 3695: 3680: 3644: 3595: 3588: 3548: 3541: 3505: 3445: 3430: 3400: 3340: 3301: 3244: 3229: 3199: 3184: 3154: 3139: 3103: 3096: 3070: 3055: 3016: 2959: 2944: 2908: 2893: 2863: 2844:(2): 583–599. 2824: 2789: 2752:(1): 546–574. 2729: 2710:(3): 207–214. 2690: 2679:(3): 195–207. 2659: 2630:: FOCS20–205. 2614: 2559: 2508: 2445: 2413: 2412: 2410: 2407: 2406: 2405: 2400: 2395: 2390: 2385: 2380: 2375: 2370: 2363: 2360: 2340: 2306: 2276: 2273: 2270: 2250: 2247: 2244: 2235:can be set to 2185: 2182: 2168:such that any 2156: 2153: 2120: 2117: 2095: 2092: 2070: 2067: 2045: 2042: 2010: 2007: 1984: 1981: 1978: 1975: 1971: 1967: 1964: 1961: 1958: 1938: 1935: 1932: 1929: 1913: 1912:Dominating set 1910: 1891: 1888: 1885: 1882: 1879: 1876: 1872: 1856:asymptotically 1843: 1839: 1835: 1832: 1829: 1826: 1823: 1820: 1817: 1811: 1806: 1803: 1798: 1771: 1767: 1763: 1739: 1736: 1733: 1730: 1727: 1692: 1689: 1632: 1629: 1626: 1623: 1620: 1585: 1579: 1521: 1518: 1515: 1512: 1508: 1504: 1501: 1498: 1495: 1475: 1472: 1469: 1466: 1462: 1458: 1455: 1452: 1449: 1429: 1426: 1423: 1420: 1416: 1412: 1409: 1406: 1403: 1373: 1363: 1340: 1337: 1334: 1331: 1327: 1323: 1320: 1317: 1314: 1294: 1291: 1288: 1285: 1282: 1260: 1257: 1254: 1251: 1247: 1241: 1237: 1212: 1209: 1206: 1201: 1198: 1195: 1191: 1187: 1184: 1168: 1165: 1150: 1147: 1144: 1141: 1137: 1131: 1126: 1123: 1118: 1115: 1110: 1105: 1101: 1095: 1092: 1088: 1067: 1064: 1061: 1058: 1055: 1026: 1023: 1020: 1017: 1013: 1007: 1002: 998: 993: 987: 983: 979: 976: 972: 951: 948: 945: 942: 939: 907: 904: 889: 886: 883: 880: 876: 870: 867: 864: 861: 857: 853: 849: 845: 842: 822: 819: 816: 813: 810: 780: 777: 772: 767: 745: 742: 739: 719: 716: 713: 710: 707: 688: 682: 660: 657: 654: 651: 647: 643: 640: 637: 634: 631: 628: 608: 605: 602: 599: 596: 576: 573: 570: 543: 523: 503: 500: 497: 494: 456: 453: 450: 447: 443: 439: 436: 433: 430: 427: 424: 404: 401: 398: 395: 392: 372: 369: 366: 321: 318: 313: 308: 276: 273: 270: 267: 263: 259: 256: 253: 250: 230: 227: 210: 207: 204: 201: 179: 176: 173: 170: 166: 162: 159: 156: 153: 122: 119: 116: 113: 91: 88: 85: 82: 78: 74: 71: 68: 65: 15: 13: 10: 9: 6: 4: 3: 2: 3934: 3923: 3920: 3918: 3915: 3913: 3910: 3909: 3907: 3893: 3889: 3885: 3881: 3877: 3873: 3869: 3865: 3858: 3855: 3850: 3846: 3842: 3838: 3834: 3830: 3826: 3822: 3818: 3811: 3808: 3803: 3799: 3795: 3789: 3785: 3781: 3774: 3773: 3768: 3761: 3759: 3757: 3755: 3751: 3746: 3742: 3738: 3732: 3728: 3724: 3719: 3714: 3710: 3706: 3699: 3696: 3691: 3687: 3683: 3677: 3672: 3667: 3663: 3659: 3655: 3648: 3645: 3640: 3636: 3632: 3628: 3623: 3618: 3614: 3610: 3606: 3599: 3596: 3591: 3585: 3581: 3577: 3572: 3567: 3563: 3552: 3549: 3544: 3538: 3533: 3528: 3524: 3520: 3516: 3509: 3506: 3501: 3497: 3493: 3489: 3485: 3481: 3476: 3471: 3467: 3463: 3459: 3452: 3450: 3446: 3441: 3437: 3433: 3427: 3423: 3419: 3415: 3411: 3404: 3401: 3396: 3392: 3388: 3384: 3380: 3376: 3371: 3366: 3362: 3358: 3354: 3347: 3345: 3341: 3336: 3332: 3328: 3324: 3320: 3316: 3312: 3305: 3302: 3297: 3293: 3289: 3285: 3281: 3277: 3272: 3267: 3263: 3259: 3255: 3248: 3245: 3240: 3236: 3232: 3226: 3222: 3218: 3214: 3210: 3203: 3200: 3195: 3191: 3187: 3181: 3177: 3173: 3169: 3165: 3158: 3155: 3150: 3146: 3142: 3136: 3132: 3128: 3123: 3118: 3114: 3107: 3104: 3099: 3093: 3089: 3085: 3081: 3074: 3071: 3066: 3062: 3058: 3052: 3047: 3042: 3038: 3034: 3030: 3023: 3021: 3017: 3012: 3008: 3004: 3000: 2996: 2992: 2987: 2982: 2978: 2974: 2970: 2963: 2960: 2955: 2951: 2947: 2941: 2937: 2933: 2928: 2923: 2919: 2912: 2909: 2904: 2900: 2896: 2890: 2886: 2882: 2878: 2874: 2867: 2864: 2859: 2855: 2851: 2847: 2843: 2839: 2835: 2828: 2825: 2819: 2814: 2809: 2804: 2800: 2793: 2790: 2785: 2781: 2777: 2773: 2769: 2765: 2760: 2755: 2751: 2747: 2743: 2736: 2734: 2730: 2725: 2721: 2717: 2713: 2709: 2705: 2701: 2694: 2691: 2686: 2682: 2678: 2674: 2670: 2663: 2660: 2655: 2651: 2647: 2643: 2638: 2633: 2629: 2625: 2618: 2615: 2610: 2606: 2601: 2596: 2591: 2586: 2582: 2578: 2574: 2570: 2569:Prieto, Elena 2563: 2560: 2555: 2551: 2546: 2541: 2536: 2531: 2527: 2523: 2519: 2512: 2509: 2506: 2504: 2499: 2492: 2488: 2483: 2478: 2473: 2468: 2464: 2460: 2456: 2449: 2446: 2441: 2437: 2433: 2429: 2425: 2418: 2415: 2408: 2404: 2401: 2399: 2396: 2394: 2391: 2389: 2386: 2384: 2381: 2379: 2376: 2374: 2371: 2369: 2366: 2365: 2361: 2359: 2338: 2304: 2288: 2274: 2271: 2268: 2248: 2245: 2242: 2234: 2228: 2222: 2218: 2212: 2210: 2183: 2180: 2154: 2151: 2142: 2118: 2115: 2093: 2090: 2068: 2065: 2043: 2040: 2023: 2019: 2015: 2014:Kernelization 2008: 2006: 1979: 1973: 1969: 1962: 1956: 1933: 1927: 1919: 1911: 1909: 1886: 1880: 1877: 1874: 1870: 1861: 1857: 1841: 1837: 1830: 1827: 1824: 1818: 1815: 1804: 1801: 1769: 1765: 1761: 1753: 1734: 1731: 1728: 1713: 1709: 1705: 1703: 1698: 1690: 1688: 1686: 1682: 1678: 1666: 1662: 1658: 1650: 1649:planar graphs 1646: 1627: 1624: 1621: 1610: 1606: 1602: 1594: 1592: 1583: 1580: 1578: 1576: 1572: 1568: 1556: 1552: 1548: 1543: 1541: 1516: 1510: 1506: 1499: 1493: 1470: 1467: 1464: 1460: 1456: 1453: 1450: 1424: 1421: 1418: 1414: 1410: 1407: 1404: 1389: 1387: 1382: 1380: 1371: 1367: 1364: 1362: 1360: 1335: 1329: 1325: 1318: 1312: 1289: 1286: 1283: 1255: 1249: 1245: 1239: 1235: 1226: 1207: 1204: 1199: 1196: 1193: 1189: 1182: 1166: 1164: 1145: 1139: 1135: 1124: 1121: 1116: 1113: 1108: 1103: 1099: 1090: 1086: 1062: 1059: 1056: 1042: 1021: 1015: 1011: 1000: 996: 991: 985: 981: 974: 970: 946: 943: 940: 929: 925: 921: 913: 905: 903: 884: 878: 874: 865: 859: 851: 847: 843: 817: 814: 811: 796: 770: 743: 740: 737: 714: 711: 708: 697: 695: 686: 683: 681: 680: 655: 649: 645: 638: 635: 632: 626: 603: 600: 597: 574: 571: 568: 560: 557: 541: 521: 498: 492: 480: 451: 445: 441: 434: 431: 428: 422: 399: 396: 393: 370: 367: 364: 356: 352: 348: 343: 341: 311: 296: 271: 265: 261: 254: 248: 236: 228: 226: 205: 199: 174: 168: 164: 157: 151: 138: 117: 111: 86: 80: 76: 69: 63: 42: 41: 37: 33: 30: 26: 23:is a type of 22: 3875: 3871: 3857: 3824: 3821:Algorithmica 3820: 3810: 3771: 3708: 3698: 3661: 3657: 3647: 3612: 3608: 3598: 3561: 3551: 3522: 3518: 3508: 3465: 3462:Algorithmica 3461: 3413: 3403: 3360: 3357:Algorithmica 3356: 3318: 3314: 3304: 3261: 3257: 3247: 3212: 3202: 3167: 3157: 3112: 3106: 3079: 3073: 3036: 3032: 2976: 2972: 2962: 2917: 2911: 2876: 2866: 2841: 2837: 2827: 2798: 2792: 2749: 2745: 2707: 2703: 2693: 2676: 2672: 2662: 2627: 2617: 2580: 2576: 2562: 2525: 2521: 2511: 2495: 2462: 2458: 2448: 2434:(1): 60–78. 2431: 2427: 2417: 2289: 2230: 2224: 2220: 2213: 2206: 2199:αβ 2137: 2012: 1915: 1707: 1701: 1697:optimization 1694: 1590: 1587: 1581: 1544: 1538:, under Gap- 1385: 1378: 1375: 1369: 1368:-median and 1365: 1357:, under Gap- 1170: 909: 906:Steiner Tree 693: 690: 684: 558: 555: 354: 344: 232: 192:time, where 139: 104:time, where 43: 20: 18: 2600:10230/36518 2583:: 209–222. 1685:cliquewidth 756:, assuming 587:computes a 3912:Algorithms 3906:Categories 3718:1711.11029 3622:1704.08868 3615:: 90–117. 3571:2209.00675 3475:1802.08563 3370:1605.02530 3271:1812.08664 3122:1708.07381 2986:1707.06499 2808:2402.09835 2759:1710.00668 2637:2005.00134 2535:1705.03581 2522:Algorithms 2472:2006.04411 2465:(6): 146. 2459:Algorithms 2409:References 1663:, and the 1607:), or the 3892:0022-0000 3878:: 30–40. 3849:253973283 3841:1432-0541 3639:0166-218X 3492:1432-0541 3387:1432-0541 3335:0022-0000 3321:: 72–93. 3296:240476191 3288:0004-5411 3065:139103417 3011:235372580 3003:1549-6325 2927:1308.3520 2858:0895-4801 2776:0895-4801 2724:0304-3975 2654:0097-5397 2609:1571-0661 2554:1999-4893 2528:(1): 10. 2503:CC BY 4.0 2491:1999-4893 2344:coNP/poly 2339:⊆ 2310:coNP/poly 2305:⊆ 2269:ε 2249:ε 1878:− 1828:− 1732:− 1681:treewidth 1675:with the 1665:pathwidth 1628:ε 1625:− 1553:. In the 1547:dimension 1471:ε 1468:− 1425:ε 1422:− 1290:ε 1287:− 1205:⁡ 1200:ε 1197:− 1125:ε 1117:⁡ 1109:ε 1063:ε 1041:treewidth 997:ε 947:ε 852:ε 818:ε 771:≠ 738:ε 715:ε 712:− 639:ε 604:ε 569:ε 556:efficient 542:ε 522:ε 499:ε 452:ε 435:ε 400:ε 365:ε 312:≠ 25:algorithm 3802:14599219 3395:46886829 3149:30474859 2673:Networks 2505:license. 2261:for any 2184:′ 2155:′ 2119:′ 2094:′ 2069:′ 2044:′ 1916:For the 1754:of size 1752:matching 928:APX-hard 793:and the 353:admit a 347:APX-hard 297:, e.g., 3745:3170316 3690:4681120 3500:3532236 3239:2677556 3194:5694112 2954:6796132 2903:8554166 2784:3581913 2022:NP-hard 1584:-center 1381:-median 29:NP-hard 3890:  3847:  3839:  3800:  3790:  3743:  3733:  3688:  3678:  3637:  3586:  3539:  3498:  3490:  3440:658151 3438:  3428:  3393:  3385:  3333:  3294:  3286:  3237:  3227:  3192:  3182:  3147:  3137:  3094:  3063:  3053:  3009:  3001:  2952:  2942:  2901:  2891:  2856:  2782:  2774:  2722:  2652:  2607:  2552:  2489:  2232:α 2226:α 2223:is an 2208:α 2170:β 2139:α 1659:, the 1551:metric 1388:-means 1372:-means 1163:time. 920:W-hard 902:time. 351:W-hard 340:W-hard 291:α 239:α 142:α 50:α 46:α 3845:S2CID 3798:S2CID 3776:(PDF) 3741:S2CID 3713:arXiv 3686:S2CID 3617:arXiv 3566:arXiv 3496:S2CID 3470:arXiv 3436:S2CID 3391:S2CID 3365:arXiv 3292:S2CID 3266:arXiv 3235:S2CID 3190:S2CID 3145:S2CID 3117:arXiv 3061:S2CID 3007:S2CID 2981:arXiv 2950:S2CID 2922:arXiv 2899:S2CID 2803:arXiv 2780:S2CID 2754:arXiv 2632:arXiv 2530:arXiv 2467:arXiv 3888:ISSN 3837:ISSN 3788:ISBN 3731:ISBN 3676:ISBN 3635:ISSN 3584:ISBN 3537:ISBN 3488:ISSN 3426:ISBN 3383:ISSN 3331:ISSN 3284:ISSN 3225:ISBN 3180:ISBN 3135:ISBN 3092:ISBN 3051:ISBN 2999:ISSN 2940:ISBN 2889:ISBN 2854:ISSN 2772:ISSN 2720:ISSN 2650:ISSN 2605:ISSN 2550:ISSN 2487:ISSN 2272:> 2107:and 2001:and 1383:and 910:The 741:> 696:-cut 691:The 687:-cut 572:> 473:and 368:> 349:and 38:and 3880:doi 3829:doi 3780:doi 3723:doi 3666:doi 3627:doi 3613:264 3576:doi 3527:doi 3523:112 3480:doi 3418:doi 3375:doi 3323:doi 3319:122 3276:doi 3217:doi 3172:doi 3127:doi 3084:doi 3041:doi 3037:132 2991:doi 2932:doi 2881:doi 2846:doi 2813:doi 2764:doi 2712:doi 2708:406 2681:doi 2642:doi 2595:hdl 2585:doi 2540:doi 2477:doi 2436:doi 1862:no 1860:ETH 1695:An 1540:ETH 1359:ETH 1190:log 1114:log 342:). 3908:: 3886:. 3876:93 3874:. 3870:. 3843:. 3835:. 3825:71 3823:. 3819:. 3796:. 3786:. 3769:. 3753:^ 3739:. 3729:. 3721:. 3707:. 3684:. 3674:. 3662:94 3656:. 3633:. 3625:. 3607:. 3582:. 3574:. 3535:. 3517:. 3494:. 3486:. 3478:. 3466:82 3464:. 3460:. 3448:^ 3434:. 3424:. 3412:. 3389:. 3381:. 3373:. 3361:81 3359:. 3355:. 3343:^ 3329:. 3317:. 3313:. 3290:. 3282:. 3274:. 3262:68 3260:. 3256:. 3233:. 3223:. 3211:. 3188:. 3178:. 3166:. 3143:. 3133:. 3125:. 3090:. 3059:. 3049:. 3031:. 3019:^ 3005:. 2997:. 2989:. 2977:17 2975:. 2971:. 2948:. 2938:. 2930:. 2897:. 2887:. 2875:. 2852:. 2842:25 2840:. 2836:. 2811:. 2778:. 2770:. 2762:. 2750:35 2748:. 2744:. 2732:^ 2718:. 2702:. 2675:. 2671:. 2648:. 2640:. 2626:. 2603:. 2593:. 2581:78 2575:. 2548:. 2538:. 2526:11 2524:. 2520:. 2485:. 2475:. 2463:13 2461:. 2457:. 2432:51 2430:. 2426:. 2334:NP 2300:NP 2287:. 2005:. 1908:. 1687:. 1575:XP 1361:. 383:a 137:. 19:A 3894:. 3882:: 3851:. 3831:: 3804:. 3782:: 3747:. 3725:: 3715:: 3692:. 3668:: 3641:. 3629:: 3619:: 3592:. 3578:: 3568:: 3558:k 3545:. 3529:: 3502:. 3482:: 3472:: 3442:. 3420:: 3397:. 3377:: 3367:: 3337:. 3325:: 3298:. 3278:: 3268:: 3241:. 3219:: 3196:. 3174:: 3151:. 3129:: 3119:: 3100:. 3086:: 3067:. 3043:: 3013:. 2993:: 2983:: 2956:. 2934:: 2924:: 2905:. 2883:: 2860:. 2848:: 2821:. 2815:: 2805:: 2786:. 2766:: 2756:: 2726:. 2714:: 2687:. 2683:: 2677:1 2656:. 2644:: 2634:: 2611:. 2597:: 2587:: 2556:. 2542:: 2532:: 2493:. 2479:: 2469:: 2442:. 2438:: 2275:0 2246:+ 2243:1 2203:I 2181:I 2152:I 2134:k 2116:k 2091:I 2066:k 2041:I 2030:k 2026:I 2003:f 1999:g 1983:) 1980:1 1977:( 1974:O 1970:n 1966:) 1963:k 1960:( 1957:f 1937:) 1934:k 1931:( 1928:g 1906:k 1890:) 1887:1 1884:( 1881:o 1875:1 1871:k 1842:2 1838:/ 1834:) 1831:1 1825:k 1822:( 1819:k 1816:= 1810:) 1805:2 1802:k 1797:( 1784:k 1770:2 1766:/ 1762:k 1738:) 1735:1 1729:k 1726:( 1716:k 1708:k 1702:k 1673:k 1669:k 1653:k 1631:) 1622:2 1619:( 1597:k 1591:k 1582:k 1563:k 1559:d 1536:f 1520:) 1517:1 1514:( 1511:O 1507:n 1503:) 1500:k 1497:( 1494:f 1474:) 1465:e 1461:/ 1457:8 1454:+ 1451:1 1448:( 1428:) 1419:e 1415:/ 1411:2 1408:+ 1405:1 1402:( 1392:k 1386:k 1379:k 1370:k 1366:k 1355:f 1339:) 1336:1 1333:( 1330:O 1326:n 1322:) 1319:k 1316:( 1313:f 1293:) 1284:2 1281:( 1259:) 1256:1 1253:( 1250:O 1246:n 1240:k 1236:3 1211:) 1208:n 1194:2 1186:( 1183:O 1173:k 1149:) 1146:1 1143:( 1140:O 1136:n 1130:) 1122:t 1104:2 1100:t 1094:( 1091:O 1087:2 1066:) 1060:+ 1057:1 1054:( 1044:t 1025:) 1022:1 1019:( 1016:O 1012:n 1006:) 1001:4 992:/ 986:2 982:k 978:( 975:O 971:2 950:) 944:+ 941:1 938:( 916:k 888:) 885:1 882:( 879:O 875:n 869:) 866:k 863:( 860:O 856:) 848:/ 844:k 841:( 821:) 815:+ 812:1 809:( 799:k 779:P 776:N 766:P 744:0 718:) 709:2 706:( 694:k 685:k 675:f 659:) 656:1 653:( 650:O 646:n 642:) 636:, 633:k 630:( 627:f 607:) 601:+ 598:1 595:( 575:0 502:) 496:( 493:g 483:k 475:g 471:f 455:) 449:( 446:g 442:n 438:) 432:, 429:k 426:( 423:f 403:) 397:+ 394:1 391:( 371:0 336:k 320:P 317:N 307:P 275:) 272:1 269:( 266:O 262:n 258:) 255:k 252:( 249:f 223:n 209:) 206:k 203:( 200:f 178:) 175:1 172:( 169:O 165:n 161:) 158:k 155:( 152:f 135:n 121:) 118:k 115:( 112:f 90:) 87:1 84:( 81:O 77:n 73:) 70:k 67:( 64:f 54:k

Index

algorithm
NP-hard
optimization problems
approximation algorithms
fixed-parameter tractability.
optimization problem
complexity assumption
W-hard
APX-hard
W-hard
polynomial-time approximation scheme (PTAS)
efficient polynomial-time approximation scheme (EPTAS).
k-cut
small set expansion hypothesis
Steiner Tree problem
W-hard
Dominating Set problem
APX-hard
treewidth
complexity assumptions
ETH
k-median
k-means
ETH
dimension
metric
Euclidean space
doubling dimension
highway dimension
XP

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.