Knowledge (XXG)

Photosensitizer

Source 📝

110: 286: 261: 324: 20: 341: 544: 146:. Triplet states typically have longer lifetimes than excited singlets. The prolonged lifetime increases the probability of interacting with other molecules nearby. Photosensitizers experience varying levels of efficiency for intersystem crossing at different wavelengths of light based on the internal electronic structure of the molecule. 252:
molecules, which could facilitate synthetic chemistry reactions. However, by the 1970s and 1980s, photosensitizers gained attraction in the scientific community for their role within biologic processes and enzymatic processes. Currently, photosensitizers are studied for their contributions to fields
247:
The term photosensitizer does not appear in scientific literature until the 1960s. Instead, scientists would refer to photosensitizers as sensitizers used in photo-oxidation or photo-oxygenation processes. Studies during this time period involving photosensitizers utilized organic photosensitizers,
226:
and other light sensitive molecules have been a part of plant life, but studies of photosensitizers began as early as the 1900s, where scientists observed photosensitization in biological substrates and in the treatment of cancer. Mechanistic studies related to photosensitizers began with scientists
618:
reactions. Photosensitizers in synthetic chemistry allow for the manipulation of electronic transitions within molecules through an externally applied light source. These photosensitizers used in redox chemistry may be organic, organometallic, or nanomaterials depending on the physical and spectral
511:
to treat skin tumors. The photodynamic process is predominantly a noninvasive technique wherein the photosensitizers are put inside a patient so that it may accumulate on the tumor or cancer. When the photosensitizer reaches the tumor or cancer, wavelength specific light is shined on the outside of
578:
to semiconductor surfaces which allows for the transfer of light energy from the photosensitizer to electronic energy within the semiconductor. These photosensitizers are not limited to dyes. They may take the form of any photosensitizing structure, dependent on the semiconductor material to which
281:
In Type I photosensitized reactions, the photosensitizer is excited by a light source into a triplet state. The excited, triplet state photosensitizer then reacts with a substrate molecule which is not molecular oxygen to both form a product and reform the photosensitizer. Type I photosensitized
456:
materials with highly tunable optical and electronic properties. Quantum dots photosensitize via the same mechanism as organometallic photosensitizers and organic photosensitizers, but their nanoscale properties allow for greater control in distinctive aspects. Some key advantages to the use of
213:
can occur in two ways. Photopolymerization can occur directly wherein the monomers absorb the incident light and begin polymerizing, or it can occur through a photosensitizer-mediated process where the photosensitizer absorbs the light first before transferring energy into the monomer species.
627:
Photosensitizers that are readily incorporated into the external tissues can increase the rate at which reactive oxygen species are generated upon exposure to UV light (such as UV-containing sunlight). Some photosensitizing agents, such as St. John's Wort, appear to increase the incidence of
411:
Organic photosensitizers are carbon-based molecules which are capable of photosensitizing. The earliest studied photosensitizers were aromatic hydrocarbons which absorbed light in the presence of oxygen to produce reactive oxygen species. These organic photosensitizers are made up of highly
472:, similar in size to quantum dots, have tunable optical and electronic properties. Based on their size and material composition, it is possible to tune the maximum absorption peak for nanorods during their synthesis. This control has led to the creation of photosensitizing nanorods. 601:
In the early 20th century, chemists observed that various aromatic hydrocarbons in the presence of oxygen could absorb wavelength specific light to generate a peroxide species. This discovery of oxygen's reduction by a photosensitizer led to chemists studying photosensitizers as
561:
In 1972, scientists discovered that chlorophyll could absorb sunlight and transfer energy into electrochemical cells. This discovery eventually led to the use of photosensitizers as sunlight-harvesting materials in solar cells, mainly through the use of photosensitizer dyes.
516:
frequency as this allows for the penetration of the skin without acute toxicity) excites the photosensitizer's electrons into the triplet state. Upon excitation, the photosensitizer begins transferring energy to neighboring ground state triplet oxygen to generate excited
587:
Via the absorption of light, photosensitizers can utilize triplet state transfer to reduce small molecules, such as water, to generate Hydrogen gas. As of right now, photosensitizers have generated hydrogen gas by splitting water molecules at a small, laboratory scale.
432:
allow for these materials to enter their triplet state more efficiently, making them better photosensitizers. Some notable organic photosensitizers which have been studied extensively include benzophenones, methylene blue, rose Bengal, flavins, pterins and others.
420:. Due to their high conjugation, these systems have a smaller gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) as well as a continuum of orbitals within the HOMO and LUMO. The smaller 1303:
Sang X, Li J, Zhang L, Wang Z, Chen W, Zhu Z, et al. (May 2014). "A novel carboxyethyltin functionalized sandwich-type germanotungstate: synthesis, crystal structure, photosensitivity, and application in dye-sensitized solar cells".
310:
molecule reacts with a substrate to form a product. Type II photosensitized reaction result in the photosensitizer being quenched by a ground state oxygen molecule which then goes on to react with a substrate to form a product.
1869:
Zeng W, Cao Y, Bai Y, Wang Y, Shi Y, Zhang M, et al. (2010-03-09). "Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks".
205:(or photobases) are molecules which become more acidic (or basic) upon the absorption of light. Photoacids increase in acidity upon absorbing light and thermally reassociate back into their original form upon relaxing. 41:. They can function by many mechanisms, sometimes they donate an electron to the substrate, sometimes they abstract a hydrogen atom from the substrate. At the end of this process, the photosensitizer returns to its 319:
Photosensitizers can be placed into 3 generalized domains based on their molecular structure. These three domains are organometallic photosensitizers, organic photosensitizers, and nanomaterial photosensitizers.
1905:
McCullough BJ, Neyhouse BJ, Schrage BR, Reed DT, Osinski AJ, Ziegler CJ, White TA (March 2018). "Visible-Light-Driven Photosystems Using Heteroleptic Cu(I) Photosensitizers and Rh(III) Catalysts To Produce
231:
molecular oxygen into peroxide species. The results were understood by calculating quantum efficiencies and fluorescent yields at varying wavelengths of light and comparing these results with the yield of
185:. Photosensitizers utilize light to enact a chemical change in a substrate; after the chemical change, the photosensitizer returns to its initial state, remaining chemically unchanged from the process. 356:. The photosensitizing capacities of these molecules result from electronic interactions between the metal and ligand(s). Popular electron-rich metal centers for these complexes include 1639:
Jang B, Park JY, Tung CH, Kim IH, Choi Y (February 2011). "Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo".
1440:
Zhang Y, Lee TS, Petersen JL, Milsmann C (May 2018). "A Zirconium Photosensitizer with a Long-Lived Excited State: Mechanistic Insight into Photoinduced Single-Electron Transfer".
813:
Zhang Y, Lee TS, Petersen JL, Milsmann C (May 2018). "A Zirconium Photosensitizer with a Long-Lived Excited State: Mechanistic Insight into Photoinduced Single-Electron Transfer".
298:
In Type II photosensitized reactions, the photosensitizer is excited by a light source into a triplet state. The excited photosensitizer then reacts with a ground state,
461:
which allows for efficient transitions to the triplet state, and their insolubility in many solvents which allows for easy retrieval from a synthetic reaction mixture.
201:
accelerate chemical reactions which rely upon light. While some photosensitizers may act as photocatalysts, not all photocatalysts may act as photosensitizers.
344:
Pictured from top to bottom, (A) benzophenone, (B) methylene blue, and (C) rose Bengal are all organic photosensitizers. All metals involved are purely
380:
from pi-electron accepting ligands. This interaction between the metal center and the ligand leads to a large continuum of orbitals within both the
113:
Basic schematic for all photosensitizers (PS) wherein the photosensitizer absorbs light (hν) and transfers energy to create a physicochemical change
109: 1545: 1156: 964: 865: 1261:
Baptista, Mauricio S.; et al. (2017). "Type I and Type II Photosensitized Oxidation Reactions: Guidelines and Mechanistic Pathways".
197:, where it then reacts with another chemical species. These photoinitiators are often completely chemically changed after their reaction. 1394:
Jiang Y, Weiss EA (September 2020). "Colloidal Quantum Dots as Photocatalysts for Triplet Excited State Reactions of Organic Molecules".
1057:
Kavarnos GJ, Turro NJ (1986-04-01). "Photosensitization by reversible electron transfer: theories, experimental evidence, and examples".
45:, where it remains chemically intact, poised to absorb more light. One branch of chemistry which frequently utilizes photosensitizers is 2009:
Vignoni, Mariana; Rasse-Suriani, Federico A. O.; Butzbach, Kathrin; Erra-Balsells, Rosa; Epe, Bernd; Cabrerizo, Franco M. (2013-07-24).
890: 1033: 1000: 1676:"Tolyporphin: a natural product from cyanobacteria with potent photosensitizing activity against tumor cells in vitro and in vivo" 1172:
Julliard M, Chanon M (1983-08-01). "Photoelectron-transfer catalysis: its connections with thermal and electrochemical analogs".
395:
organometallic photosensitizers as well. Some relevant naturally occurring examples of organometallic photosensitizers include
377: 85:
and transfer absorbed energy into neighboring molecules. This absorption of light is made possible by photosensitizers' large
2107: 1561:
Lorente, Carolina; et al. (2021). "A model to understand type I oxidations of biomolecules photosensitized by pterins".
1210:
O'Regan B, Grätzel M (October 1991). "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO 2 films".
547:
Dye sensitized solar cells are photosensitizers which transfer energy to semiconductors to generate energy from solar light
429: 425: 628:
inflammatory skin conditions in animals and have been observed to slightly reduce the minimum tanning dose in humans.
285: 97:. While many photosensitizers are organic or organometallic compounds, there are also examples of using semiconductor 697: 392: 391:
While many organometallic photosensitizer compounds are made synthetically, there also exists naturally occurring,
57:. Photosensitizers are also used to generate prolonged excited electronic states in organic molecules with uses in 1995:
Brockmoller J, et al. Hypericin and pseudohypericin: Pharmacokinetics and effects on photosensitivity in humans.
687: 667: 563: 70: 282:
reactions result in the photosensitizer being quenched by a different chemical substrate than molecular oxygen.
2112: 640: 518: 368:. These metals, as well as others, are common metal centers for photosensitizers due to their highly filled 303: 233: 34: 236:. However, it was not until the 1960s that the electron donating mechanism was confirmed through various 158:
The photosensitizer must impart a physicochemical change upon a substrate after absorbing incident light.
1705: 504: 1477:"Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis" 1785:
Tributsch H (1972). "Reaction of Excited Chlorophyll Molecules at Electrodes and in Photosynthesis".
1219: 919: 774: 692: 677: 635: 603: 537: 496: 491: 417: 254: 249: 139: 86: 66: 24: 2010: 1709: 388:(LUMO) which allows for excited electrons to switch multiplicities via intersystem crossing.   1342:
Karimi M, Sahandi Zangabad P, Baghaee-Ravari S, Ghazadeh M, Mirshekari H, Hamblin MR (April 2017).
631:
Some examples of photosensitizing medications (both investigatory and approved for human use) are:
607: 260: 190: 182: 62: 50: 1810: 1419: 1243: 323: 2048: 2040: 1962: 1927: 1887: 1851: 1802: 1767: 1687: 1674:
Morlière P, Mazière JC, Santus R, Smith CD, Prinsep MR, Stobbe CC, et al. (August 1998).
1656: 1618: 1541: 1506: 1457: 1411: 1373: 1321: 1235: 1189: 1152: 1114: 1074: 1039: 1029: 1006: 996: 970: 960: 937: 886: 861: 830: 792: 763:"Atmospheric photosensitized heterogeneous and multiphase reactions: from outdoors to indoors" 521:. The resulting excited oxygen species then selectively degrades the tumor or cancerous mass. 413: 46: 2030: 2022: 1954: 1919: 1879: 1841: 1794: 1757: 1749: 1648: 1610: 1578: 1570: 1533: 1496: 1488: 1449: 1403: 1363: 1355: 1313: 1278: 1270: 1227: 1181: 1144: 1106: 1066: 927: 853: 822: 782: 730: 672: 655: 373: 340: 161:
Upon imparting a chemical change, the photosensitizer returns to its original chemical form.
54: 19: 543: 331:(A) and Tris(2-phenylpyridine)iridium (B), two examples of organometallic photosensitizers. 2071: 94: 1675: 1223: 923: 778: 126:
into another nearby molecule either directly or by a chemical reaction. Upon absorbing
1798: 1762: 1737: 1736:
Zhang P, Huang H, Banerjee S, Clarkson GJ, Ge C, Imberti C, Sadler PJ (February 2019).
1501: 1476: 1368: 1343: 1110: 682: 307: 299: 228: 210: 198: 186: 174: 170: 166: 58: 352:
Organometallic photosensitizers contain a metal atom chelated to at least one organic
2101: 1423: 571: 453: 437: 400: 396: 385: 381: 328: 143: 135: 131: 90: 1814: 761:
Gómez Alvarez E, Wortham H, Strekowski R, Zetzsch C, Gligorovski S (February 2012).
1247: 533: 241: 237: 123: 42: 1923: 1846: 1829: 1738:"Nucleus-Targeted Organoiridium-Albumin Conjugate for Photodynamic Cancer Therapy" 209:
undergo an irreversible change to become an acidic species upon light absorption.
1714: 1614: 702: 567: 449: 223: 98: 82: 1574: 906:
Liu Y, Ma Y, Zhao Y, Sun X, Gándara F, Furukawa H, et al. (January 2016).
722: 302:
molecule. This excites the oxygen molecule into the singlet state, making it a
1537: 1148: 369: 345: 2044: 1891: 1806: 1239: 1193: 1078: 130:
of radiation from incident light, photosensitizers transform into an excited
1043: 974: 932: 907: 857: 735: 650: 361: 206: 202: 178: 2052: 1966: 1931: 1855: 1771: 1753: 1660: 1622: 1510: 1461: 1415: 1377: 1344:"Smart Nanostructures for Cargo Delivery: Uncaging and Activating by Light" 1325: 1010: 941: 834: 796: 1691: 1118: 908:"Weaving of organic threads into a crystalline covalent organic framework" 1958: 1601:
Romero NA, Nicewicz DA (September 2016). "Organic Photoredox Catalysis".
1524:
Bowen EJ (1963). "The Photochemistry of Aromatic Hydrocarbon Solutions".
1453: 1407: 1359: 826: 513: 458: 421: 74: 38: 1583: 1185: 1070: 2026: 1283: 645: 529: 525: 503:
or cancerous masses. This discovery was first observed back in 1907 by
469: 365: 357: 2035: 1883: 1652: 1634: 1632: 1492: 1389: 1387: 1317: 1274: 787: 762: 1231: 1135:
Gollnick K (1968). "Type II Photooxygenation Reactions in Solution".
1097:
Daniell MD, Hill JS (May 1991). "A history of photodynamic therapy".
575: 500: 353: 127: 1710:"Simply shining light on dinosaur metal compound kills cancer cells" 222:
Photosensitizers have existed within natural systems for as long as
122:
Photosensitizers absorb light (hν) and transfer the energy from the
227:
analyzing the results of chemical reactions where photosensitizers
1945:
Zhou Q, Shi G (March 2016). "Conducting Polymer-Based Catalysts".
615: 611: 542: 508: 322: 284: 259: 78: 18: 2072:"Medications and other Agents that Increase Sensitivity to Light" 1028:(3rd ed.). Upper Saddle River, N.J.: Pearson/Prentice Hall. 2011:"Mechanisms of DNA damage by photoexcited 9-methyl-β-carbolines" 574:
material to generate electric energy output. These dyes act as
457:
quantum dots as photosensitizers includes their small, tunable
499:
utilizes Type II photosensitizers to harvest light to degrade
194: 165:
It is important to differentiate photosensitizers from other
729:. International Union of Pure and Applied Chemistry. 2014. 273:
There are two main pathways for photosensitized reactions.
566:
utilize these photosensitizer dyes to absorb photons from
536:
and, after being irradiated with light (a process called
570:
and transfer energy rich electrons to the neighboring
189:
absorb light to become a reactive species, commonly a
532:, creating a photosensitized molecule, can penetrate 524:
In February 2019, medical scientists announced that
512:
the patient's affected area. This light (preferably
240:
methods including reaction-intermediate studies and
1830:"Putting Photosystem I to Work: Truly Green Energy" 1337: 1335: 154:For a molecule to be considered a photosensitizer: 348:to keep the material in the solid state as a salt. 1099:The Australian and New Zealand Journal of Surgery 995:. Menlo Park, Calif.: Benjamin/Cummings Pub. Co. 808: 806: 1475:Prier CK, Rankic DA, MacMillan DW (July 2013). 33:are light absorbers that alter the course of a 49:, using photosensitizers in reactions such as 289:Diagram of a Type II photosensitized reaction 257:in synthetic chemistry, and cancer treatment. 8: 957:Spin crossover in transition metal compounds 885:(2nd ed.). London: Chapman & Hall. 492:Photodynamic therapy § Photosensitizers 264:Diagram of a Type I photosensitized reaction 169:interactions including, but not limited to, 138:then flips in its intrinsic spin state via 1563:Journal of Photochemistry and Photobiology 424:and the continuum of orbitals in both the 2034: 1845: 1761: 1582: 1500: 1367: 1282: 931: 786: 734: 1947:Journal of the American Chemical Society 1442:Journal of the American Chemical Society 1396:Journal of the American Chemical Society 1348:Journal of the American Chemical Society 850:IUPAC Compendium of Chemical Terminology 815:Journal of the American Chemical Society 339: 108: 2076:Wisconsin Department of Health Services 714: 1596: 1594: 1306:ACS Applied Materials & Interfaces 1298: 1296: 1294: 1205: 1203: 1130: 1128: 1092: 1090: 1088: 1024:Allcock HR, Lampe FW, Mark JE (2003). 767:Environmental Science & Technology 623:Biological effects of photosensitizers 619:properties required for the reaction. 2066: 2064: 2062: 1991: 1989: 1828:Teodor AH, Bruce BD (December 2020). 1532:. John Wiley & Sons, Ltd: 23–42. 1435: 1433: 1143:. John Wiley & Sons, Ltd: 1–122. 986: 984: 756: 754: 752: 750: 748: 746: 269:Types of photosensitization processes 134:. The single electron in the excited 69:. Generally, photosensitizers absorb 7: 2015:Organic & Biomolecular Chemistry 606:for their roles in the catalysis of 386:lowest unoccupied molecular orbital 1799:10.1111/j.1751-1097.1972.tb06297.x 1111:10.1111/j.1445-2197.1991.tb00230.x 382:highest occupied molecular orbital 16:Type of molecule reacting to light 14: 23:A photosensitizer being used in 1787:Photochemistry and Photobiology 1263:Photochemistry and Photobiology 993:Modern molecular photochemistry 378:metal to ligand charge transfer 315:Composition of photosensitizers 1026:Contemporary polymer chemistry 955:Gütlich P, Goodwin HA (2004). 1: 1924:10.1021/acs.inorgchem.7b03273 1847:10.1016/j.tibtech.2020.04.004 583:Hydrogen generating catalysts 540:), destroy the cancer cells. 89:, which lowers the energy of 1615:10.1021/acs.chemrev.6b00057 253:such as energy harvesting, 2129: 1575:10.1016/j.jpap.2021.100045 1526:Advances in Photochemistry 1137:Advances in Photochemistry 883:Polymer science dictionary 698:Light harvesting materials 564:Dye Sensitized Solar cells 557:Dye sensitized solar cells 489: 118:Mechanistic considerations 1999:1997;30(Suppl 2): 94-101. 1538:10.1002/9780470133316.ch2 1149:10.1002/9780470133361.ch1 688:Dye-sensitized solar cell 668:Artificial photosynthesis 71:electromagnetic radiation 53:, photocrosslinking, and 1834:Trends in Biotechnology 933:10.1126/science.aad4011 858:10.1351/goldbook.P04652 736:10.1351/goldbook.P04652 418:electron delocalization 306:. Upon excitation, the 304:reactive oxygen species 234:reactive oxygen species 79:visible light radiation 1872:Chemistry of Materials 1754:10.1002/anie.201813002 848:"Photosensitization". 548: 416:systems which promote 349: 332: 290: 265: 114: 87:de-localized π-systems 35:photochemical reaction 27: 2108:Drug delivery devices 1706:University of Warwick 546: 505:Hermann von Tappeiner 343: 326: 288: 263: 142:to become an excited 112: 101:as photosensitizers. 83:ultraviolet radiation 22: 1959:10.1021/jacs.5b12474 1454:10.1021/jacs.8b00742 1408:10.1021/jacs.0c07421 1360:10.1021/jacs.6b08313 959:. Berlin: Springer. 827:10.1021/jacs.8b00742 723:"Photosensitization" 693:Photoredox catalysis 678:Photodynamic therapy 608:pericyclic reactions 604:photoredox catalysts 597:Photoredox chemistry 538:photodynamic therapy 497:Photodynamic therapy 486:Photodynamic therapy 255:photoredox catalysis 250:aromatic hydrocarbon 207:Photoacid generators 140:Intersystem crossing 93:orbitals to promote 67:photodynamic therapy 37:. They usually are 25:photodynamic therapy 1912:Inorganic Chemistry 1708:(3 February 2019). 1402:(36): 15219–15229. 1224:1991Natur.353..737O 1186:10.1021/cr00056a003 1071:10.1021/cr00072a005 924:2016Sci...351..365L 779:2012EnST...46.1955G 592:Synthetic chemistry 579:they are attached. 376:counts, to promote 211:Photopolymerization 183:photopolymerization 63:photon upconversion 51:photopolymerization 2027:10.1039/C3OB40344K 1997:Pharmacopsychiatry 549: 350: 333: 291: 266: 115: 75:infrared radiation 28: 2021:(32): 5300–5309. 1884:10.1021/cm9036988 1840:(12): 1329–1342. 1742:Angewandte Chemie 1653:10.1021/nn102722z 1609:(17): 10075–166. 1547:978-0-470-13331-6 1493:10.1021/cr300503r 1448:(18): 5934–5947. 1354:(13): 4584–4610. 1318:10.1021/am501192f 1275:10.1111/php.12716 1218:(6346): 737–740. 1158:978-0-470-13336-1 991:Turro NJ (1978). 966:978-3-540-40394-4 867:978-0-9678550-9-7 821:(18): 5934–5947. 788:10.1021/es2019675 656:Ethinyl estradiol 507:when he utilized 47:polymer chemistry 2120: 2087: 2086: 2084: 2083: 2068: 2057: 2056: 2038: 2006: 2000: 1993: 1984: 1983:1989;17:257-261. 1977: 1971: 1970: 1942: 1936: 1935: 1918:(5): 2865–2875. 1902: 1896: 1895: 1878:(5): 1915–1925. 1866: 1860: 1859: 1849: 1825: 1819: 1818: 1782: 1776: 1775: 1765: 1748:(8): 2350–2354. 1733: 1727: 1726: 1724: 1722: 1702: 1696: 1695: 1671: 1665: 1664: 1636: 1627: 1626: 1603:Chemical Reviews 1598: 1589: 1588: 1586: 1558: 1552: 1551: 1521: 1515: 1514: 1504: 1481:Chemical Reviews 1472: 1466: 1465: 1437: 1428: 1427: 1391: 1382: 1381: 1371: 1339: 1330: 1329: 1300: 1289: 1288: 1286: 1258: 1252: 1251: 1232:10.1038/353737a0 1207: 1198: 1197: 1174:Chemical Reviews 1169: 1163: 1162: 1132: 1123: 1122: 1094: 1083: 1082: 1059:Chemical Reviews 1054: 1048: 1047: 1021: 1015: 1014: 988: 979: 978: 952: 946: 945: 935: 903: 897: 896: 881:Alger M (1996). 878: 872: 871: 845: 839: 838: 810: 801: 800: 790: 758: 741: 740: 738: 719: 673:Photosensitivity 393:light-harvesting 55:photodegradation 31:Photosensitizers 2128: 2127: 2123: 2122: 2121: 2119: 2118: 2117: 2098: 2097: 2096: 2091: 2090: 2081: 2079: 2070: 2069: 2060: 2008: 2007: 2003: 1994: 1987: 1978: 1974: 1944: 1943: 1939: 1909: 1904: 1903: 1899: 1868: 1867: 1863: 1827: 1826: 1822: 1784: 1783: 1779: 1735: 1734: 1730: 1720: 1718: 1704: 1703: 1699: 1680:Cancer Research 1673: 1672: 1668: 1638: 1637: 1630: 1600: 1599: 1592: 1560: 1559: 1555: 1548: 1523: 1522: 1518: 1474: 1473: 1469: 1439: 1438: 1431: 1393: 1392: 1385: 1341: 1340: 1333: 1312:(10): 7876–84. 1302: 1301: 1292: 1260: 1259: 1255: 1209: 1208: 1201: 1171: 1170: 1166: 1159: 1134: 1133: 1126: 1096: 1095: 1086: 1056: 1055: 1051: 1036: 1023: 1022: 1018: 1003: 990: 989: 982: 967: 954: 953: 949: 918:(6271): 365–9. 905: 904: 900: 893: 880: 879: 875: 868: 847: 846: 842: 812: 811: 804: 760: 759: 744: 727:IUPAC Gold Book 721: 720: 716: 711: 664: 636:St. John's Wort 625: 599: 594: 585: 559: 554: 494: 488: 483: 478: 467: 446: 441: 426:conduction band 409: 384:(HOMO) and the 338: 317: 296: 279: 271: 220: 187:Photoinitiators 171:photoinitiators 152: 120: 107: 95:photoexcitation 17: 12: 11: 5: 2126: 2124: 2116: 2115: 2113:Photochemistry 2110: 2100: 2099: 2095: 2094:External links 2092: 2089: 2088: 2058: 2001: 1985: 1981:Tierarztl Prax 1972: 1953:(9): 2868–76. 1937: 1907: 1897: 1861: 1820: 1793:(4): 261–269. 1777: 1728: 1697: 1686:(16): 3571–8. 1666: 1647:(2): 1086–94. 1628: 1590: 1553: 1546: 1516: 1487:(7): 5322–63. 1467: 1429: 1383: 1331: 1290: 1253: 1199: 1180:(4): 425–506. 1164: 1157: 1124: 1084: 1065:(2): 401–449. 1049: 1034: 1016: 1001: 980: 965: 947: 898: 892:978-0412608704 891: 873: 866: 840: 802: 773:(4): 1955–63. 742: 713: 712: 710: 707: 706: 705: 700: 695: 690: 685: 683:Photocatalysis 680: 675: 670: 663: 660: 659: 658: 653: 648: 643: 638: 624: 621: 598: 595: 593: 590: 584: 581: 558: 555: 553: 552:Energy sources 550: 519:singlet oxygen 490:Main article: 487: 484: 482: 479: 477: 474: 466: 463: 452:are nanoscale 445: 442: 440: 435: 408: 405: 337: 336:Organometallic 334: 316: 313: 308:singlet oxygen 300:triplet oxygen 295: 292: 278: 275: 270: 267: 248:consisting of 229:photo-oxidized 219: 216: 199:Photocatalysts 175:photocatalysts 163: 162: 159: 151: 148: 124:incident light 119: 116: 106: 103: 73:consisting of 59:photocatalysis 15: 13: 10: 9: 6: 4: 3: 2: 2125: 2114: 2111: 2109: 2106: 2105: 2103: 2093: 2077: 2073: 2067: 2065: 2063: 2059: 2054: 2050: 2046: 2042: 2037: 2032: 2028: 2024: 2020: 2016: 2012: 2005: 2002: 1998: 1992: 1990: 1986: 1982: 1976: 1973: 1968: 1964: 1960: 1956: 1952: 1948: 1941: 1938: 1933: 1929: 1925: 1921: 1917: 1913: 1901: 1898: 1893: 1889: 1885: 1881: 1877: 1873: 1865: 1862: 1857: 1853: 1848: 1843: 1839: 1835: 1831: 1824: 1821: 1816: 1812: 1808: 1804: 1800: 1796: 1792: 1788: 1781: 1778: 1773: 1769: 1764: 1759: 1755: 1751: 1747: 1743: 1739: 1732: 1729: 1717: 1716: 1711: 1707: 1701: 1698: 1693: 1689: 1685: 1681: 1677: 1670: 1667: 1662: 1658: 1654: 1650: 1646: 1642: 1635: 1633: 1629: 1624: 1620: 1616: 1612: 1608: 1604: 1597: 1595: 1591: 1585: 1580: 1576: 1572: 1568: 1564: 1557: 1554: 1549: 1543: 1539: 1535: 1531: 1527: 1520: 1517: 1512: 1508: 1503: 1498: 1494: 1490: 1486: 1482: 1478: 1471: 1468: 1463: 1459: 1455: 1451: 1447: 1443: 1436: 1434: 1430: 1425: 1421: 1417: 1413: 1409: 1405: 1401: 1397: 1390: 1388: 1384: 1379: 1375: 1370: 1365: 1361: 1357: 1353: 1349: 1345: 1338: 1336: 1332: 1327: 1323: 1319: 1315: 1311: 1307: 1299: 1297: 1295: 1291: 1285: 1280: 1276: 1272: 1268: 1264: 1257: 1254: 1249: 1245: 1241: 1237: 1233: 1229: 1225: 1221: 1217: 1213: 1206: 1204: 1200: 1195: 1191: 1187: 1183: 1179: 1175: 1168: 1165: 1160: 1154: 1150: 1146: 1142: 1138: 1131: 1129: 1125: 1120: 1116: 1112: 1108: 1104: 1100: 1093: 1091: 1089: 1085: 1080: 1076: 1072: 1068: 1064: 1060: 1053: 1050: 1045: 1041: 1037: 1035:0-13-065056-0 1031: 1027: 1020: 1017: 1012: 1008: 1004: 1002:0-8053-9353-6 998: 994: 987: 985: 981: 976: 972: 968: 962: 958: 951: 948: 943: 939: 934: 929: 925: 921: 917: 913: 909: 902: 899: 894: 888: 884: 877: 874: 869: 863: 859: 855: 851: 844: 841: 836: 832: 828: 824: 820: 816: 809: 807: 803: 798: 794: 789: 784: 780: 776: 772: 768: 764: 757: 755: 753: 751: 749: 747: 743: 737: 732: 728: 724: 718: 715: 708: 704: 701: 699: 696: 694: 691: 689: 686: 684: 681: 679: 676: 674: 671: 669: 666: 665: 661: 657: 654: 652: 649: 647: 644: 642: 639: 637: 634: 633: 632: 629: 622: 620: 617: 613: 609: 605: 596: 591: 589: 582: 580: 577: 573: 572:semiconductor 569: 565: 556: 551: 545: 541: 539: 535: 531: 527: 522: 520: 515: 514:near infrared 510: 506: 502: 498: 493: 485: 480: 475: 473: 471: 464: 462: 460: 455: 454:semiconductor 451: 443: 439: 438:Nanomaterials 436: 434: 431: 427: 423: 419: 415: 406: 404: 402: 401:Chlorophyll B 398: 397:Chlorophyll A 394: 389: 387: 383: 379: 375: 371: 367: 363: 359: 355: 347: 342: 335: 330: 329:Chlorophyll A 327:Pictured are 325: 321: 314: 312: 309: 305: 301: 293: 287: 283: 276: 274: 268: 262: 258: 256: 251: 245: 243: 239: 238:spectroscopic 235: 230: 225: 217: 215: 212: 208: 204: 200: 196: 192: 188: 184: 180: 176: 172: 168: 167:photochemical 160: 157: 156: 155: 149: 147: 145: 144:triplet state 141: 137: 136:singlet state 133: 132:singlet state 129: 125: 117: 111: 104: 102: 100: 96: 92: 91:HOMO and LUMO 88: 84: 80: 76: 72: 68: 64: 60: 56: 52: 48: 44: 40: 36: 32: 26: 21: 2080:. Retrieved 2078:. 2013-07-11 2075: 2018: 2014: 2004: 1996: 1980: 1979:Kumper H. . 1975: 1950: 1946: 1940: 1915: 1911: 1900: 1875: 1871: 1864: 1837: 1833: 1823: 1790: 1786: 1780: 1745: 1741: 1731: 1719:. Retrieved 1713: 1700: 1683: 1679: 1669: 1644: 1640: 1606: 1602: 1584:11336/171897 1566: 1562: 1556: 1529: 1525: 1519: 1484: 1480: 1470: 1445: 1441: 1399: 1395: 1351: 1347: 1309: 1305: 1266: 1262: 1256: 1215: 1211: 1177: 1173: 1167: 1140: 1136: 1105:(5): 340–8. 1102: 1098: 1062: 1058: 1052: 1025: 1019: 992: 956: 950: 915: 911: 901: 882: 876: 849: 843: 818: 814: 770: 766: 726: 717: 630: 626: 600: 586: 560: 534:cancer cells 528:attached to 523: 495: 476:Applications 468: 450:quantum dots 447: 444:Quantum dots 430:valence band 410: 390: 351: 318: 297: 280: 272: 246: 242:luminescence 221: 164: 153: 121: 99:quantum dots 43:ground state 30: 29: 1715:EurekAlert! 1284:11336/64008 1269:: 912–919. 703:Photoswitch 568:solar light 346:counterions 224:chlorophyll 2102:Categories 2082:2022-11-01 2036:11336/2178 1721:3 February 1569:: 100045. 709:References 610:and other 448:Colloidal 414:conjugated 374:d-electron 372:, or high 370:d-orbitals 203:Photoacids 179:photoacids 150:Parameters 2045:1477-0539 1892:0897-4756 1807:1751-1097 1424:221179722 1240:1476-4687 1194:0009-2665 1079:0009-2665 651:Amoxapine 616:oxidation 612:reduction 362:Ruthenium 244:studies. 39:catalysts 2053:23842892 1967:26863332 1932:29446925 1856:32448469 1815:94054808 1772:30552796 1661:21244012 1641:ACS Nano 1623:27285582 1511:23509883 1462:29671586 1416:32810396 1378:28192672 1326:24758570 1044:51096012 975:56798940 942:26798010 852:. 2009. 835:29671586 797:22148293 662:See also 470:Nanorods 465:Nanorods 459:band gap 428:and the 422:band gap 1763:6468315 1692:9721863 1502:4028850 1369:5475407 1248:4340159 1220:Bibcode 1119:2025186 1011:4417476 920:Bibcode 912:Science 775:Bibcode 646:Doxepin 641:9-me-bc 576:dopants 530:albumin 526:iridium 481:Medical 407:Organic 366:Rhodium 358:Iridium 294:Type II 218:History 191:radical 128:photons 2051:  2043:  1965:  1930:  1890:  1854:  1813:  1805:  1770:  1760:  1690:  1659:  1621:  1544:  1509:  1499:  1460:  1422:  1414:  1376:  1366:  1324:  1246:  1238:  1212:Nature 1192:  1155:  1117:  1077:  1042:  1032:  1009:  999:  973:  963:  940:  889:  864:  833:  795:  501:tumors 364:, and 354:ligand 277:Type I 193:or an 105:Theory 81:, and 1811:S2CID 1420:S2CID 1244:S2CID 509:eosin 2049:PMID 2041:ISSN 1963:PMID 1928:PMID 1888:ISSN 1852:PMID 1803:ISSN 1768:PMID 1723:2019 1688:PMID 1657:PMID 1619:PMID 1542:ISBN 1507:PMID 1458:PMID 1412:PMID 1374:PMID 1322:PMID 1236:ISSN 1190:ISSN 1153:ISBN 1115:PMID 1075:ISSN 1040:OCLC 1030:ISBN 1007:OCLC 997:ISBN 971:OCLC 961:ISBN 938:PMID 887:ISBN 862:ISBN 831:PMID 793:PMID 614:and 399:and 181:and 65:and 2031:hdl 2023:doi 1955:doi 1951:138 1920:doi 1910:". 1880:doi 1842:doi 1795:doi 1758:PMC 1750:doi 1649:doi 1611:doi 1607:116 1579:hdl 1571:doi 1534:doi 1497:PMC 1489:doi 1485:113 1450:doi 1446:140 1404:doi 1400:142 1364:PMC 1356:doi 1352:139 1314:doi 1279:hdl 1271:doi 1228:doi 1216:353 1182:doi 1145:doi 1107:doi 1067:doi 928:doi 916:351 854:doi 823:doi 819:140 783:doi 731:doi 195:ion 2104:: 2074:. 2061:^ 2047:. 2039:. 2029:. 2019:11 2017:. 2013:. 1988:^ 1961:. 1949:. 1926:. 1916:57 1914:. 1886:. 1876:22 1874:. 1850:. 1838:38 1836:. 1832:. 1809:. 1801:. 1791:16 1789:. 1766:. 1756:. 1746:58 1744:. 1740:. 1712:. 1684:58 1682:. 1678:. 1655:. 1643:. 1631:^ 1617:. 1605:. 1593:^ 1577:. 1565:. 1540:. 1528:. 1505:. 1495:. 1483:. 1479:. 1456:. 1444:. 1432:^ 1418:. 1410:. 1398:. 1386:^ 1372:. 1362:. 1350:. 1346:. 1334:^ 1320:. 1308:. 1293:^ 1277:. 1267:93 1265:. 1242:. 1234:. 1226:. 1214:. 1202:^ 1188:. 1178:83 1176:. 1151:. 1139:. 1127:^ 1113:. 1103:61 1101:. 1087:^ 1073:. 1063:86 1061:. 1038:. 1005:. 983:^ 969:. 936:. 926:. 914:. 910:. 860:. 829:. 817:. 805:^ 791:. 781:. 771:46 769:. 765:. 745:^ 725:. 403:. 360:, 177:, 173:, 77:, 61:, 2085:. 2055:. 2033:: 2025:: 1969:. 1957:: 1934:. 1922:: 1908:2 1906:H 1894:. 1882:: 1858:. 1844:: 1817:. 1797:: 1774:. 1752:: 1725:. 1694:. 1663:. 1651:: 1645:5 1625:. 1613:: 1587:. 1581:: 1573:: 1567:7 1550:. 1536:: 1530:1 1513:. 1491:: 1464:. 1452:: 1426:. 1406:: 1380:. 1358:: 1328:. 1316:: 1310:6 1287:. 1281:: 1273:: 1250:. 1230:: 1222:: 1196:. 1184:: 1161:. 1147:: 1141:6 1121:. 1109:: 1081:. 1069:: 1046:. 1013:. 977:. 944:. 930:: 922:: 895:. 870:. 856:: 837:. 825:: 799:. 785:: 777:: 739:. 733::

Index


photodynamic therapy
photochemical reaction
catalysts
ground state
polymer chemistry
photopolymerization
photodegradation
photocatalysis
photon upconversion
photodynamic therapy
electromagnetic radiation
infrared radiation
visible light radiation
ultraviolet radiation
de-localized π-systems
HOMO and LUMO
photoexcitation
quantum dots

incident light
photons
singlet state
singlet state
Intersystem crossing
triplet state
photochemical
photoinitiators
photocatalysts
photoacids

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.