Knowledge (XXG)

Photoacoustic Doppler effect

Source 📝

42:
Specifically, when an intensity modulated light wave is exerted on a localized medium, the resulting heat can induce an alternating and localized pressure change. This periodic pressure change generates an acoustic wave with a specific frequency. Among various factors that determine this frequency,
529:
is the speed of sound. The first term on the right side of the expression represents the frequency shift in the photon density wave observed by the absorber acting as a moving receiver. The second term represents the frequency shift in the photoacoustic wave due to the motion of the absorbers
766:
Figure 2 shows a relationship between average flow velocity and the experimental photoacoustic Doppler frequency shift. In a scattering medium, such as the experimental phantom, fewer photons reach the absorbers than in an optically clear medium. This affects the signal intensity but not the
1056:
The photoacoustic Doppler flowmetry could use the power of photoacoustics to measure flow velocities that are usually inaccessible to pure light-based or ultrasound techniques. The high spatial resolution could make it possible to pinpoint only a few absorbing particles localized to a single
732:
This equation also holds for a scattering medium. In this case, the photon density wave becomes diffusive due to light scattering. Although the diffusive photon density wave has a slower phase velocity than the speed of light, its wavelength is still much longer than the acoustic wave.
767:
magnitude of the frequency shift. Another demonstrated feature of this technique is that it is capable of measuring flow direction relative to the detector based on the sign of the frequency shift. The reported minimum detected flow rate is 0.027 mm/s in the scattering medium.
43:
the velocity of the heated area and thus the moving particles in this area can induce a frequency shift proportional to the relative motion. Thus, from the perspective of an observer, the observed frequency shift can be used to derive the velocity of illuminated moving particles.
471: 724: 728:
In this approximation, the frequency shift is not affected by the direction of the optical radiation. It is only affected by the magnitude of velocity and the angle between the velocity and the acoustic wave propagation direction.
787:. Measuring blood velocity in capillaries is an important component to clinically determining how much oxygen is delivered to tissues and is potentially important to the diagnosis of a variety of diseases including 885:
by digital holography with a high-speed camera can overcome some of the limitations of laser Doppler flowmetry and achieve blood flow measurements in superficial vessels at higher spatial and temporal resolution.
1037:
in deep biological tissue since ultrasonic scattering is much weaker than optical scattering, but it is insensitive to biochemical properties. Conversely, optical imaging is able to achieve high
589: 958: 282:
as the light intensity wave is induced. Otherwise, there is a frequency shift in the induced acoustic wave. The magnitude of the frequency shift depends on the relative velocity
799:
is caused by the low blood flow rate and micrometre-scale diameter. Photoacoustic Doppler effect based imaging is a promising method for blood flow measurement in capillaries.
208: 622: 309: 249: 78: 923: 349: 329: 1007: 856: 527: 500: 280: 105: 39:. The observed frequency shift is a good indicator of the velocity of the illuminated moving particles. A potential biomedical application is measuring blood flow. 984: 356: 629: 775:
One promising application is the non-invasive measurement of flow. This is related to an important problem in medicine: the measurement of blood flow through
763:
as the detector. The sample was a solution of absorbing particles moving through a tube. The tube was in a water bath containing scattering particles
1155:
H. Fang, K. Maslov, L.V. Wang. "Photoacoustic Doppler Effect from Flowing Small Light-Absorbing Particles." Physical Review Letters 99, 184501 (2007)
1053:
of light in biological tissue. By combining the optical imaging with ultrasound, it is possible to achieve both high contrast and spatial resolution.
1057:
capillary. High contrast from the strong optical absorbers make it possible to clearly resolve the signal from the absorbers over the background.
1179:
H. Fang, K. Maslov, L.V. Wang. "Photoacoustic Doppler flow measurement in optically scattering media." Applied Physics Letters 91 (2007) 264103
873:
to detect flow velocity. The much shorter optical wavelength means this technology is able to detect low flow velocities out of the range of
1125: 1200: 1091: 1071: 1022: 1018: 756: 827:
technique uses Doppler frequency shifts in ultrasound wave. This technique is currently used in biomedicine to measure blood flow in
881:. Laser Doppler flowmetry can measure only the averaged blood speed within 1mm without information about flow direction. Wideband 1210: 742: 213: 898:
is an optical flow measurement technique that improves on the spatial resolution of laser Doppler flowmetry by rejecting
895: 540: 51:
To be simple, consider a clear medium firstly. The medium contains small optical absorbers moving with velocity vector
1066: 866: 1195: 1076: 986:. The detection depth is usually limited by the high optical scattering coefficient of biological tissue to 1205: 928: 858:
cm/s) generally found in large vessels due to the high background ultrasound signal from biological tissue.
1086: 882: 760: 531: 351:
between the velocity and the ultrasonic wave propagation direction. The frequency shift is given by:
116: 32: 25: 1017:
Photoacoustic Doppler effect can be used to measure the blood flow velocity with the advantages of
878: 874: 824: 594: 285: 225: 54: 1121: 1038: 905: 334: 314: 1034: 466:{\displaystyle f_{PAD}=-f_{0}{\frac {v}{c_{0}}}cos\alpha +f_{0}{\frac {v}{c_{a}}}cos\theta } 989: 838: 505: 478: 258: 83: 1046: 963: 719:{\displaystyle f_{PAD}=f_{0}{\frac {v}{c_{a}}}cos\theta ={\frac {v}{\lambda }}cos\theta } 1041:
in biological tissue via high sensitivity to small molecular optical absorbers, such as
1081: 21: 331:
between the velocity and the photon density wave propagation direction, and the angle
1189: 252: 746:
Figure 2: Average Photoacoustic Doppler Shift vs. Velocity for a Scattering Medium
751:
In the first demonstration of the Photoacoustic Doppler effect, a continuous wave
624:, only the second term is detectable. Therefore, the above equation reduces to: 80:. The absorbers are irradiated by a laser with intensity modulated at frequency 902:
with coherent gating. This technique is able to detect flow velocity as low as
796: 780: 752: 877:. But this technique is limited by high background noise and low signal due to 1050: 1042: 1030: 1026: 899: 870: 808: 28: 1029:
imaging with the contrast of optical absorption in deep biological tissue.
36: 828: 788: 776: 811:
or light there are several techniques currently being used to measure
741: 212: 792: 832: 815:
velocity in a clinical setting or other types of flow velocities.
812: 784: 740: 211: 108: 795:. However, a particular difficulty of measuring flow velocity in 1049:, but its spatial resolution is compromised by the strong 992: 966: 931: 908: 841: 632: 597: 543: 508: 481: 359: 337: 317: 288: 261: 228: 119: 86: 57: 1001: 978: 952: 917: 850: 718: 616: 583: 521: 494: 465: 343: 323: 303: 274: 243: 202: 99: 72: 584:{\displaystyle {\frac {c_{0}}{c_{a}}}\sim 10^{5}} 8: 1118:Biomedical Optics: Principles and Imaging 991: 970: 965: 930: 907: 840: 694: 671: 662: 656: 637: 631: 608: 596: 575: 560: 550: 544: 542: 513: 507: 486: 480: 443: 434: 428: 401: 392: 386: 364: 358: 336: 316: 290: 289: 287: 266: 260: 230: 229: 227: 192: 173: 132: 127: 118: 91: 85: 59: 58: 56: 35:wave on moving particles with a specific 502:is the speed of light in the medium and 1103: 1111: 1109: 1107: 953:{\displaystyle 5\times 5\times 15\mu } 1175: 1173: 1171: 1169: 1167: 1165: 1163: 1161: 1151: 1149: 1147: 1145: 1143: 1141: 1139: 1137: 835:. It is limited to high flow rates ( 7: 1092:Doppler optical coherence tomography 1072:Photoacoustic imaging in biomedicine 890:Doppler optical coherence tomography 1025:combines the spatial resolution of 925:m/s with the spatial resolution of 14: 217:Figure 1: Overview of PAD Effect 203:{\displaystyle I={I}_{0}\left/2} 1013:Photoacoustic doppler flowmetry 295: 235: 107:. Thus, the intensity of the 64: 1: 1116:LV Wang & HI Wu (2007). 896:Optical coherence tomography 18:photoacoustic Doppler effect 1201:Radio frequency propagation 1227: 1067:Photoacoustic spectroscopy 869:utilizes light instead of 617:{\displaystyle v\ll c_{a}} 304:{\displaystyle {\vec {v}}} 244:{\displaystyle {\vec {v}}} 73:{\displaystyle {\vec {v}}} 900:multiple scattering light 1077:Photoacoustic tomography 757:photoacoustic microscopy 255:with the same frequency 1211:Radar signal processing 918:{\displaystyle 100\mu } 867:Laser Doppler Flowmetry 862:Laser doppler flowmetry 344:{\displaystyle \theta } 324:{\displaystyle \alpha } 111:could be described by: 1003: 980: 954: 919: 852: 748: 720: 618: 585: 523: 496: 467: 345: 325: 305: 276: 245: 219: 204: 101: 74: 1087:laser Doppler imaging 1023:Photoacoustic imaging 1019:Photoacoustic imaging 1004: 1002:{\displaystyle <1} 981: 955: 920: 883:laser Doppler imaging 853: 851:{\displaystyle >1} 761:ultrasonic transducer 744: 721: 619: 586: 532:ultrasonic transducer 524: 522:{\displaystyle c_{a}} 497: 495:{\displaystyle c_{0}} 468: 346: 326: 306: 277: 275:{\displaystyle f_{0}} 246: 215: 205: 102: 100:{\displaystyle f_{0}} 75: 990: 979:{\displaystyle ^{3}} 964: 929: 906: 839: 630: 595: 541: 506: 479: 357: 335: 315: 286: 259: 226: 117: 84: 55: 24:that occurs when an 879:multiple scattering 803:Existing techniques 537:In practice, since 26:intensity modulated 999: 976: 950: 915: 875:Doppler ultrasound 848: 825:Doppler ultrasound 819:Doppler ultrasound 749: 716: 614: 581: 519: 492: 463: 341: 321: 301: 272: 241: 220: 200: 97: 70: 1127:978-0-471-74304-0 1033:has good spatial 702: 677: 566: 449: 407: 298: 238: 67: 1218: 1180: 1177: 1156: 1153: 1132: 1131: 1113: 1008: 1006: 1005: 1000: 985: 983: 982: 977: 975: 974: 959: 957: 956: 951: 924: 922: 921: 916: 857: 855: 854: 849: 807:Based on either 725: 723: 722: 717: 703: 695: 678: 676: 675: 663: 661: 660: 648: 647: 623: 621: 620: 615: 613: 612: 590: 588: 587: 582: 580: 579: 567: 565: 564: 555: 554: 545: 530:observed by the 528: 526: 525: 520: 518: 517: 501: 499: 498: 493: 491: 490: 472: 470: 469: 464: 450: 448: 447: 435: 433: 432: 408: 406: 405: 393: 391: 390: 375: 374: 350: 348: 347: 342: 330: 328: 327: 322: 310: 308: 307: 302: 300: 299: 291: 281: 279: 278: 273: 271: 270: 250: 248: 247: 242: 240: 239: 231: 209: 207: 206: 201: 196: 191: 187: 186: 182: 178: 177: 137: 136: 131: 106: 104: 103: 98: 96: 95: 79: 77: 76: 71: 69: 68: 60: 1226: 1225: 1221: 1220: 1219: 1217: 1216: 1215: 1196:Doppler effects 1186: 1185: 1184: 1183: 1178: 1159: 1154: 1135: 1128: 1115: 1114: 1105: 1100: 1063: 1047:red blood cells 1015: 988: 987: 967: 962: 961: 927: 926: 904: 903: 892: 864: 837: 836: 821: 805: 773: 739: 667: 652: 633: 628: 627: 604: 593: 592: 571: 556: 546: 539: 538: 509: 504: 503: 482: 477: 476: 439: 424: 397: 382: 360: 355: 354: 333: 332: 313: 312: 284: 283: 262: 257: 256: 224: 223: 169: 162: 158: 142: 138: 126: 115: 114: 87: 82: 81: 53: 52: 49: 12: 11: 5: 1224: 1222: 1214: 1213: 1208: 1206:Wave mechanics 1203: 1198: 1188: 1187: 1182: 1181: 1157: 1133: 1126: 1102: 1101: 1099: 1096: 1095: 1094: 1089: 1084: 1082:Doppler effect 1079: 1074: 1069: 1062: 1059: 1014: 1011: 998: 995: 973: 969: 949: 946: 943: 940: 937: 934: 914: 911: 891: 888: 863: 860: 847: 844: 820: 817: 804: 801: 772: 769: 759:setup with an 755:was used in a 738: 735: 715: 712: 709: 706: 701: 698: 693: 690: 687: 684: 681: 674: 670: 666: 659: 655: 651: 646: 643: 640: 636: 611: 607: 603: 600: 578: 574: 570: 563: 559: 553: 549: 516: 512: 489: 485: 462: 459: 456: 453: 446: 442: 438: 431: 427: 423: 420: 417: 414: 411: 404: 400: 396: 389: 385: 381: 378: 373: 370: 367: 363: 340: 320: 297: 294: 269: 265: 237: 234: 199: 195: 190: 185: 181: 176: 172: 168: 165: 161: 157: 154: 151: 148: 145: 141: 135: 130: 125: 122: 94: 90: 66: 63: 48: 45: 22:Doppler effect 13: 10: 9: 6: 4: 3: 2: 1223: 1212: 1209: 1207: 1204: 1202: 1199: 1197: 1194: 1193: 1191: 1176: 1174: 1172: 1170: 1168: 1166: 1164: 1162: 1158: 1152: 1150: 1148: 1146: 1144: 1142: 1140: 1138: 1134: 1129: 1123: 1119: 1112: 1110: 1108: 1104: 1097: 1093: 1090: 1088: 1085: 1083: 1080: 1078: 1075: 1073: 1070: 1068: 1065: 1064: 1060: 1058: 1054: 1052: 1048: 1044: 1040: 1036: 1032: 1028: 1024: 1020: 1012: 1010: 996: 993: 971: 968: 947: 944: 941: 938: 935: 932: 912: 909: 901: 897: 889: 887: 884: 880: 876: 872: 868: 861: 859: 845: 842: 834: 830: 826: 818: 816: 814: 810: 802: 800: 798: 794: 790: 786: 782: 778: 770: 768: 764: 762: 758: 754: 747: 743: 736: 734: 730: 726: 713: 710: 707: 704: 699: 696: 691: 688: 685: 682: 679: 672: 668: 664: 657: 653: 649: 644: 641: 638: 634: 625: 609: 605: 601: 598: 576: 572: 568: 561: 557: 551: 547: 535: 533: 514: 510: 487: 483: 473: 460: 457: 454: 451: 444: 440: 436: 429: 425: 421: 418: 415: 412: 409: 402: 398: 394: 387: 383: 379: 376: 371: 368: 365: 361: 352: 338: 318: 292: 267: 263: 254: 253:acoustic wave 232: 218: 214: 210: 197: 193: 188: 183: 179: 174: 170: 166: 163: 159: 155: 152: 149: 146: 143: 139: 133: 128: 123: 120: 112: 110: 92: 88: 61: 46: 44: 40: 38: 34: 33:photoacoustic 30: 27: 23: 20:is a type of 19: 1117: 1055: 1016: 893: 865: 822: 806: 774: 765: 750: 745: 731: 727: 626: 536: 474: 353: 311:, the angle 251:is zero, an 221: 216: 113: 50: 41: 17: 15: 797:capillaries 781:capillaries 771:Application 753:diode laser 1190:Categories 1098:References 1051:scattering 1043:hemoglobin 1035:resolution 1031:Ultrasound 1027:ultrasound 871:ultrasound 809:ultrasound 737:Experiment 31:induces a 29:light wave 1120:. Wiley. 1045:found in 948:μ 942:× 936:× 913:μ 714:θ 700:λ 689:θ 602:≪ 569:∼ 461:θ 419:α 380:− 339:θ 319:α 296:→ 236:→ 167:π 65:→ 37:frequency 1061:See also 1039:contrast 894:Doppler 829:arteries 789:diabetes 777:arteries 1124:  793:cancer 783:, and 475:Where 47:Theory 833:veins 813:blood 785:veins 222:When 109:laser 1122:ISBN 1009:mm. 994:< 843:> 831:and 823:The 791:and 591:and 16:The 910:100 1192:: 1160:^ 1136:^ 1106:^ 1021:. 945:15 779:, 573:10 534:. 1130:. 997:1 972:3 960:m 939:5 933:5 846:1 711:s 708:o 705:c 697:v 692:= 686:s 683:o 680:c 673:a 669:c 665:v 658:0 654:f 650:= 645:D 642:A 639:P 635:f 610:a 606:c 599:v 577:5 562:a 558:c 552:0 548:c 515:a 511:c 488:0 484:c 458:s 455:o 452:c 445:a 441:c 437:v 430:0 426:f 422:+ 416:s 413:o 410:c 403:0 399:c 395:v 388:0 384:f 377:= 372:D 369:A 366:P 362:f 293:v 268:0 264:f 233:v 198:2 194:/ 189:] 184:) 180:t 175:0 171:f 164:2 160:( 156:s 153:o 150:c 147:+ 144:1 140:[ 134:0 129:I 124:= 121:I 93:0 89:f 62:v

Index

Doppler effect
intensity modulated
light wave
photoacoustic
frequency
laser

acoustic wave
ultrasonic transducer

diode laser
photoacoustic microscopy
ultrasonic transducer
arteries
capillaries
veins
diabetes
cancer
capillaries
ultrasound
blood
Doppler ultrasound
arteries
veins
Laser Doppler Flowmetry
ultrasound
Doppler ultrasound
multiple scattering
laser Doppler imaging
Optical coherence tomography

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.