Knowledge (XXG)

Photosensitizer

Source 📝

121: 297: 272: 335: 31: 352: 555: 157:. Triplet states typically have longer lifetimes than excited singlets. The prolonged lifetime increases the probability of interacting with other molecules nearby. Photosensitizers experience varying levels of efficiency for intersystem crossing at different wavelengths of light based on the internal electronic structure of the molecule. 263:
molecules, which could facilitate synthetic chemistry reactions. However, by the 1970s and 1980s, photosensitizers gained attraction in the scientific community for their role within biologic processes and enzymatic processes. Currently, photosensitizers are studied for their contributions to fields
258:
The term photosensitizer does not appear in scientific literature until the 1960s. Instead, scientists would refer to photosensitizers as sensitizers used in photo-oxidation or photo-oxygenation processes. Studies during this time period involving photosensitizers utilized organic photosensitizers,
237:
and other light sensitive molecules have been a part of plant life, but studies of photosensitizers began as early as the 1900s, where scientists observed photosensitization in biological substrates and in the treatment of cancer. Mechanistic studies related to photosensitizers began with scientists
629:
reactions. Photosensitizers in synthetic chemistry allow for the manipulation of electronic transitions within molecules through an externally applied light source. These photosensitizers used in redox chemistry may be organic, organometallic, or nanomaterials depending on the physical and spectral
522:
to treat skin tumors. The photodynamic process is predominantly a noninvasive technique wherein the photosensitizers are put inside a patient so that it may accumulate on the tumor or cancer. When the photosensitizer reaches the tumor or cancer, wavelength specific light is shined on the outside of
589:
to semiconductor surfaces which allows for the transfer of light energy from the photosensitizer to electronic energy within the semiconductor. These photosensitizers are not limited to dyes. They may take the form of any photosensitizing structure, dependent on the semiconductor material to which
292:
In Type I photosensitized reactions, the photosensitizer is excited by a light source into a triplet state. The excited, triplet state photosensitizer then reacts with a substrate molecule which is not molecular oxygen to both form a product and reform the photosensitizer. Type I photosensitized
467:
materials with highly tunable optical and electronic properties. Quantum dots photosensitize via the same mechanism as organometallic photosensitizers and organic photosensitizers, but their nanoscale properties allow for greater control in distinctive aspects. Some key advantages to the use of
224:
can occur in two ways. Photopolymerization can occur directly wherein the monomers absorb the incident light and begin polymerizing, or it can occur through a photosensitizer-mediated process where the photosensitizer absorbs the light first before transferring energy into the monomer species.
638:
Photosensitizers that are readily incorporated into the external tissues can increase the rate at which reactive oxygen species are generated upon exposure to UV light (such as UV-containing sunlight). Some photosensitizing agents, such as St. John's Wort, appear to increase the incidence of
422:
Organic photosensitizers are carbon-based molecules which are capable of photosensitizing. The earliest studied photosensitizers were aromatic hydrocarbons which absorbed light in the presence of oxygen to produce reactive oxygen species. These organic photosensitizers are made up of highly
483:, similar in size to quantum dots, have tunable optical and electronic properties. Based on their size and material composition, it is possible to tune the maximum absorption peak for nanorods during their synthesis. This control has led to the creation of photosensitizing nanorods. 612:
In the early 20th century, chemists observed that various aromatic hydrocarbons in the presence of oxygen could absorb wavelength specific light to generate a peroxide species. This discovery of oxygen's reduction by a photosensitizer led to chemists studying photosensitizers as
572:
In 1972, scientists discovered that chlorophyll could absorb sunlight and transfer energy into electrochemical cells. This discovery eventually led to the use of photosensitizers as sunlight-harvesting materials in solar cells, mainly through the use of photosensitizer dyes.
527:
frequency as this allows for the penetration of the skin without acute toxicity) excites the photosensitizer's electrons into the triplet state. Upon excitation, the photosensitizer begins transferring energy to neighboring ground state triplet oxygen to generate excited
598:
Via the absorption of light, photosensitizers can utilize triplet state transfer to reduce small molecules, such as water, to generate Hydrogen gas. As of right now, photosensitizers have generated hydrogen gas by splitting water molecules at a small, laboratory scale.
443:
allow for these materials to enter their triplet state more efficiently, making them better photosensitizers. Some notable organic photosensitizers which have been studied extensively include benzophenones, methylene blue, rose Bengal, flavins, pterins and others.
431:. Due to their high conjugation, these systems have a smaller gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) as well as a continuum of orbitals within the HOMO and LUMO. The smaller 1314:
Sang X, Li J, Zhang L, Wang Z, Chen W, Zhu Z, et al. (May 2014). "A novel carboxyethyltin functionalized sandwich-type germanotungstate: synthesis, crystal structure, photosensitivity, and application in dye-sensitized solar cells".
321:
molecule reacts with a substrate to form a product. Type II photosensitized reaction result in the photosensitizer being quenched by a ground state oxygen molecule which then goes on to react with a substrate to form a product.
1880:
Zeng W, Cao Y, Bai Y, Wang Y, Shi Y, Zhang M, et al. (2010-03-09). "Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks".
216:(or photobases) are molecules which become more acidic (or basic) upon the absorption of light. Photoacids increase in acidity upon absorbing light and thermally reassociate back into their original form upon relaxing. 52:. They can function by many mechanisms, sometimes they donate an electron to the substrate, sometimes they abstract a hydrogen atom from the substrate. At the end of this process, the photosensitizer returns to its 330:
Photosensitizers can be placed into 3 generalized domains based on their molecular structure. These three domains are organometallic photosensitizers, organic photosensitizers, and nanomaterial photosensitizers.
1916:
McCullough BJ, Neyhouse BJ, Schrage BR, Reed DT, Osinski AJ, Ziegler CJ, White TA (March 2018). "Visible-Light-Driven Photosystems Using Heteroleptic Cu(I) Photosensitizers and Rh(III) Catalysts To Produce
242:
molecular oxygen into peroxide species. The results were understood by calculating quantum efficiencies and fluorescent yields at varying wavelengths of light and comparing these results with the yield of
196:. Photosensitizers utilize light to enact a chemical change in a substrate; after the chemical change, the photosensitizer returns to its initial state, remaining chemically unchanged from the process. 367:. The photosensitizing capacities of these molecules result from electronic interactions between the metal and ligand(s). Popular electron-rich metal centers for these complexes include 1650:
Jang B, Park JY, Tung CH, Kim IH, Choi Y (February 2011). "Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo".
1451:
Zhang Y, Lee TS, Petersen JL, Milsmann C (May 2018). "A Zirconium Photosensitizer with a Long-Lived Excited State: Mechanistic Insight into Photoinduced Single-Electron Transfer".
824:
Zhang Y, Lee TS, Petersen JL, Milsmann C (May 2018). "A Zirconium Photosensitizer with a Long-Lived Excited State: Mechanistic Insight into Photoinduced Single-Electron Transfer".
309:
In Type II photosensitized reactions, the photosensitizer is excited by a light source into a triplet state. The excited photosensitizer then reacts with a ground state,
472:
which allows for efficient transitions to the triplet state, and their insolubility in many solvents which allows for easy retrieval from a synthetic reaction mixture.
212:
accelerate chemical reactions which rely upon light. While some photosensitizers may act as photocatalysts, not all photocatalysts may act as photosensitizers.
355:
Pictured from top to bottom, (A) benzophenone, (B) methylene blue, and (C) rose Bengal are all organic photosensitizers. All metals involved are purely
391:
from pi-electron accepting ligands. This interaction between the metal center and the ligand leads to a large continuum of orbitals within both the
124:
Basic schematic for all photosensitizers (PS) wherein the photosensitizer absorbs light (hν) and transfers energy to create a physicochemical change
120: 1556: 1167: 975: 876: 1272:
Baptista, Mauricio S.; et al. (2017). "Type I and Type II Photosensitized Oxidation Reactions: Guidelines and Mechanistic Pathways".
208:, where it then reacts with another chemical species. These photoinitiators are often completely chemically changed after their reaction. 1405:
Jiang Y, Weiss EA (September 2020). "Colloidal Quantum Dots as Photocatalysts for Triplet Excited State Reactions of Organic Molecules".
1068:
Kavarnos GJ, Turro NJ (1986-04-01). "Photosensitization by reversible electron transfer: theories, experimental evidence, and examples".
56:, where it remains chemically intact, poised to absorb more light. One branch of chemistry which frequently utilizes photosensitizers is 2020:
Vignoni, Mariana; Rasse-Suriani, Federico A. O.; Butzbach, Kathrin; Erra-Balsells, Rosa; Epe, Bernd; Cabrerizo, Franco M. (2013-07-24).
901: 1044: 1011: 1687:"Tolyporphin: a natural product from cyanobacteria with potent photosensitizing activity against tumor cells in vitro and in vivo" 1183:
Julliard M, Chanon M (1983-08-01). "Photoelectron-transfer catalysis: its connections with thermal and electrochemical analogs".
406:
organometallic photosensitizers as well. Some relevant naturally occurring examples of organometallic photosensitizers include
388: 96:
and transfer absorbed energy into neighboring molecules. This absorption of light is made possible by photosensitizers' large
2118: 1572:
Lorente, Carolina; et al. (2021). "A model to understand type I oxidations of biomolecules photosensitized by pterins".
1221:
O'Regan B, Grätzel M (October 1991). "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO 2 films".
558:
Dye sensitized solar cells are photosensitizers which transfer energy to semiconductors to generate energy from solar light
440: 436: 639:
inflammatory skin conditions in animals and have been observed to slightly reduce the minimum tanning dose in humans.
296: 108:. While many photosensitizers are organic or organometallic compounds, there are also examples of using semiconductor 708: 403: 402:
While many organometallic photosensitizer compounds are made synthetically, there also exists naturally occurring,
68:. Photosensitizers are also used to generate prolonged excited electronic states in organic molecules with uses in 2006:
Brockmoller J, et al. Hypericin and pseudohypericin: Pharmacokinetics and effects on photosensitivity in humans.
698: 678: 574: 81: 293:
reactions result in the photosensitizer being quenched by a different chemical substrate than molecular oxygen.
2123: 651: 529: 379:. These metals, as well as others, are common metal centers for photosensitizers due to their highly filled 314: 244: 45: 247:. However, it was not until the 1960s that the electron donating mechanism was confirmed through various 169:
The photosensitizer must impart a physicochemical change upon a substrate after absorbing incident light.
1716: 515: 1488:"Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis" 1796:
Tributsch H (1972). "Reaction of Excited Chlorophyll Molecules at Electrodes and in Photosynthesis".
1230: 930: 785: 703: 688: 646: 614: 548: 507: 502: 428: 265: 260: 150: 97: 77: 35: 2021: 1720: 399:(LUMO) which allows for excited electrons to switch multiplicities via intersystem crossing.   1353:
Karimi M, Sahandi Zangabad P, Baghaee-Ravari S, Ghazadeh M, Mirshekari H, Hamblin MR (April 2017).
642:
Some examples of photosensitizing medications (both investigatory and approved for human use) are:
618: 271: 201: 193: 73: 61: 1821: 1430: 1254: 334: 2059: 2051: 1973: 1938: 1898: 1862: 1813: 1778: 1698: 1685:
Morlière P, Mazière JC, Santus R, Smith CD, Prinsep MR, Stobbe CC, et al. (August 1998).
1667: 1629: 1552: 1517: 1468: 1422: 1384: 1332: 1246: 1200: 1163: 1125: 1085: 1050: 1040: 1017: 1007: 981: 971: 948: 897: 872: 841: 803: 774:"Atmospheric photosensitized heterogeneous and multiphase reactions: from outdoors to indoors" 532:. The resulting excited oxygen species then selectively degrades the tumor or cancerous mass. 424: 57: 2041: 2033: 1965: 1930: 1890: 1852: 1805: 1768: 1760: 1659: 1621: 1589: 1581: 1544: 1507: 1499: 1460: 1414: 1374: 1366: 1324: 1289: 1281: 1238: 1192: 1155: 1117: 1077: 938: 864: 833: 793: 741: 683: 666: 384: 351: 172:
Upon imparting a chemical change, the photosensitizer returns to its original chemical form.
65: 30: 554: 342:(A) and Tris(2-phenylpyridine)iridium (B), two examples of organometallic photosensitizers. 2082: 105: 1686: 1234: 934: 789: 137:
into another nearby molecule either directly or by a chemical reaction. Upon absorbing
1809: 1773: 1748: 1747:
Zhang P, Huang H, Banerjee S, Clarkson GJ, Ge C, Imberti C, Sadler PJ (February 2019).
1512: 1487: 1379: 1354: 1121: 693: 318: 310: 239: 221: 209: 197: 185: 181: 177: 69: 17: 363:
Organometallic photosensitizers contain a metal atom chelated to at least one organic
2112: 1434: 582: 464: 448: 411: 407: 396: 392: 339: 154: 146: 142: 101: 1825: 772:
Gómez Alvarez E, Wortham H, Strekowski R, Zetzsch C, Gligorovski S (February 2012).
1258: 544: 252: 248: 134: 53: 1934: 1857: 1840: 1749:"Nucleus-Targeted Organoiridium-Albumin Conjugate for Photodynamic Cancer Therapy" 220:
undergo an irreversible change to become an acidic species upon light absorption.
1725: 1625: 713: 578: 460: 234: 109: 93: 1585: 917:
Liu Y, Ma Y, Zhao Y, Sun X, Gándara F, Furukawa H, et al. (January 2016).
733: 313:
molecule. This excites the oxygen molecule into the singlet state, making it a
1548: 1159: 380: 356: 2055: 1902: 1817: 1250: 1204: 1089: 141:
of radiation from incident light, photosensitizers transform into an excited
1054: 985: 943: 918: 868: 746: 661: 372: 217: 213: 189: 2063: 1977: 1942: 1866: 1782: 1764: 1671: 1633: 1521: 1472: 1426: 1388: 1355:"Smart Nanostructures for Cargo Delivery: Uncaging and Activating by Light" 1336: 1021: 952: 845: 807: 1702: 1129: 919:"Weaving of organic threads into a crystalline covalent organic framework" 1969: 1612:
Romero NA, Nicewicz DA (September 2016). "Organic Photoredox Catalysis".
1535:
Bowen EJ (1963). "The Photochemistry of Aromatic Hydrocarbon Solutions".
1464: 1418: 1370: 837: 524: 469: 432: 85: 49: 1594: 1196: 1081: 2037: 1294: 656: 540: 536: 514:
or cancerous masses. This discovery was first observed back in 1907 by
480: 376: 368: 2046: 1894: 1663: 1645: 1643: 1503: 1400: 1398: 1328: 1285: 798: 773: 1242: 1146:
Gollnick K (1968). "Type II Photooxygenation Reactions in Solution".
1108:
Daniell MD, Hill JS (May 1991). "A history of photodynamic therapy".
586: 511: 364: 138: 1721:"Simply shining light on dinosaur metal compound kills cancer cells" 233:
Photosensitizers have existed within natural systems for as long as
133:
Photosensitizers absorb light (hν) and transfer the energy from the
238:
analyzing the results of chemical reactions where photosensitizers
1956:
Zhou Q, Shi G (March 2016). "Conducting Polymer-Based Catalysts".
626: 622: 553: 519: 333: 295: 270: 89: 29: 2083:"Medications and other Agents that Increase Sensitivity to Light" 1039:(3rd ed.). Upper Saddle River, N.J.: Pearson/Prentice Hall. 2022:"Mechanisms of DNA damage by photoexcited 9-methyl-β-carbolines" 585:
material to generate electric energy output. These dyes act as
468:
quantum dots as photosensitizers includes their small, tunable
510:
utilizes Type II photosensitizers to harvest light to degrade
205: 176:
It is important to differentiate photosensitizers from other
740:. International Union of Pure and Applied Chemistry. 2014. 284:
There are two main pathways for photosensitized reactions.
577:
utilize these photosensitizer dyes to absorb photons from
547:
and, after being irradiated with light (a process called
581:
and transfer energy rich electrons to the neighboring
200:
absorb light to become a reactive species, commonly a
543:, creating a photosensitized molecule, can penetrate 535:
In February 2019, medical scientists announced that
523:
the patient's affected area. This light (preferably
251:
methods including reaction-intermediate studies and
1841:"Putting Photosystem I to Work: Truly Green Energy" 1348: 1346: 165:For a molecule to be considered a photosensitizer: 359:to keep the material in the solid state as a salt. 1110:The Australian and New Zealand Journal of Surgery 1006:. Menlo Park, Calif.: Benjamin/Cummings Pub. Co. 819: 817: 1486:Prier CK, Rankic DA, MacMillan DW (July 2013). 44:are light absorbers that alter the course of a 60:, using photosensitizers in reactions such as 300:Diagram of a Type II photosensitized reaction 268:in synthetic chemistry, and cancer treatment. 8: 968:Spin crossover in transition metal compounds 896:(2nd ed.). London: Chapman & Hall. 503:Photodynamic therapy § Photosensitizers 275:Diagram of a Type I photosensitized reaction 180:interactions including, but not limited to, 149:then flips in its intrinsic spin state via 1574:Journal of Photochemistry and Photobiology 435:and the continuum of orbitals in both the 2045: 1856: 1772: 1593: 1511: 1378: 1293: 942: 797: 745: 1958:Journal of the American Chemical Society 1453:Journal of the American Chemical Society 1407:Journal of the American Chemical Society 1359:Journal of the American Chemical Society 861:IUPAC Compendium of Chemical Terminology 826:Journal of the American Chemical Society 350: 119: 2087:Wisconsin Department of Health Services 725: 1607: 1605: 1317:ACS Applied Materials & Interfaces 1309: 1307: 1305: 1216: 1214: 1141: 1139: 1103: 1101: 1099: 1035:Allcock HR, Lampe FW, Mark JE (2003). 778:Environmental Science & Technology 634:Biological effects of photosensitizers 630:properties required for the reaction. 2077: 2075: 2073: 2002: 2000: 1839:Teodor AH, Bruce BD (December 2020). 1543:. John Wiley & Sons, Ltd: 23–42. 1446: 1444: 1154:. John Wiley & Sons, Ltd: 1–122. 997: 995: 767: 765: 763: 761: 759: 757: 280:Types of photosensitization processes 145:. The single electron in the excited 80:. Generally, photosensitizers absorb 7: 2026:Organic & Biomolecular Chemistry 617:for their roles in the catalysis of 397:lowest unoccupied molecular orbital 1810:10.1111/j.1751-1097.1972.tb06297.x 1122:10.1111/j.1445-2197.1991.tb00230.x 393:highest occupied molecular orbital 27:Type of molecule reacting to light 25: 34:A photosensitizer being used in 1798:Photochemistry and Photobiology 1274:Photochemistry and Photobiology 1004:Modern molecular photochemistry 389:metal to ligand charge transfer 326:Composition of photosensitizers 1037:Contemporary polymer chemistry 966:Gütlich P, Goodwin HA (2004). 1: 1935:10.1021/acs.inorgchem.7b03273 1858:10.1016/j.tibtech.2020.04.004 594:Hydrogen generating catalysts 551:), destroy the cancer cells. 100:, which lowers the energy of 1626:10.1021/acs.chemrev.6b00057 264:such as energy harvesting, 2140: 1586:10.1016/j.jpap.2021.100045 1537:Advances in Photochemistry 1148:Advances in Photochemistry 894:Polymer science dictionary 709:Light harvesting materials 575:Dye Sensitized Solar cells 568:Dye sensitized solar cells 500: 129:Mechanistic considerations 2010:1997;30(Suppl 2): 94-101. 1549:10.1002/9780470133316.ch2 1160:10.1002/9780470133361.ch1 699:Dye-sensitized solar cell 679:Artificial photosynthesis 82:electromagnetic radiation 64:, photocrosslinking, and 1845:Trends in Biotechnology 944:10.1126/science.aad4011 869:10.1351/goldbook.P04652 747:10.1351/goldbook.P04652 429:electron delocalization 317:. Upon excitation, the 315:reactive oxygen species 245:reactive oxygen species 90:visible light radiation 18:Photosensitizing agents 1883:Chemistry of Materials 1765:10.1002/anie.201813002 859:"Photosensitization". 559: 427:systems which promote 360: 343: 301: 276: 125: 98:de-localized π-systems 46:photochemical reaction 38: 2119:Drug delivery devices 1717:University of Warwick 557: 516:Hermann von Tappeiner 354: 337: 299: 274: 153:to become an excited 123: 112:as photosensitizers. 94:ultraviolet radiation 33: 1970:10.1021/jacs.5b12474 1465:10.1021/jacs.8b00742 1419:10.1021/jacs.0c07421 1371:10.1021/jacs.6b08313 970:. Berlin: Springer. 838:10.1021/jacs.8b00742 734:"Photosensitization" 704:Photoredox catalysis 689:Photodynamic therapy 619:pericyclic reactions 615:photoredox catalysts 608:Photoredox chemistry 549:photodynamic therapy 508:Photodynamic therapy 497:Photodynamic therapy 266:photoredox catalysis 261:aromatic hydrocarbon 218:Photoacid generators 151:Intersystem crossing 104:orbitals to promote 78:photodynamic therapy 48:. They usually are 36:photodynamic therapy 1923:Inorganic Chemistry 1719:(3 February 2019). 1413:(36): 15219–15229. 1235:1991Natur.353..737O 1197:10.1021/cr00056a003 1082:10.1021/cr00072a005 935:2016Sci...351..365L 790:2012EnST...46.1955G 603:Synthetic chemistry 590:they are attached. 387:counts, to promote 222:Photopolymerization 194:photopolymerization 74:photon upconversion 62:photopolymerization 2038:10.1039/C3OB40344K 2008:Pharmacopsychiatry 560: 361: 344: 302: 277: 126: 86:infrared radiation 39: 2032:(32): 5300–5309. 1895:10.1021/cm9036988 1851:(12): 1329–1342. 1753:Angewandte Chemie 1664:10.1021/nn102722z 1620:(17): 10075–166. 1558:978-0-470-13331-6 1504:10.1021/cr300503r 1459:(18): 5934–5947. 1365:(13): 4584–4610. 1329:10.1021/am501192f 1286:10.1111/php.12716 1229:(6346): 737–740. 1169:978-0-470-13336-1 1002:Turro NJ (1978). 977:978-3-540-40394-4 878:978-0-9678550-9-7 832:(18): 5934–5947. 799:10.1021/es2019675 667:Ethinyl estradiol 518:when he utilized 58:polymer chemistry 16:(Redirected from 2131: 2098: 2097: 2095: 2094: 2079: 2068: 2067: 2049: 2017: 2011: 2004: 1995: 1994:1989;17:257-261. 1988: 1982: 1981: 1953: 1947: 1946: 1929:(5): 2865–2875. 1913: 1907: 1906: 1889:(5): 1915–1925. 1877: 1871: 1870: 1860: 1836: 1830: 1829: 1793: 1787: 1786: 1776: 1759:(8): 2350–2354. 1744: 1738: 1737: 1735: 1733: 1713: 1707: 1706: 1682: 1676: 1675: 1647: 1638: 1637: 1614:Chemical Reviews 1609: 1600: 1599: 1597: 1569: 1563: 1562: 1532: 1526: 1525: 1515: 1492:Chemical Reviews 1483: 1477: 1476: 1448: 1439: 1438: 1402: 1393: 1392: 1382: 1350: 1341: 1340: 1311: 1300: 1299: 1297: 1269: 1263: 1262: 1243:10.1038/353737a0 1218: 1209: 1208: 1185:Chemical Reviews 1180: 1174: 1173: 1143: 1134: 1133: 1105: 1094: 1093: 1070:Chemical Reviews 1065: 1059: 1058: 1032: 1026: 1025: 999: 990: 989: 963: 957: 956: 946: 914: 908: 907: 892:Alger M (1996). 889: 883: 882: 856: 850: 849: 821: 812: 811: 801: 769: 752: 751: 749: 730: 684:Photosensitivity 404:light-harvesting 66:photodegradation 42:Photosensitizers 21: 2139: 2138: 2134: 2133: 2132: 2130: 2129: 2128: 2109: 2108: 2107: 2102: 2101: 2092: 2090: 2081: 2080: 2071: 2019: 2018: 2014: 2005: 1998: 1989: 1985: 1955: 1954: 1950: 1920: 1915: 1914: 1910: 1879: 1878: 1874: 1838: 1837: 1833: 1795: 1794: 1790: 1746: 1745: 1741: 1731: 1729: 1715: 1714: 1710: 1691:Cancer Research 1684: 1683: 1679: 1649: 1648: 1641: 1611: 1610: 1603: 1571: 1570: 1566: 1559: 1534: 1533: 1529: 1485: 1484: 1480: 1450: 1449: 1442: 1404: 1403: 1396: 1352: 1351: 1344: 1323:(10): 7876–84. 1313: 1312: 1303: 1271: 1270: 1266: 1220: 1219: 1212: 1182: 1181: 1177: 1170: 1145: 1144: 1137: 1107: 1106: 1097: 1067: 1066: 1062: 1047: 1034: 1033: 1029: 1014: 1001: 1000: 993: 978: 965: 964: 960: 929:(6271): 365–9. 916: 915: 911: 904: 891: 890: 886: 879: 858: 857: 853: 823: 822: 815: 771: 770: 755: 738:IUPAC Gold Book 732: 731: 727: 722: 675: 647:St. John's Wort 636: 610: 605: 596: 570: 565: 505: 499: 494: 489: 478: 457: 452: 437:conduction band 420: 395:(HOMO) and the 349: 328: 307: 290: 282: 231: 198:Photoinitiators 182:photoinitiators 163: 131: 118: 106:photoexcitation 28: 23: 22: 15: 12: 11: 5: 2137: 2135: 2127: 2126: 2124:Photochemistry 2121: 2111: 2110: 2106: 2105:External links 2103: 2100: 2099: 2069: 2012: 1996: 1992:Tierarztl Prax 1983: 1964:(9): 2868–76. 1948: 1918: 1908: 1872: 1831: 1804:(4): 261–269. 1788: 1739: 1708: 1697:(16): 3571–8. 1677: 1658:(2): 1086–94. 1639: 1601: 1564: 1557: 1527: 1498:(7): 5322–63. 1478: 1440: 1394: 1342: 1301: 1264: 1210: 1191:(4): 425–506. 1175: 1168: 1135: 1095: 1076:(2): 401–449. 1060: 1045: 1027: 1012: 991: 976: 958: 909: 903:978-0412608704 902: 884: 877: 851: 813: 784:(4): 1955–63. 753: 724: 723: 721: 718: 717: 716: 711: 706: 701: 696: 694:Photocatalysis 691: 686: 681: 674: 671: 670: 669: 664: 659: 654: 649: 635: 632: 609: 606: 604: 601: 595: 592: 569: 566: 564: 563:Energy sources 561: 530:singlet oxygen 501:Main article: 498: 495: 493: 490: 488: 485: 477: 474: 463:are nanoscale 456: 453: 451: 446: 419: 416: 348: 347:Organometallic 345: 327: 324: 319:singlet oxygen 311:triplet oxygen 306: 303: 289: 286: 281: 278: 259:consisting of 240:photo-oxidized 230: 227: 210:Photocatalysts 186:photocatalysts 174: 173: 170: 162: 159: 135:incident light 130: 127: 117: 114: 84:consisting of 70:photocatalysis 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2136: 2125: 2122: 2120: 2117: 2116: 2114: 2104: 2088: 2084: 2078: 2076: 2074: 2070: 2065: 2061: 2057: 2053: 2048: 2043: 2039: 2035: 2031: 2027: 2023: 2016: 2013: 2009: 2003: 2001: 1997: 1993: 1987: 1984: 1979: 1975: 1971: 1967: 1963: 1959: 1952: 1949: 1944: 1940: 1936: 1932: 1928: 1924: 1912: 1909: 1904: 1900: 1896: 1892: 1888: 1884: 1876: 1873: 1868: 1864: 1859: 1854: 1850: 1846: 1842: 1835: 1832: 1827: 1823: 1819: 1815: 1811: 1807: 1803: 1799: 1792: 1789: 1784: 1780: 1775: 1770: 1766: 1762: 1758: 1754: 1750: 1743: 1740: 1728: 1727: 1722: 1718: 1712: 1709: 1704: 1700: 1696: 1692: 1688: 1681: 1678: 1673: 1669: 1665: 1661: 1657: 1653: 1646: 1644: 1640: 1635: 1631: 1627: 1623: 1619: 1615: 1608: 1606: 1602: 1596: 1591: 1587: 1583: 1579: 1575: 1568: 1565: 1560: 1554: 1550: 1546: 1542: 1538: 1531: 1528: 1523: 1519: 1514: 1509: 1505: 1501: 1497: 1493: 1489: 1482: 1479: 1474: 1470: 1466: 1462: 1458: 1454: 1447: 1445: 1441: 1436: 1432: 1428: 1424: 1420: 1416: 1412: 1408: 1401: 1399: 1395: 1390: 1386: 1381: 1376: 1372: 1368: 1364: 1360: 1356: 1349: 1347: 1343: 1338: 1334: 1330: 1326: 1322: 1318: 1310: 1308: 1306: 1302: 1296: 1291: 1287: 1283: 1279: 1275: 1268: 1265: 1260: 1256: 1252: 1248: 1244: 1240: 1236: 1232: 1228: 1224: 1217: 1215: 1211: 1206: 1202: 1198: 1194: 1190: 1186: 1179: 1176: 1171: 1165: 1161: 1157: 1153: 1149: 1142: 1140: 1136: 1131: 1127: 1123: 1119: 1115: 1111: 1104: 1102: 1100: 1096: 1091: 1087: 1083: 1079: 1075: 1071: 1064: 1061: 1056: 1052: 1048: 1046:0-13-065056-0 1042: 1038: 1031: 1028: 1023: 1019: 1015: 1013:0-8053-9353-6 1009: 1005: 998: 996: 992: 987: 983: 979: 973: 969: 962: 959: 954: 950: 945: 940: 936: 932: 928: 924: 920: 913: 910: 905: 899: 895: 888: 885: 880: 874: 870: 866: 862: 855: 852: 847: 843: 839: 835: 831: 827: 820: 818: 814: 809: 805: 800: 795: 791: 787: 783: 779: 775: 768: 766: 764: 762: 760: 758: 754: 748: 743: 739: 735: 729: 726: 719: 715: 712: 710: 707: 705: 702: 700: 697: 695: 692: 690: 687: 685: 682: 680: 677: 676: 672: 668: 665: 663: 660: 658: 655: 653: 650: 648: 645: 644: 643: 640: 633: 631: 628: 624: 620: 616: 607: 602: 600: 593: 591: 588: 584: 583:semiconductor 580: 576: 567: 562: 556: 552: 550: 546: 542: 538: 533: 531: 526: 525:near infrared 521: 517: 513: 509: 504: 496: 491: 486: 484: 482: 475: 473: 471: 466: 465:semiconductor 462: 454: 450: 449:Nanomaterials 447: 445: 442: 438: 434: 430: 426: 417: 415: 413: 412:Chlorophyll B 409: 408:Chlorophyll A 405: 400: 398: 394: 390: 386: 382: 378: 374: 370: 366: 358: 353: 346: 341: 340:Chlorophyll A 338:Pictured are 336: 332: 325: 323: 320: 316: 312: 304: 298: 294: 287: 285: 279: 273: 269: 267: 262: 256: 254: 250: 249:spectroscopic 246: 241: 236: 228: 226: 223: 219: 215: 211: 207: 203: 199: 195: 191: 187: 183: 179: 178:photochemical 171: 168: 167: 166: 160: 158: 156: 155:triplet state 152: 148: 147:singlet state 144: 143:singlet state 140: 136: 128: 122: 115: 113: 111: 107: 103: 102:HOMO and LUMO 99: 95: 91: 87: 83: 79: 75: 71: 67: 63: 59: 55: 51: 47: 43: 37: 32: 19: 2091:. Retrieved 2089:. 2013-07-11 2086: 2029: 2025: 2015: 2007: 1991: 1990:Kumper H. . 1986: 1961: 1957: 1951: 1926: 1922: 1911: 1886: 1882: 1875: 1848: 1844: 1834: 1801: 1797: 1791: 1756: 1752: 1742: 1730:. Retrieved 1724: 1711: 1694: 1690: 1680: 1655: 1651: 1617: 1613: 1595:11336/171897 1577: 1573: 1567: 1540: 1536: 1530: 1495: 1491: 1481: 1456: 1452: 1410: 1406: 1362: 1358: 1320: 1316: 1277: 1273: 1267: 1226: 1222: 1188: 1184: 1178: 1151: 1147: 1116:(5): 340–8. 1113: 1109: 1073: 1069: 1063: 1036: 1030: 1003: 967: 961: 926: 922: 912: 893: 887: 860: 854: 829: 825: 781: 777: 737: 728: 641: 637: 611: 597: 571: 545:cancer cells 539:attached to 534: 506: 487:Applications 479: 461:quantum dots 458: 455:Quantum dots 441:valence band 421: 401: 362: 329: 308: 291: 283: 257: 253:luminescence 232: 175: 164: 132: 110:quantum dots 54:ground state 41: 40: 1726:EurekAlert! 1295:11336/64008 1280:: 912–919. 714:Photoswitch 579:solar light 357:counterions 235:chlorophyll 2113:Categories 2093:2022-11-01 2047:11336/2178 1732:3 February 1580:: 100045. 720:References 621:and other 459:Colloidal 425:conjugated 385:d-electron 383:, or high 381:d-orbitals 214:Photoacids 190:photoacids 161:Parameters 2056:1477-0539 1903:0897-4756 1818:1751-1097 1435:221179722 1251:1476-4687 1205:0009-2665 1090:0009-2665 662:Amoxapine 627:oxidation 623:reduction 373:Ruthenium 255:studies. 50:catalysts 2064:23842892 1978:26863332 1943:29446925 1867:32448469 1826:94054808 1783:30552796 1672:21244012 1652:ACS Nano 1634:27285582 1522:23509883 1473:29671586 1427:32810396 1389:28192672 1337:24758570 1055:51096012 986:56798940 953:26798010 863:. 2009. 846:29671586 808:22148293 673:See also 481:Nanorods 476:Nanorods 470:band gap 439:and the 433:band gap 1774:6468315 1703:9721863 1513:4028850 1380:5475407 1259:4340159 1231:Bibcode 1130:2025186 1022:4417476 931:Bibcode 923:Science 786:Bibcode 657:Doxepin 652:9-me-bc 587:dopants 541:albumin 537:iridium 492:Medical 418:Organic 377:Rhodium 369:Iridium 305:Type II 229:History 202:radical 139:photons 2062:  2054:  1976:  1941:  1901:  1865:  1824:  1816:  1781:  1771:  1701:  1670:  1632:  1555:  1520:  1510:  1471:  1433:  1425:  1387:  1377:  1335:  1257:  1249:  1223:Nature 1203:  1166:  1128:  1088:  1053:  1043:  1020:  1010:  984:  974:  951:  900:  875:  844:  806:  512:tumors 375:, and 365:ligand 288:Type I 204:or an 116:Theory 92:, and 1822:S2CID 1431:S2CID 1255:S2CID 520:eosin 2060:PMID 2052:ISSN 1974:PMID 1939:PMID 1899:ISSN 1863:PMID 1814:ISSN 1779:PMID 1734:2019 1699:PMID 1668:PMID 1630:PMID 1553:ISBN 1518:PMID 1469:PMID 1423:PMID 1385:PMID 1333:PMID 1247:ISSN 1201:ISSN 1164:ISBN 1126:PMID 1086:ISSN 1051:OCLC 1041:ISBN 1018:OCLC 1008:ISBN 982:OCLC 972:ISBN 949:PMID 898:ISBN 873:ISBN 842:PMID 804:PMID 625:and 410:and 192:and 76:and 2042:hdl 2034:doi 1966:doi 1962:138 1931:doi 1921:". 1891:doi 1853:doi 1806:doi 1769:PMC 1761:doi 1660:doi 1622:doi 1618:116 1590:hdl 1582:doi 1545:doi 1508:PMC 1500:doi 1496:113 1461:doi 1457:140 1415:doi 1411:142 1375:PMC 1367:doi 1363:139 1325:doi 1290:hdl 1282:doi 1239:doi 1227:353 1193:doi 1156:doi 1118:doi 1078:doi 939:doi 927:351 865:doi 834:doi 830:140 794:doi 742:doi 206:ion 2115:: 2085:. 2072:^ 2058:. 2050:. 2040:. 2030:11 2028:. 2024:. 1999:^ 1972:. 1960:. 1937:. 1927:57 1925:. 1897:. 1887:22 1885:. 1861:. 1849:38 1847:. 1843:. 1820:. 1812:. 1802:16 1800:. 1777:. 1767:. 1757:58 1755:. 1751:. 1723:. 1695:58 1693:. 1689:. 1666:. 1654:. 1642:^ 1628:. 1616:. 1604:^ 1588:. 1576:. 1551:. 1539:. 1516:. 1506:. 1494:. 1490:. 1467:. 1455:. 1443:^ 1429:. 1421:. 1409:. 1397:^ 1383:. 1373:. 1361:. 1357:. 1345:^ 1331:. 1319:. 1304:^ 1288:. 1278:93 1276:. 1253:. 1245:. 1237:. 1225:. 1213:^ 1199:. 1189:83 1187:. 1162:. 1150:. 1138:^ 1124:. 1114:61 1112:. 1098:^ 1084:. 1074:86 1072:. 1049:. 1016:. 994:^ 980:. 947:. 937:. 925:. 921:. 871:. 840:. 828:. 816:^ 802:. 792:. 782:46 780:. 776:. 756:^ 736:. 414:. 371:, 188:, 184:, 88:, 72:, 2096:. 2066:. 2044:: 2036:: 1980:. 1968:: 1945:. 1933:: 1919:2 1917:H 1905:. 1893:: 1869:. 1855:: 1828:. 1808:: 1785:. 1763:: 1736:. 1705:. 1674:. 1662:: 1656:5 1636:. 1624:: 1598:. 1592:: 1584:: 1578:7 1561:. 1547:: 1541:1 1524:. 1502:: 1475:. 1463:: 1437:. 1417:: 1391:. 1369:: 1339:. 1327:: 1321:6 1298:. 1292:: 1284:: 1261:. 1241:: 1233:: 1207:. 1195:: 1172:. 1158:: 1152:6 1132:. 1120:: 1092:. 1080:: 1057:. 1024:. 988:. 955:. 941:: 933:: 906:. 881:. 867:: 848:. 836:: 810:. 796:: 788:: 750:. 744:: 20:)

Index

Photosensitizing agents

photodynamic therapy
photochemical reaction
catalysts
ground state
polymer chemistry
photopolymerization
photodegradation
photocatalysis
photon upconversion
photodynamic therapy
electromagnetic radiation
infrared radiation
visible light radiation
ultraviolet radiation
de-localized π-systems
HOMO and LUMO
photoexcitation
quantum dots

incident light
photons
singlet state
singlet state
Intersystem crossing
triplet state
photochemical
photoinitiators
photocatalysts

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.