Knowledge (XXG)

Photon gas

Source đź“ť

1433:
contain a blackbody-distributed photon gas. Unlike a massive gas, this gas will exist without the photons being introduced from the outside – the walls will provide the photons for the gas. Suppose the piston is pushed all the way into the cylinder so that there is an extremely small volume. The photon gas inside the volume will press against the piston, moving it outward, and in order for the transformation to be isothermic, a counter force of almost the same value will have to be applied to the piston so that the motion of the piston is very slow. This force will be equal to the pressure times the cross sectional area (
119:(gas of massive bosons) and a photon gas with a black-body distribution is that the number of photons in the photon gas is not conserved. A photon can be created upon thermal excitation of an atom in the wall into an upper electronic state, followed by the emission of a photon when the atom falls back to a lower energetic state. This type of photon generation is called thermal emission. The reverse process can also take place, resulting in a photon being destroyed and removed from the gas. It can be shown that, as a result of such processes there is no constraint on the number of photons in the system, and the 108:), so the equilibrium distribution must be established by other means. The most common way that an equilibrium distribution is established is by the interaction of the photons with matter. If the photons are absorbed and emitted by the walls of the system containing the photon gas, and the walls are at a particular temperature, then the equilibrium distribution for the photons will be a 1851:
In low-dimensional systems, for example in dye-solution filled optical microcavities with a distance between the resonator mirrors in the wavelength range where the situation becomes two-dimensional, also photon gases with tunable chemical potential can be realized. Such a photon gas in many respects
1432:
As an example of a thermodynamic process involving a photon gas, consider a cylinder with a movable piston. The interior walls of the cylinder are "black" in order that the temperature of the photons can be maintained at a particular temperature. This means that the space inside the cylinder will
104:. This distribution is established as the particles collide with each other, exchanging energy (and momentum) in the process. In a photon gas, there will also be an equilibrium distribution, but photons do not collide with each other (except under very extreme conditions, see 1162: 1292: 251: 1002: 886: 500: 390: 1777: 672: 82:
of the black-body photon gas is zero at thermodynamic equilibrium. The number of state variables needed to describe a black-body state is thus reduced from three to two (e.g. temperature and volume).
1609: 1521: 1671: 2041: 1050: 1385: 1337: 765: 1830: 78:
distribution is established by the interaction of the photons with matter, usually the walls of the container, and the number of photons is not conserved. As a result, the
1175: 533: 1037: 712: 1420: 582: 140: 899: 2266: 795: 406: 678:
The following table summarizes the thermodynamic state functions for a black-body photon gas. Notice that the pressure can be written in the form
1881: 298: 1987: 1683: 594: 1843:
is the enthalpy at the end of the transformation. It is seen that the enthalpy is the amount of energy needed to create the photon gas.
1852:
behaves like a gas of material particles. One consequence of the tunable chemical potential is that at high phase space densities then
101: 2156: 1965: 2054: 1537: 130:, with the radiation field being in equilibrium with the atoms in the wall. The derivation yields the spectral energy density 2334: 2172:
J. Klaers; J. Schmitt; F. Vewinger & M. Weitz (2010). "Bose–Einstein condensation of photons in an optical microcavity".
549:
If we note that the equation of state for an ultra-relativistic quantum gas (which inherently describes photons) is given by
1458: 51: 2230: 1979: 1853: 588:
then we can combine the above formulas to produce an equation of state that looks much like that of an ideal gas:
1922: 2297: 2144: 1891: 1621: 1157:{\displaystyle P={\frac {1}{3}}\,{\frac {U}{V}}=\left({\frac {\pi ^{2}k^{4}}{45c^{3}\hbar ^{3}}}\right)\,T^{4}} 39:– including pressure, temperature, and entropy. The most common example of a photon gas in equilibrium is the 1439:) of the piston. This process can be continued at a constant temperature until the photon gas is at a volume 2329: 1350: 1305: 1343: 536: 2036: 727: 2281: 2245: 2109: 1931: 40: 134:, which is the energy of the radiation field per unit volume per unit frequency interval, given by: 1789: 1287:{\displaystyle S={\frac {4U}{3T}}=\left({\frac {4\pi ^{2}k^{4}}{45c^{3}\hbar ^{3}}}\right)\,VT^{3}} 546:
varies with the volume in a fixed manner, adjusting itself to have a constant density of photons.
2207: 2181: 1897: 1008: 120: 105: 79: 1943: 509: 2199: 2152: 2125: 2069: 2013: 1983: 1955: 1391: 1015: 681: 246:{\displaystyle u(\nu ,T)={\frac {8\pi h\nu ^{3}}{c^{3}}}~{\frac {1}{e^{\frac {h\nu }{kT}}-1}}} 2324: 2289: 2253: 2191: 2117: 1398: 555: 2009: 1971: 1917: 892: 788: 540: 289: 262: 71: 62:
with only one type of particle is uniquely described by three state functions such as the
2028: 997:{\displaystyle N=\left({\frac {2k^{3}\zeta (3)}{\pi ^{2}c^{3}\hbar ^{3}}}\right)\,VT^{3}} 91: 2285: 2249: 2113: 1935: 2097: 2065: 2005: 1951: 55: 2318: 1885: 2211: 1865: 127: 100:
with massive particles, the energy of the particles is distributed according to a
881:{\displaystyle U=\left({\frac {\pi ^{2}k^{4}}{15c^{3}\hbar ^{3}}}\right)\,VT^{4}} 63: 1452:) traveled yields the total work done to create this photon gas at this volume 2032: 109: 2129: 495:{\displaystyle N=\left({\frac {16\pi k^{3}\zeta (3)}{(hc)^{3}}}\right)VT^{3}} 1876: 97: 2203: 1871: 1298: 1043: 385:{\displaystyle U=\left({\frac {8\pi ^{5}k^{4}}{15(hc)^{3}}}\right)VT^{4}} 116: 59: 32: 2195: 1168: 2293: 2257: 2121: 1772:{\displaystyle W=-{\frac {bT^{4}Ax_{0}}{3}}=-{\frac {bT^{4}V_{0}}{3}}} 2055:"On the Theory of the Energy Distribution Law of the Normal Spectrum" 75: 67: 28: 1783:
The amount of heat that must be added in order to create the gas is
667:{\displaystyle PV={\frac {\zeta (4)}{\zeta (3)}}NkT\approx 0.9\,NkT} 126:
The thermodynamics of a black-body photon gas may be derived using
31:, which has many of the same properties of a conventional gas like 2186: 2037:"Zur Theorie des Gesetzes der Energieverteilung im Normalspectrum" 47: 2073: 1959: 36: 24: 396:
The derivation also yields the (expected) number of photons
1868:– derivation of distribution functions for all ideal gases 722:
Thermodynamic state functions for a black-body photon gas
284:
Integrating over frequency and multiplying by the volume,
1604:{\displaystyle b={\frac {8\pi ^{5}k^{4}}{15c^{3}h^{3}}}} 2042:
Verhandlungen der Deutschen Physikalischen Gesellschaft
123:
of the photons must be zero for black-body radiation.
1792: 1686: 1624: 1540: 1516:{\displaystyle W=-\int _{0}^{x_{0}}P(A\mathrm {d} x)} 1461: 1401: 1353: 1308: 1178: 1053: 1018: 902: 798: 730: 684: 597: 558: 512: 409: 301: 143: 720: 46:Photons are part of a family of particles known as 1824: 1771: 1665: 1603: 1515: 1414: 1379: 1331: 1286: 1156: 1031: 996: 880: 759: 706: 666: 576: 527: 494: 384: 245: 2098:"Teaching the photon gas in introductory physics" 1978:. Vol. 3. English translation by Beck, A. 539:. Note that for a particular temperature, the 115:A very important difference between a generic 8: 1920:(1917). "Zur Quantentheorie der Strahlung". 1847:Photon gases with tunable chemical potential 1446:. Integrating the force over the distance ( 1666:{\displaystyle P(x)={\frac {bT^{4}}{3}}\,} 2185: 2151:. Springer Science & Business Media. 1821: 1815: 1791: 1757: 1747: 1737: 1719: 1706: 1696: 1685: 1662: 1650: 1640: 1623: 1592: 1582: 1567: 1557: 1547: 1539: 1502: 1485: 1480: 1475: 1460: 1411: 1400: 1373: 1363: 1352: 1325: 1315: 1307: 1278: 1270: 1257: 1247: 1232: 1222: 1212: 1185: 1177: 1148: 1143: 1130: 1120: 1105: 1095: 1088: 1071: 1070: 1060: 1052: 1028: 1017: 988: 980: 967: 957: 947: 923: 913: 901: 872: 864: 851: 841: 826: 816: 809: 797: 743: 729: 698: 683: 654: 607: 596: 557: 511: 486: 466: 433: 420: 408: 376: 356: 332: 322: 312: 300: 213: 203: 192: 181: 165: 142: 86:Thermodynamics of a black body photon gas 2265:Herrmann, F.; WĂĽrfel, P. (August 2005). 1894:– the total flux emitted by a black body 1888:as a function of frequency or wavelength 128:quantum statistical mechanical arguments 2267:"Light with nonzero chemical potential" 1976:The Collected Papers of Albert Einstein 1909: 1254: 1127: 964: 848: 734: 277:  is the Boltzmann constant, and 7: 2091: 2089: 2087: 2085: 2083: 1944:"On the Quantum Theory of Radiation" 1882:Planck's law of black-body radiation 1380:{\displaystyle A=-{\frac {1}{3}}\,U} 1677:Integrating, the work done is just 1332:{\displaystyle H={\frac {4}{3}}\,U} 1503: 714:, which is independent of volume ( 112:distribution at that temperature. 14: 74:. However, for a black body, the 2231:"The elusive chemical potential" 760:{\displaystyle (\hbar =h/2\pi )} 2229:Baierlein, Ralph (April 2001). 1531:  has been used. Defining 2096:Leff, Harvey S. (2002-07-12). 2018:(2nd ed.). W. H. Freeman. 1634: 1628: 1510: 1496: 938: 932: 754: 731: 633: 627: 619: 613: 522: 516: 463: 453: 448: 442: 353: 343: 269:  is the speed of light, 159: 147: 102:Maxwell–Boltzmann distribution 92:Planck's law § Photon Gas 16:Gas-like collection of photons 1: 2143:Schwabl, Franz (2006-06-13). 1825:{\displaystyle Q=U-W=H_{0}\,} 292:of a black-body photon gas: 2274:American Journal of Physics 2238:American Journal of Physics 2102:American Journal of Physics 2351: 1980:Princeton University Press 1854:Bose-Einstein condensation 1428:Isothermal transformations 89: 1923:Physikalische Zeitschrift 528:{\displaystyle \zeta (n)} 273:  is the frequency, 1856:of photons is observed. 1032:{\displaystyle \mu =0\,} 707:{\displaystyle P=bT^{4}} 52:Bose–Einstein statistics 50:, particles that follow 1527:where the relationship 281:  is temperature. 2062:The Old Quantum Theory 1948:The Old Quantum Theory 1884:– the distribution of 1826: 1773: 1667: 1605: 1517: 1416: 1381: 1333: 1288: 1158: 1033: 998: 882: 761: 708: 668: 578: 529: 496: 386: 247: 2335:Statistical mechanics 2149:Statistical Mechanics 2053:ter Haar, D. (1967). 1942:ter Haar, D. (1967). 1827: 1774: 1668: 1606: 1518: 1417: 1415:{\displaystyle G=0\,} 1382: 1344:Helmholtz free energy 1334: 1289: 1159: 1034: 999: 883: 762: 709: 669: 579: 577:{\displaystyle U=3PV} 537:Riemann zeta function 530: 497: 387: 248: 1954:. pp. 167–183. 1892:Stefan–Boltzmann law 1790: 1684: 1622: 1538: 1459: 1399: 1351: 1306: 1176: 1051: 1016: 900: 796: 728: 682: 595: 556: 510: 407: 299: 141: 41:black-body radiation 27:-like collection of 2286:2005AmJPh..73..717H 2250:2001AmJPh..69..423B 2196:10.1038/nature09567 2114:2002AmJPh..70..792L 1936:1917PhyZ...18..121E 1492: 769: 72:number of particles 1898:Radiation pressure 1822: 1769: 1663: 1601: 1513: 1471: 1412: 1377: 1329: 1284: 1154: 1029: 1009:Chemical potential 994: 878: 757: 721: 704: 664: 574: 525: 492: 382: 243: 121:chemical potential 106:two-photon physics 80:chemical potential 2294:10.1119/1.1904623 2258:10.1119/1.1336839 2122:10.1119/1.1479743 1989:978-0-691-10250-4 1767: 1729: 1660: 1599: 1425: 1424: 1392:Gibbs free energy 1371: 1323: 1264: 1203: 1137: 1079: 1068: 974: 858: 637: 473: 363: 241: 231: 202: 198: 54:and with integer 2342: 2311: 2309: 2308: 2302: 2296:. Archived from 2271: 2261: 2235: 2216: 2215: 2189: 2169: 2163: 2162: 2145:"4.5 Photon gas" 2140: 2134: 2133: 2093: 2078: 2077: 2059: 2050: 2026: 2020: 2019: 2002: 1996: 1993: 1963: 1939: 1914: 1831: 1829: 1828: 1823: 1820: 1819: 1778: 1776: 1775: 1770: 1768: 1763: 1762: 1761: 1752: 1751: 1738: 1730: 1725: 1724: 1723: 1711: 1710: 1697: 1672: 1670: 1669: 1664: 1661: 1656: 1655: 1654: 1641: 1615:The pressure is 1610: 1608: 1607: 1602: 1600: 1598: 1597: 1596: 1587: 1586: 1573: 1572: 1571: 1562: 1561: 1548: 1522: 1520: 1519: 1514: 1506: 1491: 1490: 1489: 1479: 1451: 1438: 1421: 1419: 1418: 1413: 1386: 1384: 1383: 1378: 1372: 1364: 1338: 1336: 1335: 1330: 1324: 1316: 1293: 1291: 1290: 1285: 1283: 1282: 1269: 1265: 1263: 1262: 1261: 1252: 1251: 1238: 1237: 1236: 1227: 1226: 1213: 1204: 1202: 1194: 1186: 1163: 1161: 1160: 1155: 1153: 1152: 1142: 1138: 1136: 1135: 1134: 1125: 1124: 1111: 1110: 1109: 1100: 1099: 1089: 1080: 1072: 1069: 1061: 1038: 1036: 1035: 1030: 1003: 1001: 1000: 995: 993: 992: 979: 975: 973: 972: 971: 962: 961: 952: 951: 941: 928: 927: 914: 887: 885: 884: 879: 877: 876: 863: 859: 857: 856: 855: 846: 845: 832: 831: 830: 821: 820: 810: 775:State function ( 770: 768: 766: 764: 763: 758: 747: 718:is a constant). 713: 711: 710: 705: 703: 702: 673: 671: 670: 665: 638: 636: 622: 608: 583: 581: 580: 575: 534: 532: 531: 526: 501: 499: 498: 493: 491: 490: 478: 474: 472: 471: 470: 451: 438: 437: 421: 391: 389: 388: 383: 381: 380: 368: 364: 362: 361: 360: 338: 337: 336: 327: 326: 313: 252: 250: 249: 244: 242: 240: 233: 232: 230: 222: 214: 204: 200: 199: 197: 196: 187: 186: 185: 166: 2350: 2349: 2345: 2344: 2343: 2341: 2340: 2339: 2315: 2314: 2306: 2304: 2300: 2269: 2264: 2233: 2228: 2225: 2223:Further reading 2220: 2219: 2171: 2170: 2166: 2159: 2142: 2141: 2137: 2095: 2094: 2081: 2057: 2052: 2031: 2027: 2023: 2015:Thermal Physics 2010:Herbert Kroemer 2006:Kittel, Charles 2004: 2003: 1999: 1990: 1970: 1941: 1916: 1915: 1911: 1906: 1886:photon energies 1862: 1849: 1841: 1811: 1788: 1787: 1753: 1743: 1739: 1715: 1702: 1698: 1682: 1681: 1646: 1642: 1620: 1619: 1588: 1578: 1574: 1563: 1553: 1549: 1536: 1535: 1481: 1457: 1456: 1447: 1444: 1434: 1430: 1397: 1396: 1349: 1348: 1304: 1303: 1274: 1253: 1243: 1239: 1228: 1218: 1214: 1208: 1195: 1187: 1174: 1173: 1144: 1126: 1116: 1112: 1101: 1091: 1090: 1084: 1049: 1048: 1014: 1013: 984: 963: 953: 943: 942: 919: 915: 909: 898: 897: 893:Particle number 868: 847: 837: 833: 822: 812: 811: 805: 794: 793: 789:Internal energy 726: 725: 723: 694: 680: 679: 623: 609: 593: 592: 554: 553: 541:particle number 508: 507: 482: 462: 452: 429: 422: 416: 405: 404: 372: 352: 339: 328: 318: 314: 308: 297: 296: 290:internal energy 263:Planck constant 223: 215: 209: 208: 188: 177: 167: 139: 138: 96:In a classical 94: 88: 17: 12: 11: 5: 2348: 2346: 2338: 2337: 2332: 2330:Thermodynamics 2327: 2317: 2316: 2313: 2312: 2280:(8): 717–723. 2262: 2244:(4): 423–434. 2224: 2221: 2218: 2217: 2164: 2157: 2135: 2108:(8): 792–797. 2079: 2068:. p. 82. 2066:Pergamon Press 2051:Translated in 2021: 2012:(1980-01-15). 1997: 1995: 1994: 1988: 1952:Pergamon Press 1940:Translated in 1908: 1907: 1905: 1902: 1901: 1900: 1895: 1889: 1879: 1874: 1869: 1861: 1858: 1848: 1845: 1839: 1834: 1833: 1818: 1814: 1810: 1807: 1804: 1801: 1798: 1795: 1781: 1780: 1766: 1760: 1756: 1750: 1746: 1742: 1736: 1733: 1728: 1722: 1718: 1714: 1709: 1705: 1701: 1695: 1692: 1689: 1675: 1674: 1659: 1653: 1649: 1645: 1639: 1636: 1633: 1630: 1627: 1613: 1612: 1595: 1591: 1585: 1581: 1577: 1570: 1566: 1560: 1556: 1552: 1546: 1543: 1525: 1524: 1512: 1509: 1505: 1501: 1498: 1495: 1488: 1484: 1478: 1474: 1470: 1467: 1464: 1442: 1429: 1426: 1423: 1422: 1410: 1407: 1404: 1394: 1388: 1387: 1376: 1370: 1367: 1362: 1359: 1356: 1346: 1340: 1339: 1328: 1322: 1319: 1314: 1311: 1301: 1295: 1294: 1281: 1277: 1273: 1268: 1260: 1256: 1250: 1246: 1242: 1235: 1231: 1225: 1221: 1217: 1211: 1207: 1201: 1198: 1193: 1190: 1184: 1181: 1171: 1165: 1164: 1151: 1147: 1141: 1133: 1129: 1123: 1119: 1115: 1108: 1104: 1098: 1094: 1087: 1083: 1078: 1075: 1067: 1064: 1059: 1056: 1046: 1040: 1039: 1027: 1024: 1021: 1011: 1005: 1004: 991: 987: 983: 978: 970: 966: 960: 956: 950: 946: 940: 937: 934: 931: 926: 922: 918: 912: 908: 905: 895: 889: 888: 875: 871: 867: 862: 854: 850: 844: 840: 836: 829: 825: 819: 815: 808: 804: 801: 791: 785: 784: 773: 756: 753: 750: 746: 742: 739: 736: 733: 701: 697: 693: 690: 687: 676: 675: 663: 660: 657: 653: 650: 647: 644: 641: 635: 632: 629: 626: 621: 618: 615: 612: 606: 603: 600: 586: 585: 573: 570: 567: 564: 561: 524: 521: 518: 515: 504: 503: 489: 485: 481: 477: 469: 465: 461: 458: 455: 450: 447: 444: 441: 436: 432: 428: 425: 419: 415: 412: 394: 393: 379: 375: 371: 367: 359: 355: 351: 348: 345: 342: 335: 331: 325: 321: 317: 311: 307: 304: 255: 254: 239: 236: 229: 226: 221: 218: 212: 207: 195: 191: 184: 180: 176: 173: 170: 164: 161: 158: 155: 152: 149: 146: 87: 84: 19:In physics, a 15: 13: 10: 9: 6: 4: 3: 2: 2347: 2336: 2333: 2331: 2328: 2326: 2323: 2322: 2320: 2303:on 2016-03-04 2299: 2295: 2291: 2287: 2283: 2279: 2275: 2268: 2263: 2259: 2255: 2251: 2247: 2243: 2239: 2232: 2227: 2226: 2222: 2213: 2209: 2205: 2201: 2197: 2193: 2188: 2183: 2179: 2175: 2168: 2165: 2160: 2158:9783540323433 2154: 2150: 2146: 2139: 2136: 2131: 2127: 2123: 2119: 2115: 2111: 2107: 2103: 2099: 2092: 2090: 2088: 2086: 2084: 2080: 2075: 2071: 2067: 2063: 2056: 2048: 2044: 2043: 2038: 2034: 2030: 2025: 2022: 2017: 2016: 2011: 2007: 2001: 1998: 1991: 1985: 1981: 1977: 1973: 1969: 1968: 1966: 1961: 1957: 1953: 1949: 1945: 1937: 1933: 1929: 1925: 1924: 1919: 1913: 1910: 1903: 1899: 1896: 1893: 1890: 1887: 1883: 1880: 1878: 1875: 1873: 1870: 1867: 1864: 1863: 1859: 1857: 1855: 1846: 1844: 1842: 1816: 1812: 1808: 1805: 1802: 1799: 1796: 1793: 1786: 1785: 1784: 1764: 1758: 1754: 1748: 1744: 1740: 1734: 1731: 1726: 1720: 1716: 1712: 1707: 1703: 1699: 1693: 1690: 1687: 1680: 1679: 1678: 1657: 1651: 1647: 1643: 1637: 1631: 1625: 1618: 1617: 1616: 1593: 1589: 1583: 1579: 1575: 1568: 1564: 1558: 1554: 1550: 1544: 1541: 1534: 1533: 1532: 1530: 1507: 1499: 1493: 1486: 1482: 1476: 1472: 1468: 1465: 1462: 1455: 1454: 1453: 1450: 1445: 1437: 1427: 1408: 1405: 1402: 1395: 1393: 1390: 1389: 1374: 1368: 1365: 1360: 1357: 1354: 1347: 1345: 1342: 1341: 1326: 1320: 1317: 1312: 1309: 1302: 1300: 1297: 1296: 1279: 1275: 1271: 1266: 1258: 1248: 1244: 1240: 1233: 1229: 1223: 1219: 1215: 1209: 1205: 1199: 1196: 1191: 1188: 1182: 1179: 1172: 1170: 1167: 1166: 1149: 1145: 1139: 1131: 1121: 1117: 1113: 1106: 1102: 1096: 1092: 1085: 1081: 1076: 1073: 1065: 1062: 1057: 1054: 1047: 1045: 1042: 1041: 1025: 1022: 1019: 1012: 1010: 1007: 1006: 989: 985: 981: 976: 968: 958: 954: 948: 944: 935: 929: 924: 920: 916: 910: 906: 903: 896: 894: 891: 890: 873: 869: 865: 860: 852: 842: 838: 834: 827: 823: 817: 813: 806: 802: 799: 792: 790: 787: 786: 782: 778: 774: 772: 771: 751: 748: 744: 740: 737: 719: 717: 699: 695: 691: 688: 685: 661: 658: 655: 651: 648: 645: 642: 639: 630: 624: 616: 610: 604: 601: 598: 591: 590: 589: 571: 568: 565: 562: 559: 552: 551: 550: 547: 545: 542: 538: 519: 513: 487: 483: 479: 475: 467: 459: 456: 445: 439: 434: 430: 426: 423: 417: 413: 410: 403: 402: 401: 399: 377: 373: 369: 365: 357: 349: 346: 340: 333: 329: 323: 319: 315: 309: 305: 302: 295: 294: 293: 291: 287: 282: 280: 276: 272: 268: 264: 260: 237: 234: 227: 224: 219: 216: 210: 205: 193: 189: 182: 178: 174: 171: 168: 162: 156: 153: 150: 144: 137: 136: 135: 133: 129: 124: 122: 118: 113: 111: 107: 103: 99: 93: 85: 83: 81: 77: 73: 69: 65: 61: 60:gas of bosons 57: 53: 49: 44: 42: 38: 34: 30: 26: 22: 2305:. Retrieved 2298:the original 2277: 2273: 2241: 2237: 2177: 2173: 2167: 2148: 2138: 2105: 2101: 2061: 2046: 2040: 2029:Planck's law 2024: 2014: 2000: 1975: 1972:Einstein, A. 1947: 1927: 1921: 1918:Einstein, A. 1912: 1866:Gas in a box 1850: 1837: 1835: 1782: 1676: 1614: 1528: 1526: 1448: 1440: 1435: 1431: 780: 776: 715: 677: 587: 548: 543: 505: 397: 395: 288:, gives the 285: 283: 278: 274: 270: 266: 258: 256: 131: 125: 114: 95: 45: 20: 18: 2180:: 545–548. 1930:: 121–128. 64:temperature 2319:Categories 2307:2012-06-29 2049:: 237–245. 2033:Planck, M. 1904:References 110:black-body 90:See also: 70:, and the 21:photon gas 2187:1007.4088 2130:0002-9505 1964:See also 1877:Fermi gas 1803:− 1735:− 1694:− 1555:π 1473:∫ 1469:− 1361:− 1255:ℏ 1220:π 1128:ℏ 1093:π 1020:μ 965:ℏ 945:π 930:ζ 849:ℏ 814:π 752:π 735:ℏ 649:≈ 625:ζ 611:ζ 514:ζ 440:ζ 427:π 320:π 235:− 220:ν 179:ν 172:π 151:ν 98:ideal gas 2204:21107426 2074:66029628 2035:(1900). 1974:(1993). 1960:66029628 1872:Bose gas 1860:See also 1299:Enthalpy 1044:Pressure 117:Bose gas 33:hydrogen 2325:Photons 2282:Bibcode 2246:Bibcode 2212:4349640 2110:Bibcode 1932:Bibcode 1169:Entropy 767:⁠ 724:⁠ 535:is the 261:is the 29:photons 2210:  2202:  2174:Nature 2155:  2128:  2072:  1986:  1958:  1836:where 1529:V = Ax 506:where 257:where 201:  76:energy 68:volume 48:bosons 2301:(PDF) 2270:(PDF) 2234:(PDF) 2208:S2CID 2182:arXiv 2058:(PDF) 23:is a 2200:PMID 2153:ISBN 2126:ISSN 2070:LCCN 1984:ISBN 1956:LCCN 58:. A 56:spin 37:neon 2290:doi 2254:doi 2192:doi 2178:468 2118:doi 652:0.9 35:or 25:gas 2321:: 2288:. 2278:73 2276:. 2272:. 2252:. 2242:69 2240:. 2236:. 2206:. 2198:. 2190:. 2176:. 2147:. 2124:. 2116:. 2106:70 2104:. 2100:. 2082:^ 2064:. 2060:. 2045:. 2039:. 2008:; 1982:. 1967:. 1950:. 1946:. 1928:18 1926:. 1576:15 1241:45 1114:45 835:15 783:) 779:, 424:16 400:: 341:15 265:, 66:, 43:. 2310:. 2292:: 2284:: 2260:. 2256:: 2248:: 2214:. 2194:: 2184:: 2161:. 2132:. 2120:: 2112:: 2076:. 2047:2 1992:. 1962:. 1938:. 1934:: 1840:0 1838:H 1832:. 1817:0 1813:H 1809:= 1806:W 1800:U 1797:= 1794:Q 1779:. 1765:3 1759:0 1755:V 1749:4 1745:T 1741:b 1732:= 1727:3 1721:0 1717:x 1713:A 1708:4 1704:T 1700:b 1691:= 1688:W 1673:. 1658:3 1652:4 1648:T 1644:b 1638:= 1635:) 1632:x 1629:( 1626:P 1611:. 1594:3 1590:h 1584:3 1580:c 1569:4 1565:k 1559:5 1551:8 1545:= 1542:b 1523:, 1511:) 1508:x 1504:d 1500:A 1497:( 1494:P 1487:0 1483:x 1477:0 1466:= 1463:W 1449:x 1443:0 1441:V 1436:A 1409:0 1406:= 1403:G 1375:U 1369:3 1366:1 1358:= 1355:A 1327:U 1321:3 1318:4 1313:= 1310:H 1280:3 1276:T 1272:V 1267:) 1259:3 1249:3 1245:c 1234:4 1230:k 1224:2 1216:4 1210:( 1206:= 1200:T 1197:3 1192:U 1189:4 1183:= 1180:S 1150:4 1146:T 1140:) 1132:3 1122:3 1118:c 1107:4 1103:k 1097:2 1086:( 1082:= 1077:V 1074:U 1066:3 1063:1 1058:= 1055:P 1026:0 1023:= 990:3 986:T 982:V 977:) 969:3 959:3 955:c 949:2 939:) 936:3 933:( 925:3 921:k 917:2 911:( 907:= 904:N 874:4 870:T 866:V 861:) 853:3 843:3 839:c 828:4 824:k 818:2 807:( 803:= 800:U 781:V 777:T 755:) 749:2 745:/ 741:h 738:= 732:( 716:b 700:4 696:T 692:b 689:= 686:P 674:. 662:T 659:k 656:N 646:T 643:k 640:N 634:) 631:3 628:( 620:) 617:4 614:( 605:= 602:V 599:P 584:, 572:V 569:P 566:3 563:= 560:U 544:N 523:) 520:n 517:( 502:, 488:3 484:T 480:V 476:) 468:3 464:) 460:c 457:h 454:( 449:) 446:3 443:( 435:3 431:k 418:( 414:= 411:N 398:N 392:. 378:4 374:T 370:V 366:) 358:3 354:) 350:c 347:h 344:( 334:4 330:k 324:5 316:8 310:( 306:= 303:U 286:V 279:T 275:k 271:ν 267:c 259:h 253:. 238:1 228:T 225:k 217:h 211:e 206:1 194:3 190:c 183:3 175:h 169:8 163:= 160:) 157:T 154:, 148:( 145:u 132:u

Index

gas
photons
hydrogen
neon
black-body radiation
bosons
Bose–Einstein statistics
spin
gas of bosons
temperature
volume
number of particles
energy
chemical potential
Planck's law § Photon Gas
ideal gas
Maxwell–Boltzmann distribution
two-photon physics
black-body
Bose gas
chemical potential
quantum statistical mechanical arguments
Planck constant
internal energy
Riemann zeta function
particle number
Internal energy
Particle number
Chemical potential
Pressure

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑