Knowledge

Planetary boundary layer

Source đź“ť

440: 337:– constitutes about 10% of the total PBL depth. Above the surface layer the PBL turbulence gradually dissipates, losing its kinetic energy to friction as well as converting the kinetic to potential energy in a density stratified flow. The balance between the rate of the turbulent kinetic energy production and its dissipation determines the planetary boundary layer depth. The PBL depth varies broadly. At a given wind speed, e.g. 8 m/s, and so at a given rate of the turbulence production, a PBL in wintertime Arctic could be as shallow as 50 m, a nocturnal PBL in mid-latitudes could be typically 300 m in thickness, and a tropical PBL in the trade-wind zone could grow to its full theoretical depth of 2000 m. The PBL depth can be 4000 m or higher in late afternoon over desert. 138: 1456: 448:. This implies a reaction of the land surface ecosystem that will evapotranspire (evaporation from the soil and transpiration from plants) more, to compensate for this loss of moisture in the lower layer, but gradually causing a drying of the soil. (Source: Combe, M., VilĂ -Guerau de Arellano, J., Ouwersloot, H. G., Jacobs, C. M. J., and Peters, W.: Two perspectives on the coupled carbon, water and energy exchange in the planetary boundary layer, Biogeosciences, 12, 103–123, .https://doi.org/10.5194/bg-12-103-2015, 2015) 1444: 300: 385: 1492: 456:. An SBL is solely driven by the wind shear turbulence and hence the SBL cannot exist without the free atmosphere wind. An SBL is typical in nighttime at all locations and even in daytime in places where the Earth's surface is colder than the air above. An SBL plays a particularly important role in high latitudes where it is often prolonged (days to months), resulting in very cold air temperatures. 1468: 1480: 62: 459:
Physical laws and equations of motion, which govern the planetary boundary layer dynamics and microphysics, are strongly non-linear and considerably influenced by properties of the Earth's surface and evolution of processes in the free atmosphere. To deal with this complexity, the whole array of
290:
formed during the night are broken up as a consequence of the turbulent rise of heated air. The boundary layer stabilises "shortly before sunset" and remains so during the night. All this make up a daily cycle. During winter and cloudy days the breakup of the nighttime layering is incomplete and
226:
coefficient based on surface type. The height above ground where surface friction has a negligible effect on wind speed is called the "gradient height" and the wind speed above this height is assumed to be a constant called the "gradient wind speed". For example, typical values for the predicted
291:
atmospheric conditions established in previous days can persist. The breakup of the nighttime boundary layer structure is fast on sunny days. The driving force is convective cells with narrow updraft areas and large areas of gentle downdraft. These cells exceed 200–500 m in diameter.
40: 443:
Interactions between the carbon (green), water (blue) and heat (red) cycles in the coupled land–ABL system. As the atmospheric boundary layer decreases in height due to subsidence, it experiences an increase in temperature, a reduction in moisture, and a depletion of
141:
The difference in the amount of aerosols below and above the boundary layer is easy to see in this aerial photograph. Light pollution from the city of Berlin is strongly scattered below the layer, but above the layer it mostly propagates out into
402:
A convective planetary boundary layer is a type of planetary boundary layer where positive buoyancy flux at the surface creates a thermal instability and thus generates additional or even major turbulence. (This is also known as having CAPE or
198:
The reduction in velocity near the surface is a function of surface roughness, so wind velocity profiles are quite different for different terrain types. Rough, irregular ground, and man-made obstructions on the ground can reduce the
254:
effect. The cross-isobar angle of the diverted ageostrophic flow near the surface ranges from 10° over open water, to 30° over rough hilly terrain, and can increase to 40°-50° over land at night when the wind speed is very low.
569: 52:
This movie is a combined visualization of the PBL and wind dynamics over the Los Angeles basin for a one-month period. Vertical motion of the PBL is represented by the gray "blanket". The height of the PBL is largely driven by
411:.) A convective boundary layer is typical in tropical and mid-latitudes during daytime. Solar heating assisted by the heat released from the water vapor condensation could create such strong convective turbulence that the 278:. This effect is even larger over the sea, where there is much less diurnal variation of the height of the boundary layer than over land. In the convective boundary layer, strong mixing diminishes vertical wind gradient. 57:
associated with the changing surface temperature of the Earth (for example, rising during the day and sinking at night). The colored arrows represent the strength and direction of winds at different altitudes.
249:
of the wind is usually three-dimensional, that is, there is also a change in direction between the 'free' pressure gradient-driven geostrophic wind and the wind close to the ground. This is related to the
43: 48: 46: 42: 41: 47: 179:. Flow near the surface encounters obstacles that reduce the wind speed, and introduce random vertical and horizontal velocity components at right angles to the main direction of flow. This 439: 754:
Flow near the surface encounters small obstacles that change the wind speed and introduce random vertical and horizontal velocity components at right angles to the main direction of flow.
333:
suggest, the planetary boundary layer turbulence is produced in the layer with the largest velocity gradients that is at the very surface proximity. This layer – conventionally called a
45: 1253: 230:
Although the power law exponent approximation is convenient, it has no theoretical basis. When the temperature profile is adiabatic, the wind speed should vary
464:
has been proposed. However, they are often not accurate enough to meet practical requirements. Significant improvements are expected from application of a
564: 472: 187:
between the air moving horizontally at one level and the air at those levels immediately above and below it, which is important in dispersion of
44: 1402: 1338: 1084: 685: 404: 137: 471:
Perhaps the most important processes, which are critically dependent on the correct representation of the PBL in the atmospheric models (
1512: 397: 203:
speed by 40% to 50%. Over open water or ice, the reduction may be only 20% to 30%. These effects are taken into account when siting
1231: 1198: 1109: 1059: 1026: 1001: 976: 938: 902: 869: 838: 813: 782: 716: 1315: 1262: 1143: 574: 524: 733: 1134: 428: 175:
of the planetary boundary layer. Wind speed increases with increasing height above the ground, starting from zero due to the
1116:...both the wind gradient and the mean wind profile itself can usually be described diagnostically by the log wind profile. 352:(between 0.7 and 1 of the PBL depth). Four main external factors determine the PBL depth and its mean vertical structure: 845:
Therefore the vertical gradient of mean wind speed (dū/dz) is greatest over smooth terrain, and least over rough surfaces.
330: 1434: 1427: 315: 954: 1304:"Does the height of the boundary layer influence the turbulence structure near the surface over the Baltic Sea?" 1279: 1248: 1160: 1129: 227:
gradient height are 457 m for large cities, 366 m for suburbs, 274 m for open terrain, and 213 m for open sea.
554: 287: 259: 766: 408: 319: 113:) and vertical mixing is strong. Above the PBL is the "free atmosphere", where the wind is approximately 1460: 465: 453: 412: 267: 1266: 1147: 549: 308: 270:, thus increasing the wind gradient. The magnitude of the wind gradient is largely influenced by the 31: 299: 1443: 559: 544: 894: 492: 476: 312: 246: 1345:
In the bulk of the convective boundary layer, strong mixing diminishes vertical wind gradient...
1190: 1184: 930: 677: 1398: 1334: 1284: 1227: 1223: 1194: 1165: 1105: 1080: 1055: 1051: 1022: 997: 972: 934: 898: 865: 834: 809: 778: 712: 681: 593: 461: 275: 263: 176: 102: 98: 1472: 1311: 1303: 1274: 1215: 1155: 1043: 922: 886: 384: 235: 200: 184: 155: 114: 258:
After sundown the wind gradient near the surface increases, with the increasing stability.
1019:
International Perspectives on Natural Disasters: Occurrence, Mitigation, and Consequences
887: 1270: 1151: 1496: 1448: 771: 692:
The relation between wind speed and height is called the wind profile or wind gradient.
670: 509: 274:, principally atmospheric stability and the height of any convective boundary layer or 118: 27:
Lowest part of the atmosphere directly influenced by contact with the planetary surface
452:
The SBL is a PBL when negative buoyancy flux at the surface damps the turbulence; see
340:
In addition to the surface layer, the planetary boundary layer also comprises the PBL
171:, there is a wind gradient in the wind flow ~100 meters above the Earth's surface—the 1506: 1216: 1044: 923: 643: 480: 366: 334: 323: 239: 172: 151: 106: 1491: 1484: 1130:"Wind and Temperature Profile Characteristics from Observations on a 1400 ft Tower" 741: 504: 424: 251: 234:
with height. Measurements over open terrain in 1961 showed good agreement with the
215: 204: 192: 168: 122: 1418: 519: 514: 420: 374: 304: 286:
The planetary boundary layer is different between day and night. During the day
211: 165: 159: 126: 117:(parallel to the isobars), while within the PBL the wind is affected by surface 70: 955:
Effect of Complex Terrain on Vertical Wind Profile Measured by SODAR Technique.
1249:"Remote Measurements of Boundary-Layer Wind Profiles Using a CW Doppler Lidar" 801: 618: 539: 534: 529: 488: 416: 188: 180: 147: 110: 94: 54: 1288: 1169: 231: 219: 17: 570:
Representations of the atmospheric boundary layer in global climate models
223: 1422: 994:
Guidelines for Design of Low-Rise Buildings Subjected to Lateral Forces
594:"Planetary boundary layer | atmospheric science | Britannica" 271: 1397:. Translated by Nappo, Carmen J.; Klein. Berlin, Germany: Springer. 65:
Depiction of where the planetary boundary layer lies on a sunny day.
61: 1479: 969:
Wind Turbine Operation in Electric Power Systems: Advanced Modeling
484: 383: 298: 136: 60: 97:
and its behaviour is directly influenced by its contact with a
218:
exhibiting a vertical velocity profile varying according to a
105:
in an hour or less. In this layer physical quantities such as
1079:. City: Alpha Science International, Ltd. pp. 378–379. 242:), with near constant average wind speed up through 1000 m. 1280:
10.1175/1520-0450(1984)023<0148:RMOBLW>2.0.CO;2
1161:
10.1175/1520-0450(1964)003<0299:WATPCF>2.0.CO;2
344:(between 0.1 and 0.7 of the PBL depth) and the PBL top or 1075:
Ghosal, M. (2005). "7.8.5 Vertical Wind Speed Gradient".
109:, temperature, and moisture display rapid fluctuations ( 1247:
Köpp, F.; Schwiesow, R.L.; Werner, C. (January 1984).
1432: 1378: 1376: 1374: 1372: 1359: 1357: 1355: 1353: 307:
at the leading edge of a thunderstorm complex on the
101:. On Earth it usually responds to changes in surface 419:(the boundary in the Earth's atmosphere between the 1104:. Boston: Kluwer Academic Publishers. p. 442. 777:. Washington: Mathematical Association of America. 1302:Johansson, C.; Uppsala, S.; Smedman, A.S. (2002). 770: 732:Dalgliesh, W. A. & D. W. Boyd (1 April 1962). 669: 893:. Cambridge: Royal Society of Chemistry. p.  359:the surface heat (more exactly buoyancy) balance; 1312:15th Conference on Boundary Layer and Turbulence 1308:15th Conference on Boundary Layer and Turbulence 953:Maeda, Takao, Shuichiro Homma, and Yoshiki Ito. 435:Stably stratified planetary boundary layer (SBL) 427:), which is at 10 km to 18 km in the 1428:American Meteorological Society glossary entry 1254:Journal of Applied Meteorology and Climatology 676:. London: Earthscan Publications Ltd. p.  1102:An Introduction to Boundary Layer Meteorology 8: 214:purposes, the wind gradient is modeled as a 1419:Description of the planetary boundary layer 415:comprises the entire troposphere up to the 365:the free atmosphere vertical wind shear or 362:the free atmosphere density stratification; 916: 914: 855: 853: 468:technique to problems related to the PBL. 1278: 1159: 565:Remote sensing atmospheric boundary layer 473:Atmospheric Model Intercomparison Project 392:Convective planetary boundary layer (CBL) 808:. New York: Marcel Dekker. p. 618. 773:Mathematical Modeling in the Environment 475:), are turbulent transport of moisture ( 438: 266:tends to vertically constrain turbulent 38: 1439: 702: 700: 585: 1189:. London: Chapman & Hall. p.  1382: 1363: 1333:. City: Kluwer Academic. p. 69. 1331:Physics and Modelling of Wind Erosion 1128:Thuillier, R.H.; Lappe, U.O. (1964). 996:. Boca Raton: CRC Press. p. 49. 796: 794: 405:convective available potential energy 7: 1186:Fundamentals of Weather and Climate 398:Convective planetary boundary layer 1050:. Boca Raton: CRC Press. pp.  1046:Handbook of Structural Engineering 707:Brown, G. Z.; DeKay, Mark (2001). 25: 925:Atmospheric Processes and Systems 1490: 1478: 1466: 1454: 1442: 1021:. Berlin: Springer. p. 73. 971:. Berlin: Springer. p. 17. 929:. New York: Routledge. pp.  864:. New York: Wiley. p. 272. 487:in the boundary layer influence 282:Nocturnal and diurnal conditions 1316:American Meteorological Society 1263:American Meteorological Society 1144:American Meteorological Society 833:. London: Methuen. p. 54. 711:. New York: Wiley. p. 18. 575:Atmospheric dispersion modeling 525:Alpine planetary boundary layer 356:the free atmosphere wind speed; 1183:McIlveen, J. F. Robin (1992). 1135:Journal of Applied Meteorology 672:Developing Wind Power Projects 429:Intertropical convergence zone 238:up to 100 m or so (within the 133:Cause of surface wind gradient 1: 889:Understanding Our Environment 1222:. London: J. Wiley. p.  806:Encyclopedia of Soil Science 93:, is the lowest part of the 734:"CBD-28. Wind on Buildings" 1529: 1513:Boundary layer meteorology 1077:Renewable Energy Resources 967:Lubosny, Zbigniew (2003). 921:Thompson, Russell (1998). 395: 372: 145: 83:atmospheric boundary layer 29: 1017:Stoltman, Joseph (2005). 860:Crawley, Stanley (1993). 322:twin towers and out over 1423:theweatherprediction.com 957:Retrieved on 2008-07-04. 829:Oke, Timothy R. (1987). 738:Canadian Building Digest 644:"Geostrophic wind level" 262:occurring at night with 75:planetary boundary layer 30:Not to be confused with 831:Boundary Layer Climates 668:Wizelius, Tore (2007). 555:Atmospheric electricity 495:, and energy exchange. 350:capping inversion layer 331:Navier–Stokes equations 1393:Foken, Thomas (2017). 1100:Stull, Roland (1997). 1042:Chen, Wai-Fah (1997). 885:Harrison, Roy (1999). 449: 409:atmospheric convection 388: 326: 311:that extends from the 143: 66: 58: 1329:Shao, Yaping (2000). 1214:Burton, Tony (2001). 992:Gupta, Ajaya (1993). 709:Sun, Wind & Light 466:large eddy simulation 454:Convective inhibition 442: 413:free convective layer 387: 373:Further information: 309:South Side of Chicago 302: 260:Atmospheric stability 140: 121:and turns across the 81:), also known as the 64: 51: 1218:Wind Energy Handbook 648:glossary.ametsoc.org 623:glossary.ametsoc.org 550:Atmospheric sciences 462:turbulence modelling 32:planetary boundaries 1271:1984JApMe..23..148K 1152:1964JApMe...3..299T 744:on 12 November 2007 560:Astronomical seeing 545:Atmospheric physics 598:www.britannica.com 493:hydrological cycle 479:) and pollutants ( 477:evapotranspiration 450: 389: 327: 295:Constituent layers 164:Typically, due to 144: 129:for more detail). 67: 59: 1404:978-3-642-25439-0 1340:978-0-7923-6657-7 1086:978-1-84265-125-4 687:978-1-84407-262-0 619:"Free atmosphere" 346:entrainment layer 276:capping inversion 264:radiative cooling 177:no-slip condition 103:radiative forcing 99:planetary surface 49: 16:(Redirected from 1520: 1495: 1494: 1483: 1482: 1471: 1470: 1469: 1459: 1458: 1457: 1447: 1446: 1438: 1408: 1395:Micrometeorology 1386: 1380: 1367: 1361: 1348: 1347: 1326: 1320: 1319: 1299: 1293: 1292: 1282: 1244: 1238: 1237: 1221: 1211: 1205: 1204: 1180: 1174: 1173: 1163: 1125: 1119: 1118: 1097: 1091: 1090: 1072: 1066: 1065: 1049: 1039: 1033: 1032: 1014: 1008: 1007: 989: 983: 982: 964: 958: 951: 945: 944: 928: 918: 909: 908: 892: 882: 876: 875: 857: 848: 847: 826: 820: 819: 798: 789: 788: 776: 767:Hadlock, Charles 763: 757: 756: 751: 749: 740:. Archived from 729: 723: 722: 704: 695: 694: 675: 665: 659: 658: 656: 654: 640: 634: 633: 631: 629: 615: 609: 608: 606: 604: 590: 288:inversion layers 222:with a constant 201:geostrophic wind 183:causes vertical 156:Wind engineering 50: 21: 1528: 1527: 1523: 1522: 1521: 1519: 1518: 1517: 1503: 1502: 1501: 1489: 1477: 1467: 1465: 1455: 1453: 1441: 1433: 1415: 1405: 1392: 1389: 1381: 1370: 1362: 1351: 1341: 1328: 1327: 1323: 1301: 1300: 1296: 1246: 1245: 1241: 1234: 1213: 1212: 1208: 1201: 1182: 1181: 1177: 1127: 1126: 1122: 1112: 1099: 1098: 1094: 1087: 1074: 1073: 1069: 1062: 1041: 1040: 1036: 1029: 1016: 1015: 1011: 1004: 991: 990: 986: 979: 966: 965: 961: 952: 948: 941: 920: 919: 912: 905: 884: 883: 879: 872: 862:Steel Buildings 859: 858: 851: 841: 828: 827: 823: 816: 800: 799: 792: 785: 765: 764: 760: 747: 745: 731: 730: 726: 719: 706: 705: 698: 688: 667: 666: 662: 652: 650: 642: 641: 637: 627: 625: 617: 616: 612: 602: 600: 592: 591: 587: 583: 501: 447: 437: 400: 394: 382: 380:Principal types 377: 297: 284: 236:logarithmic fit 232:logarithmically 162: 135: 39: 35: 28: 23: 22: 15: 12: 11: 5: 1526: 1524: 1516: 1515: 1505: 1504: 1500: 1499: 1487: 1475: 1463: 1461:Earth sciences 1451: 1431: 1430: 1425: 1414: 1413:External links 1411: 1410: 1409: 1403: 1388: 1387: 1368: 1349: 1339: 1321: 1294: 1239: 1232: 1206: 1199: 1175: 1120: 1110: 1092: 1085: 1067: 1060: 1034: 1027: 1009: 1002: 984: 977: 959: 946: 939: 910: 903: 877: 870: 849: 839: 821: 814: 790: 783: 758: 724: 717: 696: 686: 660: 635: 610: 584: 582: 579: 578: 577: 572: 567: 562: 557: 552: 547: 542: 537: 532: 527: 522: 517: 512: 510:Boundary layer 507: 500: 497: 481:air pollutants 445: 436: 433: 396:Main article: 393: 390: 381: 378: 371: 370: 363: 360: 357: 316:community area 296: 293: 283: 280: 134: 131: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1525: 1514: 1511: 1510: 1508: 1498: 1493: 1488: 1486: 1481: 1476: 1474: 1464: 1462: 1452: 1450: 1445: 1440: 1436: 1429: 1426: 1424: 1420: 1417: 1416: 1412: 1406: 1400: 1396: 1391: 1390: 1384: 1379: 1377: 1375: 1373: 1369: 1365: 1360: 1358: 1356: 1354: 1350: 1346: 1342: 1336: 1332: 1325: 1322: 1317: 1313: 1309: 1305: 1298: 1295: 1290: 1286: 1281: 1276: 1272: 1268: 1264: 1260: 1256: 1255: 1250: 1243: 1240: 1235: 1233:0-471-48997-2 1229: 1225: 1220: 1219: 1210: 1207: 1202: 1200:0-412-41160-1 1196: 1192: 1188: 1187: 1179: 1176: 1171: 1167: 1162: 1157: 1153: 1149: 1145: 1141: 1137: 1136: 1131: 1124: 1121: 1117: 1113: 1111:90-277-2768-6 1107: 1103: 1096: 1093: 1088: 1082: 1078: 1071: 1068: 1063: 1061:0-8493-2674-5 1057: 1053: 1048: 1047: 1038: 1035: 1030: 1028:1-4020-2850-4 1024: 1020: 1013: 1010: 1005: 1003:0-8493-8969-0 999: 995: 988: 985: 980: 978:3-540-40340-X 974: 970: 963: 960: 956: 950: 947: 942: 940:0-415-17145-8 936: 932: 927: 926: 917: 915: 911: 906: 904:0-85404-584-8 900: 896: 891: 890: 881: 878: 873: 871:0-471-84298-2 867: 863: 856: 854: 850: 846: 842: 840:0-415-04319-0 836: 832: 825: 822: 817: 815:0-8493-5053-0 811: 807: 803: 797: 795: 791: 786: 784:0-88385-709-X 780: 775: 774: 768: 762: 759: 755: 743: 739: 735: 728: 725: 720: 718:0-471-34877-5 714: 710: 703: 701: 697: 693: 689: 683: 679: 674: 673: 664: 661: 649: 645: 639: 636: 624: 620: 614: 611: 599: 595: 589: 586: 580: 576: 573: 571: 568: 566: 563: 561: 558: 556: 553: 551: 548: 546: 543: 541: 538: 536: 533: 531: 528: 526: 523: 521: 518: 516: 513: 511: 508: 506: 503: 502: 498: 496: 494: 490: 486: 482: 478: 474: 469: 467: 463: 457: 455: 441: 434: 432: 430: 426: 422: 418: 414: 410: 406: 399: 391: 386: 379: 376: 368: 367:baroclinicity 364: 361: 358: 355: 354: 353: 351: 347: 343: 338: 336: 335:surface layer 332: 325: 324:Lake Michigan 321: 317: 314: 310: 306: 301: 294: 292: 289: 281: 279: 277: 273: 269: 265: 261: 256: 253: 248: 243: 241: 240:surface layer 237: 233: 228: 225: 221: 217: 213: 208: 206: 205:wind turbines 202: 196: 194: 190: 186: 182: 178: 174: 173:surface layer 170: 167: 161: 157: 153: 152:Wind gradient 149: 139: 132: 130: 128: 124: 120: 116: 112: 108: 107:flow velocity 104: 100: 96: 92: 88: 84: 80: 76: 72: 63: 56: 37: 33: 19: 1394: 1385:, p. 8. 1366:, p. 7. 1344: 1330: 1324: 1307: 1297: 1258: 1252: 1242: 1217: 1209: 1185: 1178: 1139: 1133: 1123: 1115: 1101: 1095: 1076: 1070: 1045: 1037: 1018: 1012: 993: 987: 968: 962: 949: 924: 888: 880: 861: 844: 830: 824: 805: 772: 761: 753: 746:. Retrieved 742:the original 737: 727: 708: 691: 671: 663: 653:20 September 651:. Retrieved 647: 638: 626:. Retrieved 622: 613: 601:. Retrieved 597: 588: 505:Aeroplankton 470: 458: 451: 425:stratosphere 401: 349: 345: 341: 339: 328: 320:Regents Park 318:to over the 285: 257: 252:Ekman spiral 244: 229: 216:simple shear 209: 197: 193:soil erosion 163: 90: 86: 82: 78: 74: 68: 36: 1146:: 299–306. 802:Lal, Rattan 520:Mixed layer 515:Ekman layer 489:trade winds 421:troposphere 375:Ekman layer 305:shelf cloud 224:exponential 212:engineering 166:aerodynamic 160:Ekman layer 127:Ekman layer 115:geostrophic 91:peplosphere 71:meteorology 18:Peplosphere 1383:Foken 2017 1364:Foken 2017 581:References 540:Microburst 535:Wind shear 530:Turbulence 417:tropopause 189:pollutants 181:turbulence 148:Wind shear 146:See also: 111:turbulence 95:atmosphere 55:convection 1473:Astronomy 1289:1520-0450 1170:1520-0450 313:Hyde Park 220:power law 1507:Category 804:(2005). 769:(1998). 628:21 March 499:See also 423:and the 247:shearing 1497:Science 1449:Weather 1435:Portals 1267:Bibcode 1265:: 153. 1148:Bibcode 748:30 June 603:28 June 272:weather 191:and in 123:isobars 1401:  1337:  1287:  1230:  1197:  1168:  1108:  1083:  1058:  1025:  1000:  975:  937:  933:–103. 901:  868:  837:  812:  781:  715:  684:  491:, the 485:Clouds 407:; see 268:eddies 185:mixing 158:, and 142:space. 73:, the 1485:Stars 1261:(1). 1142:(3). 1054:–50. 125:(see 89:) or 1399:ISBN 1335:ISBN 1285:ISSN 1228:ISBN 1195:ISBN 1166:ISSN 1106:ISBN 1081:ISBN 1056:ISBN 1023:ISBN 998:ISBN 973:ISBN 935:ISBN 899:ISBN 866:ISBN 835:ISBN 810:ISBN 779:ISBN 750:2007 713:ISBN 682:ISBN 655:2018 630:2021 605:2020 342:core 245:The 210:For 169:drag 119:drag 1421:at 1275:doi 1191:184 1156:doi 931:102 483:). 431:). 348:or 329:As 87:ABL 79:PBL 69:In 1509:: 1371:^ 1352:^ 1343:. 1314:. 1310:. 1306:. 1283:. 1273:. 1259:23 1257:. 1251:. 1226:. 1224:20 1193:. 1164:. 1154:. 1138:. 1132:. 1114:. 1052:12 913:^ 897:. 895:11 852:^ 843:. 793:^ 752:. 736:. 699:^ 690:. 680:. 678:40 646:. 621:. 596:. 444:CO 303:A 207:. 195:. 154:, 150:, 1437:: 1407:. 1318:. 1291:. 1277:: 1269:: 1236:. 1203:. 1172:. 1158:: 1150:: 1140:3 1089:. 1064:. 1031:. 1006:. 981:. 943:. 907:. 874:. 818:. 787:. 721:. 657:. 632:. 607:. 446:2 369:. 85:( 77:( 34:. 20:)

Index

Peplosphere
planetary boundaries
convection

meteorology
atmosphere
planetary surface
radiative forcing
flow velocity
turbulence
geostrophic
drag
isobars
Ekman layer

Wind shear
Wind gradient
Wind engineering
Ekman layer
aerodynamic
drag
surface layer
no-slip condition
turbulence
mixing
pollutants
soil erosion
geostrophic wind
wind turbines
engineering

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑