Knowledge (XXG)

Petroleum microbiology

Source 📝

686:
Schneiker, Susanne; dos Santos, Vítor AP Martins; Bartels, Daniela; Bekel, Thomas; Brecht, Martina; Buhrmester, Jens; Chernikova, Tatyana N; Denaro, Renata; Ferrer, Manuel; Gertler, Christoph; Goesmann, Alexander; Golyshina, Olga V; Kaminski, Filip; Khachane, Amit N; Lang, Siegmund; Linke, Burkhard;
111:
The addition of rate-limiting nutrients promotes the microbe's biodegrading pathways, including upregulation of genes encoding multiple alkane hydroxylases that oxidize various lengths of linear alkanes. These enzymes essentially remove the problematic hydrocarbon constituents of petroleum oil while
116:
simultaneously increases synthesis of anionic glucoproteins, which are used to emulsify hydrocarbons in the environment and increase their bioavailability. The presence of crude oil along with appropriate levels of nitrogen and phosphor catalyzes the removal of petroleum either by mechanisms that
103:
utilizes linear hydrocarbon chains in petroleum as its primary energy source under aerobic conditions. When further supplied with sufficient limiting nutrients such as nitrogen and phosphor, it grows and produces surfactant glucolipids to help reduce surface water tension and enhance hydrocarbon
80:
Crude oils are composed of an array of chemical compounds, minor constituents, and trace metals. Making up 50-98% of these petroleum products are hydrocarbons with saturated, unsaturated, or aromatic structures which influence their biodegradability by hydronocarbonclasts. The rate of uptake and
77:
nutrients, air, or exogenous microorganisms to the contaminated site can be applied. For example, bioreactors involve the application of both natural and additional microorganisms in controlled growth conditions that yields high biodegradation rates and can be used with a wide range of media.
76:
is a feasible process as hydrocarbon degrading microorganisms are ubiquitous and are able to degrade most compounds in petroleum oil. In the simplest case, indigenous microbial communities can degrade the petroleum where the spill occurs. In more complicated cases, various methods of adding
260:
Many analytical techniques require expensive treatment of soil samples and/or expensive equipment to detect the presence of pollutants. Bacterial biosensor systems offer the potential for cheap, robust detection systems that are selective and highly sensitive. One developed system uses
687:
McHardy, Alice C; Meyer, Folker; Nechitaylo, Taras; Pühler, Alfred; Regenhardt, Daniela; Rupp, Oliver; Sabirova, Julia S; Selbitschka, Werner; Yakimov, Michail M; Timmis, Kenneth N; Vorhölter, Frank-Jörg; Weidner, Stefan; Kaiser, Olaf; Golyshin, Peter N (30 July 2006).
209:
and injected into the reservoir. Various products and microorganisms are useful in these applications and each will yield different results. The two general strategies for enhancing oil recovery are altering the surface properties of the interface and using
81:
biodegradation by these hydrocarbon-oxidizing microbes not only depend on the chemical structure of the substrates, but is limited by biotic and abiotic factors such as temperature, salinity, and nutrient availability in the environment.
307:
The pathways of degradation of different petroleum products vary depending on the substrate and the microorganism (i.e. aerobic/anaerobic). Specific degradation pathways of many hydrocarbon compounds can be found on the
52:. Not all hydrocarbonoclasic microbes depend on hydrocarbons to survive, but instead may use petroleum products as alternative carbon and energy sources. Interest in this field is growing due to the increasing use of 205:
into porous media and indigenous or added microbes promote growth and/or generate products that mobilize oil into producing wells. Alternatively, oil-mobilizing products can be produced by
977:
Siddique, Tariq; Penner, Tara; Klassen, Jonathan; Nesbø, Camilla; Foght, Julia M. (2012). "Microbial Communities Involved in Methane Production from Hydrocarbons in Oil Sands Tailings".
132:
ran aground, spilling 41.6 million liters of crude oil, and launching one of the first major bioremediation efforts for an oil spill. Cleanup of Alaskan shorelines relied in part on
299:
as a byproduct in the degradation of certain petroleum hydrocarbons and if those gases are not detoxified before escaping the system, they can be released into the atmosphere.
779:
T, Van Siddique; T, Penner; J, Klassen; C, Nesbo; JM, Foght (2012). "Microbial communities involved in methane production from hydrocarbons in oil sands tailings".
538:"Most Hydrocarbonoclastic Bacteria in the Total Environment are Diazotrophic, which Highlights Their Value in the Bioremediation of Hydrocarbon Contaminants" 166:
of hydrocarbons in bioremediation processes. There are two ways by which biosurfactants are involved in bioremediation. (1) Increase the surface area of
857:
Gray, Murray; Yeung, Anthony; Foght, Julia; Yarranton, Harvey W. (2008). "Potential Microbial Enhanced Oil Recovery Processes: A Critical Analysis".
246:
by monitoring their response to the specific chemical. The biosensor system may simply use bacterial growth as a pollutant indicator, or rely on
880:
Banat, I.M. (1995). "Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: A review".
474: 242:
identify and quantify target compounds of interest through interactions with the microbes. For example, bacteria may be used to identify a
230:, acids, and gases are some of the products that are added to oil reservoirs to enhance recovery. Other resources for this application: 91:
A model microorganism studied for its role in bioremediation of oil-spill sites and hydrocarbon catabolism is the alpha-proteobacteria
1095: 1076: 186:(CMCs), a property which increases the apparent solubility of hydrocarbons by sequestering hydrophobic molecules into the centres of 170:
water-insoluble substrates. Growth of microbes on hydrocarbons can be limited by available surface area of the water-oil interface.
104:
uptake. For this reason, nitrates and phosphates are often commercially added to oil-spill sites to engage quiescent populations of
108:, allowing them to quickly outcompete other microbial populations and become the dominant species in the oil-infested environment. 174:
produced by microbes can break up oil into smaller droplets, effectively increasing the available surface area. (2) Increase the
198: 183: 1119: 53: 38: 201:(MEOR) is a technology in which microbial environments are manipulated to enhance oil recovery. Nutrients are injected 926:
Trögl, Josef; Chauhan, Archana; Ripp, Steven; Layton, Alice C.; Kuncová, Gabriela; Sayler, Gary S. (6 February 2012).
140: 928:"Pseudomonas fluorescens HK44: Lessons Learned from a Model Whole-Cell Bioreporter with a Broad Application History" 330: 493:
Head, Ian M.; Jones, D. Martin; Röling, Wilfred F. M. (March 2006). "Marine microorganisms make a meal of oil".
163: 159: 178:
of hydrophobic water-insoluble substrates. Biosurfactants can enhance the availability of bound substrates by
263: 99: 536:
Dashti, Narjes; Ali, Nedaa; Eliyas, Mohamed; Khanafer, Majida; Sorkhoh, Naser A.; Radwan, Samir S. (2015).
146:
released 779 million liters of oil into the Gulf of Mexico. This was the largest oil spill of all time and
347:
Magot, Michel; Ollivier, Bernard; K.C. Patel, Bharat (Feb 2000). "Microbiology of petroleum reservoirs".
1114: 292: 182:
them from surfaces (e.g. soil) or by increasing their apparent solubility. Some biosurfactants have low
642:
Cappello, Simone; Denaro, Renata; Genovese, Maria; Giuliano, Laura; Yakimov, Michail M. (April 2007).
986: 788: 598: 147: 34: 689:"Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis" 644:"Predominant growth of Alcanivorax during experiments on "oil spill bioremediation" in mesocosms" 518: 372: 1091: 1072: 1055: 1002: 959: 839: 804: 761: 720: 665: 624: 567: 510: 470: 448: 364: 1045: 1037: 994: 949: 939: 889: 862: 831: 796: 751: 710: 700: 655: 614: 606: 557: 549: 502: 438: 430: 356: 296: 117:
enhance the efficiency of substrate uptake or by direct biodegradation of aliphatic chains.
272: 175: 990: 792: 602: 954: 927: 715: 688: 619: 587:"Oil Biodegradation and Bioremediation: A Tale of the Two Worst Spills in U.S. History" 586: 562: 537: 219: 41:
microorganisms, can degrade hydrocarbons and, include a wide distribution of bacteria,
1050: 1025: 835: 443: 418: 1108: 893: 284: 254: 24: 756: 739: 391: 125:
Two well-known oil spills exemplify large scale marine bioremediation applications:
1041: 434: 206: 150:
petroleum microorganisms played a major role in petroleum degradation and cleanup.
129: 42: 20: 522: 376: 660: 643: 268: 223: 211: 171: 167: 93: 360: 288: 239: 133: 70: 243: 31: 1059: 1006: 963: 843: 808: 765: 724: 669: 628: 571: 514: 452: 368: 553: 227: 97:, which degrades aliphatic alkanes through various metabolic activities. 28: 740:"Bioremediation of the Exxon Valdez oil in Prince William Sound beaches" 506: 944: 822:
EZ, Ron; E, Rosenberg (2002). "Biosurfactants and oil bioremediation".
215: 187: 45: 998: 866: 800: 610: 291:
that are also harmful, sometimes even more harmful than the original
250: 179: 705: 283:
Often in the process of degrading a pollutant, a microbe can create
738:
Boufadel, Michel C.; Geng, Xiaolong; Short, Jeff (December 2016).
49: 247: 331:"Applied Microbiology_Petroleum and Hydrocarbon Microbiology" 310:
University of Minnesota Biocatalysis/Biodegradation Database
69:
Bioremediation of oil contaminated soils, marine waters and
309: 585:
Atlas, Ronald M.; Hazen, Terry C. (15 August 2011).
1088:
Petroleum Microbiology_ American Society Mic Series
907:Stosur, GJ (1991). "Unconventional EOR concepts". 392:"ZoBell's contribution to petroleum microbiology" 859:SPE Annual Technical Conference and Exhibition 469:. Washington: National Academies Press. 1985. 8: 1024:Davis, John B.; M. Updegraff, David (1954). 681: 679: 419:"Recent advances in petroleum microbiology" 417:JD, Van Hamme; A, Singh; OP., Ward (2003). 412: 410: 408: 423:Microbiology and Molecular Biology Reviews 1086:Ollivier, Bernard; Magot, Michel (2005). 1067:Jones, Trevor; Vandecasteele, Jean-Paul. 1049: 953: 943: 755: 714: 704: 659: 618: 561: 467:Oil in the Sea Inputs, Fates, and Effects 442: 136:application to augment bacterial growth. 1026:"Microbiology In The Petroleum Industry" 321: 979:Environmental Science & Technology 781:Environmental Science & Technology 591:Environmental Science & Technology 488: 486: 27:that can metabolize or alter crude or 295:. For example, some microbes produce 7: 37:. These microorganisms, also called 399:Microbial Biosystems: New Frontiers 14: 267:HK44 to quantitatively assay for 158:These are microbial-synthesized 757:10.1016/j.marpolbul.2016.08.086 199:Microbial enhanced oil recovery 184:critical micelle concentrations 1042:10.1128/MMBR.18.4.215-238.1954 435:10.1128/mmbr.67.4.503-549.2003 162:that allow for more efficient 1: 836:10.1016/S0958-1669(02)00316-6 329:Desai, Anjana; Vyas, Pranav. 214:to change the flow behavior. 23:that deals with the study of 894:10.1016/0960-8524(94)00101-6 661:10.1016/j.micres.2006.05.010 257:is induced by the chemical. 54:bioremediation of oil spills 495:Nature Reviews Microbiology 1136: 744:Marine Pollution Bulletin 542:Microbes and Environments 160:surface-active substances 648:Microbiological Research 164:microbial biodegradation 361:10.1023/A:1002434330514 349:Antonie van Leeuwenhoek 303:Biodegradation pathways 264:Pseudomonas fluorescens 121:Commercial applications 100:Alcanivorax borkumensis 86:Alcanivorax borkumensis 1069:Petroleum Microbiology 882:Bioresource Technology 17:Petroleum microbiology 909:Crit. Rep. Appl. Chem 554:10.1264/jsme2.ME14090 1120:Petroleum technology 824:Curr Opin Biotechnol 693:Nature Biotechnology 1071:. Editions OPHRYS. 991:2012EnST...46.9802S 793:2012EnST...46.9802S 603:2011EnST...45.6709A 507:10.1038/nrmicro1348 39:hydrocarbonoclastic 945:10.3390/s120201544 999:10.1021/es302202c 985:(17): 9802–9810. 867:10.2118/114676-MS 801:10.1021/es302202c 611:10.1021/es2013227 597:(16): 6709–6715. 476:978-0-309-07835-1 390:Bass, Catherine. 142:Deepwater Horizon 1127: 1101: 1082: 1063: 1053: 1011: 1010: 974: 968: 967: 957: 947: 938:(2): 1544–1571. 923: 917: 916: 904: 898: 897: 877: 871: 870: 854: 848: 847: 819: 813: 812: 776: 770: 769: 759: 750:(1–2): 156–164. 735: 729: 728: 718: 708: 683: 674: 673: 663: 639: 633: 632: 622: 582: 576: 575: 565: 533: 527: 526: 490: 481: 480: 463: 457: 456: 446: 414: 403: 402: 396: 387: 381: 380: 344: 338: 337: 335: 326: 297:hydrogen sulfide 139:In 2010, the BP 1135: 1134: 1130: 1129: 1128: 1126: 1125: 1124: 1105: 1104: 1098: 1085: 1079: 1066: 1023: 1020: 1018:Further reading 1015: 1014: 976: 975: 971: 925: 924: 920: 906: 905: 901: 879: 878: 874: 856: 855: 851: 821: 820: 816: 787:(17): 9802–10. 778: 777: 773: 737: 736: 732: 706:10.1038/nbt1232 699:(8): 997–1004. 685: 684: 677: 641: 640: 636: 584: 583: 579: 535: 534: 530: 492: 491: 484: 477: 465: 464: 460: 416: 415: 406: 394: 389: 388: 384: 346: 345: 341: 333: 328: 327: 323: 318: 305: 281: 273:bioluminescence 236: 196: 176:bioavailability 156: 123: 89: 67: 62: 19:is a branch of 12: 11: 5: 1133: 1131: 1123: 1122: 1117: 1107: 1106: 1103: 1102: 1097:978-1555813277 1096: 1083: 1078:978-2710811350 1077: 1064: 1019: 1016: 1013: 1012: 969: 918: 899: 872: 849: 814: 771: 730: 675: 654:(2): 185–190. 634: 577: 528: 501:(3): 173–182. 482: 475: 458: 404: 382: 355:(2): 103–116. 339: 320: 319: 317: 314: 304: 301: 280: 277: 235: 232: 220:biosurfactants 195: 192: 155: 154:Biosurfactants 152: 122: 119: 114:A. borkumensis 106:A. borkumensis 88: 83: 66: 65:Bioremediation 63: 61: 58: 25:microorganisms 13: 10: 9: 6: 4: 3: 2: 1132: 1121: 1118: 1116: 1113: 1112: 1110: 1099: 1093: 1090:. ASM Press. 1089: 1084: 1080: 1074: 1070: 1065: 1061: 1057: 1052: 1047: 1043: 1039: 1036:(4): 215–38. 1035: 1031: 1030:Bacteriol Rev 1027: 1022: 1021: 1017: 1008: 1004: 1000: 996: 992: 988: 984: 980: 973: 970: 965: 961: 956: 951: 946: 941: 937: 933: 929: 922: 919: 914: 910: 903: 900: 895: 891: 887: 883: 876: 873: 868: 864: 860: 853: 850: 845: 841: 837: 833: 830:(3): 249–52. 829: 825: 818: 815: 810: 806: 802: 798: 794: 790: 786: 782: 775: 772: 767: 763: 758: 753: 749: 745: 741: 734: 731: 726: 722: 717: 712: 707: 702: 698: 694: 690: 682: 680: 676: 671: 667: 662: 657: 653: 649: 645: 638: 635: 630: 626: 621: 616: 612: 608: 604: 600: 596: 592: 588: 581: 578: 573: 569: 564: 559: 555: 551: 547: 543: 539: 532: 529: 524: 520: 516: 512: 508: 504: 500: 496: 489: 487: 483: 478: 472: 468: 462: 459: 454: 450: 445: 440: 436: 432: 429:(4): 503–49. 428: 424: 420: 413: 411: 409: 405: 400: 393: 386: 383: 378: 374: 370: 366: 362: 358: 354: 350: 343: 340: 332: 325: 322: 315: 313: 311: 302: 300: 298: 294: 290: 286: 285:intermediates 278: 276: 274: 270: 266: 265: 258: 256: 255:reporter gene 252: 249: 245: 241: 233: 231: 229: 225: 221: 217: 213: 208: 204: 200: 193: 191: 189: 185: 181: 177: 173: 169: 165: 161: 153: 151: 149: 145: 143: 137: 135: 131: 128:In 1989, the 126: 120: 118: 115: 109: 107: 102: 101: 96: 95: 87: 84: 82: 78: 75: 72: 64: 59: 57: 55: 51: 47: 44: 40: 36: 33: 30: 26: 22: 18: 1115:Microbiology 1087: 1068: 1033: 1029: 982: 978: 972: 935: 931: 921: 912: 908: 902: 885: 881: 875: 858: 852: 827: 823: 817: 784: 780: 774: 747: 743: 733: 696: 692: 651: 647: 637: 594: 590: 580: 548:(1): 70–75. 545: 541: 531: 498: 494: 466: 461: 426: 422: 398: 385: 352: 348: 342: 324: 306: 282: 262: 259: 237: 207:fermentation 202: 197: 194:Oil Recovery 157: 141: 138: 130:Exxon Valdez 127: 124: 113: 110: 105: 98: 92: 90: 85: 79: 73: 71:oily sludges 68: 60:Applications 43:methanogenic 21:microbiology 16: 15: 269:naphthalene 224:biopolymers 212:bioclogging 172:Emulsifiers 168:hydrophobic 94:Alcanivorax 48:, and some 1109:Categories 316:References 289:byproducts 279:Challenges 253:wherein a 240:biosensors 238:Microbial 234:Biosensors 148:indigenous 134:fertilizer 915:: 341–73. 293:substrate 244:pollutant 180:desorbing 144:oil spill 32:petroleum 1060:13219047 1007:22894132 964:22438725 888:: 1–12. 844:12180101 809:22894132 766:27622928 725:16878126 670:16831537 629:21699212 572:25740314 515:16489346 453:14665675 369:10768470 228:solvents 188:micelles 35:products 987:Bibcode 955:3304127 932:Sensors 789:Bibcode 716:7416663 620:3155281 599:Bibcode 563:4356466 248:genetic 216:Biomass 203:in situ 74:in situ 46:archaea 29:refined 1094:  1075:  1058:  1051:440986 1048:  1005:  962:  952:  842:  807:  764:  723:  713:  668:  627:  617:  570:  560:  523:251141 521:  513:  473:  451:  444:309048 441:  377:354538 375:  367:  271:using 251:assays 519:S2CID 395:(PDF) 373:S2CID 334:(PDF) 50:fungi 1092:ISBN 1073:ISBN 1056:PMID 1003:PMID 960:PMID 840:PMID 805:PMID 762:PMID 721:PMID 666:PMID 625:PMID 568:PMID 511:PMID 471:ISBN 449:PMID 365:PMID 1046:PMC 1038:doi 995:doi 950:PMC 940:doi 890:doi 863:doi 832:doi 797:doi 752:doi 748:113 711:PMC 701:doi 656:doi 652:162 615:PMC 607:doi 558:PMC 550:doi 503:doi 439:PMC 431:doi 357:doi 287:or 1111:: 1054:. 1044:. 1034:18 1032:. 1028:. 1001:. 993:. 983:46 981:. 958:. 948:. 936:12 934:. 930:. 913:33 911:. 886:51 884:. 861:. 838:. 828:13 826:. 803:. 795:. 785:46 783:. 760:. 746:. 742:. 719:. 709:. 697:24 695:. 691:. 678:^ 664:. 650:. 646:. 623:. 613:. 605:. 595:45 593:. 589:. 566:. 556:. 546:30 544:. 540:. 517:. 509:. 497:. 485:^ 447:. 437:. 427:67 425:. 421:. 407:^ 397:. 371:. 363:. 353:77 351:. 312:. 275:. 226:, 222:, 218:, 190:. 56:. 1100:. 1081:. 1062:. 1040:: 1009:. 997:: 989:: 966:. 942:: 896:. 892:: 869:. 865:: 846:. 834:: 811:. 799:: 791:: 768:. 754:: 727:. 703:: 672:. 658:: 631:. 609:: 601:: 574:. 552:: 525:. 505:: 499:4 479:. 455:. 433:: 401:. 379:. 359:: 336:.

Index

microbiology
microorganisms
refined
petroleum
products
hydrocarbonoclastic
methanogenic
archaea
fungi
bioremediation of oil spills
oily sludges
Alcanivorax
Alcanivorax borkumensis
Exxon Valdez
fertilizer
Deepwater Horizon oil spill
indigenous
surface-active substances
microbial biodegradation
hydrophobic
Emulsifiers
bioavailability
desorbing
critical micelle concentrations
micelles
Microbial enhanced oil recovery
fermentation
bioclogging
Biomass
biosurfactants

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.