Knowledge

State of matter

Source šŸ“

193:) close together and fixed into place. Matter in the liquid state maintains a fixed volume (assuming no change in temperature or air pressure), but has a variable shape that adapts to fit its container. Its particles are still close together but move freely. Matter in the gaseous state has both variable volume and shape, adapting both to fit its container. Its particles are neither close together nor fixed in place. Matter in the plasma state has variable volume and shape, and contains neutral atoms as well as a significant number of ions and 905: 106: 1553:
appear to a stationary observer as a "gluonic wall" traveling near the speed of light. At very high energies, the density of the gluons in this wall is seen to increase greatly. Unlike the quarkā€“gluon plasma produced in the collision of such walls, the color-glass condensate describes the walls themselves, and is an intrinsic property of the particles that can only be observed under high-energy conditions such as those at RHIC and possibly at the Large Hadron Collider as well.
52: 896: 1219: 2995: 1299: 85: 3423: 459: 325: 242: 2455: 1021: 533: 3447: 380: 3459: 1144:(QSL) is a disordered state in a system of interacting quantum spins which preserves its disorder to very low temperatures, unlike other disordered states. It is not a liquid in physical sense, but a solid whose magnetic order is inherently disordered. The name "liquid" is due to an analogy with the molecular disorder in a conventional liquid. A QSL is neither a 3435: 1523:, and allows scientists to observe the properties of individual quarks. Theories predicting the existence of quarkā€“gluon plasma were developed in the late 1970s and early 1980s, and it was detected for the first time in the laboratory at CERN in the year 2000. Unlike plasma, which flows like a gas, interactions within QGP are strong and it flows like a liquid. 999:, which is nematic in the temperature range 118ā€“136 Ā°C (244ā€“277 Ā°F). In this state the molecules flow as in a liquid, but they all point in the same direction (within each domain) and cannot rotate freely. Like a crystalline solid, but unlike a liquid, liquid crystals react to polarized light. 1604:
A supersolid is a spatially ordered material (that is, a solid or crystal) with superfluid properties. Similar to a superfluid, a supersolid is able to move without friction but retains a rigid shape. Although a supersolid is a solid, it exhibits so many characteristic properties different from other
352:
of the substance. Intermolecular (or interatomic or interionic) forces are still important, but the molecules have enough energy to move relative to each other and the structure is mobile. This means that the shape of a liquid is not definite but is determined by its container. The volume is usually
478:
A gas is usually converted to a plasma in one of two ways, either from a huge voltage difference between two points, or by exposing it to extremely high temperatures. Heating matter to high temperatures causes electrons to leave the atoms, resulting in the presence of free electrons. This creates a
1474:
that consist of 2ā€“4 quarks, such as protons and neutrons. Quark matter or quantum chromodynamical (QCD) matter is a group of phases where the strong force is overcome and quarks are deconfined and free to move. Quark matter phases occur at extremely high densities or temperatures, and there are no
1552:
Color-glass condensate is a type of matter theorized to exist in atomic nuclei traveling near the speed of light. According to Einstein's theory of relativity, a high-energy nucleus appears length contracted, or compressed, along its direction of motion. As a result, the gluons inside the nucleus
1056:
also display microphase separation. The anion and cation are not necessarily compatible and would demix otherwise, but electric charge attraction prevents them from separating. Their anions and cations appear to diffuse within compartmentalized layers or micelles instead of freely as in a uniform
1619:
In a string-net liquid, atoms have apparently unstable arrangement, like a liquid, but are still consistent in overall pattern, like a solid. When in a normal solid state, the atoms of matter align themselves in a grid pattern, so that the spin of any electron is the opposite of the spin of all
1620:
electrons touching it. But in a string-net liquid, atoms are arranged in some pattern that requires some electrons to have neighbors with the same spin. This gives rise to curious properties, as well as supporting some unusual proposals about the fundamental conditions of the universe itself.
1156:
magnetic moments that cannot point uniformly parallel or antiparallel. When cooling down and settling to a state, the domain must "choose" an orientation, but if the possible states are similar in energy, one will be chosen randomly. Consequently, despite strong short-range order, there is no
479:
so-called partially ionised plasma. At very high temperatures, such as those present in stars, it is assumed that essentially all electrons are "free", and that a very high-energy plasma is essentially bare nuclei swimming in a sea of electrons. This forms the so-called fully ionised plasma.
1409:
particles from occupying the same quantum state. Unlike regular plasma, degenerate plasma expands little when heated, because there are simply no momentum states left. Consequently, degenerate stars collapse into very high densities. More massive degenerate stars are smaller, because the
866: 572: 1652:
Metals, like potassium, in the chain-melted state appear to be in the liquid and solid state at the same time. This is a result of being subjected to high temperature and pressure, leading to the chains in the potassium to dissolve into liquid while the crystals remain solid.
2021:Ɓlvarez, V.H.; Dosil, N.; Gonzalez-Cabaleiro, R.; Mattedi, S.; Martin-Pastor, M.; Iglesias, M. & Navaza, J.M.: BrĆønsted Ionic Liquids for Sustainable Processes: Synthesis and Physical Properties. Journal of Chemical & Engineering Data 55 (2010), Nr. 2, S. 625ā€“632. 398:), and the typical distance between neighboring molecules is much greater than the molecular size. A gas has no definite shape or volume, but occupies the entire container in which it is confined. A liquid may be converted to a gas by heating at constant pressure to the 1324:
predicted the "Boseā€“Einstein condensate" (BEC), sometimes referred to as the fifth state of matter. In a BEC, matter stops behaving as independent particles, and collapses into a single quantum state that can be described with a single, uniform wavefunction.
2349:
Citat: "...We apparently have observed, for the first time, a solid material with the characteristics of a superfluid...but because all its particles are in the identical quantum state, it remains a solid even though its component particles are continually
428:
respectively. In this state, the distinction between liquid and gas disappears. A supercritical fluid has the physical properties of a gas, but its high density confers solvent properties in some cases, which leads to useful applications. For example,
1180:, and therefore perfect conductivity. This is a distinct physical state which exists at low temperature, and the resistivity increases discontinuously to a finite value at a sharply-defined transition temperature for each superconductor. 1699:
interacting with a gas develop apparent mass, and can interact with each other, even forming photonic "molecules". The source of mass is the gas, which is massive. This is in contrast to photons moving in empty space, which have no
253:
are so strong that the particles cannot move freely but can only vibrate. As a result, a solid has a stable, definite shape, and a definite volume. Solids can only change their shape by an outside force, as when broken or cut.
1577:(10 K), gravity becomes a significant force between individual particles. No current theory can describe these states and they cannot be produced with any foreseeable experiment. However, these states are important in 792: 577: 576: 573: 578: 1428:. Vast gravitational pressure compresses atoms so strongly that the electrons are forced to combine with protons via inverse beta-decay, resulting in a superdense conglomeration of neutrons. Normally free 2302: 1401:, which are supported mainly by quantum mechanical effects. In physics, "degenerate" refers to two states that have the same energy and are thus interchangeable. Degenerate matter is supported by the 1448:. Because of the degeneracy, more massive brown dwarfs are not significantly larger. In metals, the electrons can be modeled as a degenerate gas moving in a lattice of non-degenerate positive ions. 1076:
of electrons that remain unpaired and do not form chemical bonds. In some solids the magnetic moments on different atoms are ordered and can form a ferromagnet, an antiferromagnet or a ferrimagnet.
1681:
is a theoretical phase that may pave the way for the development of electronic devices that dissipate less energy and generate less heat. This is a derivation of the Quantum Hall state of matter.
991:
Liquid crystal states have properties intermediate between mobile liquids and ordered solids. Generally, they are able to flow like a liquid, but exhibiting long-range order. For example, the
575: 871:
Matter in the plasma state is seldom used (if at all) in chemical equations, so there is no standard symbol to denote it. In the rare equations that plasma is used it is symbolized as (p).
2909: 1378:
prevents fermions from entering the same quantum state, but a pair of fermions can behave as a boson, and multiple such pairs can then enter the same quantum state without restriction.
1519:
that binds quarks together. This is analogous to the liberation of electrons from atoms in a plasma. This state is briefly attainable in extremely high-energy heavy ion collisions in
608: 740:
conditions, transitioning to other phases as these conditions change to favor their existence; for example, solid transitions to liquid with an increase in temperature. Near
1202:
The phenomenon of superconductivity was discovered in 1911, and for 75 years was only known in some metals and metallic alloys at temperatures below 30 K. In 1986 so-called
302:
Solids can be transformed into liquids by melting, and liquids can be transformed into solids by freezing. Solids can also change directly into gases through the process of
1050:
structures. Depending on the relative lengths of each block and the overall block topology of the polymer, many morphologies can be obtained, each its own phase of matter.
1436:
with a half life of approximately 10 minutes, but in a neutron star, the decay is overtaken by inverse decay. Cold degenerate matter is also present in planets such as
544:. A phase transition indicates a change in structure and can be recognized by an abrupt change in properties. A distinct state of matter can be defined as any set of 1397:
Under extremely high pressure, as in the cores of dead stars, ordinary matter undergoes a transition to a series of exotic states of matter collectively known as
1344:, produced the first such condensate experimentally. A Boseā€“Einstein condensate is "colder" than a solid. It may occur when atoms have very similar (or the same) 413:, and can be liquefied by compression alone without cooling. A vapor can exist in equilibrium with a liquid (or solid), in which case the gas pressure equals the 2902: 2310: 1125:, the two networks of magnetic moments are opposite but unequal, so that cancellation is incomplete and there is a non-zero net magnetization. An example is 2111: 2392: 510:, and stars are all examples of illuminated matter in the plasma state. Plasma is by far the most abundant of the four fundamental states, as 99% of all 2191:
Heinz, Ulrich; Jacob, Maurice (16 February 2000). "Evidence for a New State of Matter: An Assessment of the Results from the CERN Lead Beam Programme".
560:
states are demarcated by phase transitions and have distinctive properties. When the change of state occurs in stages the intermediate steps are called
1486: 2167:
Statistical Mechanics of Quarks and Hadrons: Proceedings of an International Symposium Held at the University of Bielefeld, F.R.G., August 24ā€“31, 1980
1526:
At high densities but relatively low temperatures, quarks are theorized to form a quark liquid whose nature is presently unknown. It forms a distinct
1475:
known ways to produce them in equilibrium in the laboratory; in ordinary conditions, any quark matter formed immediately undergoes radioactive decay.
930:
when heated towards the liquid state. Glasses can be made of quite different classes of materials: inorganic networks (such as window glass, made of
482:
The plasma state is often misunderstood, and although not freely existing under normal conditions on Earth, it is quite commonly generated by either
2895: 1042:
and water. Due to chemical incompatibility between the blocks, block copolymers undergo a similar phase separation. However, because the blocks are
601: 574: 2213: 552:. Water can be said to have several distinct solid states. The appearance of superconductivity is associated with a phase transition, so there are 1177: 861:{\displaystyle {\text{2 Na (s) + 2 H}}_{2}{\text{O (l)}}\rightarrow {\text{H}}_{2}\,{\text{(g) + 2 Na}}^{+}{\text{(aq) + 2 OH}}^{-}{\text{(aq)}}} 1002:
Other types of liquid crystals are described in the main article on these states. Several types have technological importance, for example, in
2175: 2138: 1979: 1954: 1894: 1867: 1824: 1797: 1772: 1328:
In the gas phase, the Boseā€“Einstein condensate remained an unverified theoretical prediction for many years. In 1995, the research groups of
1114:
has two networks of equal and opposite magnetic moments, which cancel each other out so that the net magnetization is zero. For example, in
767:
Forms of matter that are not composed of molecules and are organized by different forces can also be considered different states of matter.
913:
Schematic representation of a random-network glassy form (left) and ordered crystalline lattice (right) of identical chemical composition.
336:
that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. The volume is definite if the
210:
for state of matter, but it is possible for a single compound to form different phases that are in the same state of matter. For example,
115:, showing whether solid ice, liquid water, or gaseous water vapor is the most stable at different combinations of temperature and pressure 3497: 594: 387:
A gas is a compressible fluid. Not only will a gas conform to the shape of its container but it will also expand to fill the container.
1255:
of 2.17 K (āˆ’270.98 Ā°C; āˆ’455.76 Ā°F). In this state it will attempt to "climb" out of its container. It also has infinite
2338:
Citat: "... They have become the first to create a new type of matter, a gas of atoms that shows high-temperature superfluidity."
1203: 3439: 3492: 3427: 2053: 1919: 1341: 1152:, where the magnetic domains are antiparallel; instead, the magnetic domains are randomly oriented. This can be realized e.g. by 1025: 782:
In a chemical equation, the state of matter of the chemicals may be shown as (s) for solid, (l) for liquid, and (g) for gas. An
2659: 261:, the particles (atoms, molecules, or ions) are packed in a regularly ordered, repeating pattern. There are various different 2729: 2654: 2385: 2142: 2084: 661: 434: 177:
Historically, the distinction is based on qualitative differences in properties. Matter in the solid state maintains a fixed
3463: 3408: 3019: 2841: 2669: 692: 307: 2954: 2724: 2469: 1311: 1275: 962:
is a molecular solid with long-range positional order but with constituent molecules retaining rotational freedom; in an
155: 2851: 967: 430: 292: 2361: 1493:), although there is no direct evidence of its existence. In strange matter, part of the energy available manifests as 171: 1034:
can undergo microphase separation to form a diverse array of periodic nanostructures, as shown in the example of the
2359:
Short videos demonstrating of States of Matter, solids, liquids and gases by Prof. J M Murrell, University of Sussex
3487: 3199: 3108: 2076: 1196: 2354:
2004-01-29, ScienceDaily: NIST/University Of Colorado Scientists Create New Form Of Matter: A Fermionic Condensate
281:
has fifteen known crystal structures, or fifteen solid phases, which exist at various temperatures and pressures.
3502: 3148: 3123: 2378: 1402: 1375: 163: 3072: 1527: 3318: 3062: 2918: 2876: 2775: 2405: 2101: 1743: 1723: 1677: 38: 3164: 2770: 1713: 1511:
become free and able to move independently, rather than being perpetually bound into particles, in a sea of
1153: 303: 2530: 1504: 776: 167: 2795: 2785: 2535: 1840: 1547: 1192: 1003: 383:
Simple illustration of particles in the gas state ā€“ in reality these particles will be much further apart.
3215: 3194: 3128: 1118:(NiO), half the nickel atoms have moments aligned in one direction and half in the opposite direction. 1561:
Various theories predict new states of matter at very high energies. An unknown state has created the
1046:
to each other, they cannot demix macroscopically as water and oil can, and so instead the blocks form
105: 3184: 2959: 2714: 2474: 2267: 2246:
G. Murthy; et al. (1997). "Superfluids and Supersolids on Frustrated Two-Dimensional Lattices".
1570: 1520: 1361: 1279: 1260: 1256: 772: 718: 467: 425: 406: 362: 274: 270: 159: 1306:
as it is cooled: the starting material is on the left, and Boseā€“Einstein condensate is on the right.
3138: 3118: 3103: 3052: 2689: 2581: 2571: 2484: 2439: 2106: 1662: 1321: 1287: 1141: 1038:
shown at right. Microphase separation can be understood by analogy to the phase separation between
963: 545: 421: 296: 3446: 3285: 3275: 3024: 2836: 2765: 2599: 2353: 2346: 2341: 2283: 2257: 2192: 1946: 1647: 1574: 1516: 1433: 1149: 1111: 3113: 1995:
Shao, Y.; Zerda, T.W. (1998). "Phase Transitions of Liquid Crystal PAA in Confined Geometries".
1183:
A superconductor also excludes all magnetic fields from its interior, a phenomenon known as the
950:
with respect to its crystalline counterpart. The conversion rate, however, is practically zero.
249:
In a solid, constituent particles (ions, atoms, or molecules) are closely packed together. The
51: 3393: 3358: 3265: 3189: 2866: 2861: 2831: 2790: 2679: 2631: 2616: 2509: 2479: 2248: 2221: 2171: 2080: 2049: 1975: 1950: 1890: 1863: 1820: 1793: 1768: 1718: 1614: 1445: 1421: 1413: 1398: 1392: 1171: 996: 553: 541: 527: 262: 250: 219: 2070: 3363: 3255: 3235: 3230: 3225: 3220: 3077: 3057: 3014: 2979: 2949: 2821: 2444: 2275: 2022: 2004: 1884: 1814: 1562: 1115: 1065: 1035: 947: 939: 927: 783: 757: 644: 587: 549: 491: 453: 245:
Simple illustration of particles in the solid state ā€“ they are closely packed to each other.
147: 94: 69: 1573:
is predicted for superstrings at about 10 K, where superstrings are copiously produced. At
1218: 3388: 3009: 2811: 2664: 2365: 2041: 2026: 1690: 1531: 1317: 1298: 1184: 1088: 1069: 959: 923: 511: 288: 3343: 265:, and the same substance can have more than one structure (or solid phase). For example, 181:(assuming no change in temperature or air pressure) and shape, with component particles ( 2271: 1247:(or infinite fluidity; i.e., flowing without friction). This was discovered in 1937 for 3451: 3398: 3280: 3169: 2994: 2609: 2604: 2561: 2494: 2489: 1478: 1264: 1145: 1122: 1096: 1080: 1073: 986: 565: 557: 499: 487: 441: 414: 391: 202: 151: 31: 1263:
can form in a superfluid. Placing a superfluid in a spinning container will result in
328:
Simple illustration of particles in the liquid state ā€“ they can flow and change shape.
84: 3481: 3323: 3305: 3290: 3270: 3174: 3143: 2974: 2846: 2826: 2749: 2709: 2644: 2576: 2499: 2287: 1728: 1566: 1494: 1349: 1222: 1100: 1043: 992: 753: 749: 741: 424:(SCF) is a gas whose temperature and pressure are above the critical temperature and 399: 345: 215: 458: 324: 299:
ground states; therefore they are described below as nonclassical states of matter.
241: 3260: 3082: 2984: 2871: 2744: 2739: 2734: 2699: 2649: 2566: 1738: 1733: 1672: 1535: 1501:. It may be stable at lower energy states once formed, although this is not known. 1482: 1467: 1425: 1420:
stars. Electrons remain bound to atoms but are able to transfer to adjacent atoms.
1345: 1329: 1252: 1188: 1053: 1020: 935: 697: 680: 503: 463: 349: 2347:
2004-01-15, ScienceDaily: Probable Discovery Of A New, Supersolid, Phase Of Matter
2335: 2134: 2165: 3380: 3098: 3067: 3047: 2780: 2674: 2586: 2454: 2342:
2003-10-10, Science Daily: Metallic Phase For Bosons Implies New State Of Matter
1441: 1417: 1333: 1226: 1104: 768: 737: 532: 379: 337: 904: 3295: 3133: 2969: 2719: 2694: 2621: 2591: 2525: 2504: 1635: 1629: 1599: 1498: 1490: 1457: 1410:
gravitational force increases, but pressure does not increase proportionally.
1234: 1031: 974: 704: 17: 2279: 2225: 1239:
Close to absolute zero, some liquids form a second liquid state described as
1087:ā€”the magnetic moment on each atom is aligned in the same direction (within a 353:
greater than that of the corresponding solid, the best known exception being
3353: 3179: 2964: 1701: 1578: 1282:
superfluids have been formed at even lower temperatures by the rare isotope
1244: 1126: 1047: 1015: 761: 561: 495: 483: 395: 186: 2887: 2370: 1911: 2856: 2684: 2358: 2262: 1582: 1303: 1283: 1271: 943: 931: 733: 673: 437: 341: 194: 2197: 1886:
Plasma Physics: An Introduction to Laboratory, Space, and Fusion Plasmas
536:
This diagram shows the nomenclature for the different phase transitions.
3403: 3370: 3348: 3328: 2816: 2704: 2639: 2556: 2551: 1437: 1429: 1406: 1371: 1207: 656: 258: 207: 123: 57: 2008: 1634:
A superglass is a phase of matter characterized, at the same time, by
3338: 3333: 2939: 2425: 1696: 1471: 1270:
These properties are explained by the theory that the common isotope
1248: 1092: 634: 471: 394:
so that the effect of intermolecular forces is small (or zero for an
319: 178: 139: 131: 90: 61: 2214:"Particle Physicists Getting Closer To the Bang That Started It All" 1210:
oxides, and has now been observed in temperatures as high as 164 K.
361:
O. The highest temperature at which a given liquid can exist is its
748:. As heat is added to this substance it melts into a liquid at its 273:
structure at temperatures below 912 Ā°C (1,674 Ā°F), and a
3313: 2934: 2434: 2420: 1512: 1508: 1485:
that is suspected to exist inside some neutron stars close to the
1463: 1297: 1217: 1137:), which contains Fe and Fe ions with different magnetic moments. 1019: 919: 895: 885: 745: 629: 570: 531: 515: 507: 457: 410: 378: 354: 333: 323: 284: 240: 236: 182: 135: 134:
can exist. Four states of matter are observable in everyday life:
112: 73: 2303:"Confirmed: New phase of matter is solid and liquid at same time" 1581:
because the universe may have passed through these states in the
1337: 1084: 348:, it becomes liquid, given that the pressure is higher than the 266: 190: 2891: 2374: 1675:
measured in the direction perpendicular to the current flow. A
1466:, fundamental particles of nuclear matter, are confined by the 154:, and some states only exist under extreme conditions, such as 2944: 2430: 2336:
2005-06-22, MIT News: MIT physicists create new form of matter
1039: 639: 374: 278: 211: 143: 65: 1225:
in a superfluid phase creeps up on the walls of the cup in a
1091:). If the domains are also aligned, the solid is a permanent 306:, and gases can likewise change directly into solids through 402:, or else by reducing the pressure at constant temperature. 222:, which are formed at different pressures and temperatures. 1370:
is similar to the Boseā€“Einstein condensate but composed of
1278:(see next section) in the superfluid state. More recently, 27:
Forms, such as solid, liquid and gas, which matter can take
1765:
Solid State Physics: Structure and Properties of Materials
564:. Such phases have been exploited by the introduction of 277:
structure between 912 and 1,394 Ā°C (2,541 Ā°F).
1095:, which is magnetic even in the absence of an external 150:. Many intermediate states are known to exist, such as 1605:
solids that many argue it is another state of matter.
2102:"Strange but True: Superfluid Helium Can Climb Walls" 795: 764:
are so energized that they leave their parent atoms.
1530:(CFL) phase at even higher densities. This phase is 214:
is the solid state of water, but there are multiple
3379: 3304: 3248: 3208: 3157: 3091: 3040: 3033: 3002: 2925: 2804: 2758: 2630: 2544: 2518: 2462: 2413: 1565:in the universe, but little is known about it. In 860: 1107:, which for iron is 768 Ā°C (1,414 Ā°F). 732:of a given set of matter can change depending on 548:distinguished from any other set of states by a 1974:. Oxford Science Publications. pp. 10ā€“12. 344:are constant. When a solid is heated above its 1176:Superconductors are materials which have zero 1148:, where magnetic domains are parallel, nor an 514:in the universe is plasma, as it composes all 2903: 2386: 2048:. Oxford University Press. pp. 254ā€“258. 602: 8: 1860:Physics of the Solar Corona. An Introduction 1534:for color charge. These phases may occur in 1103:disappears when the magnet is heated to the 995:consists of long rod-like molecules such as 582:Ice cubes melting showing a change in state 540:A state of matter is also characterized by 37:For a list of exotic states of matter, see 3037: 2993: 2910: 2896: 2888: 2393: 2379: 2371: 2135:"MIT physicists create new form of matter" 2036: 2034: 1507:is a very high-temperature phase in which 756:, and if heated high enough would enter a 609: 595: 2261: 2196: 1444:, which are expected to have a core with 1036:styrene-butadiene-styrene block copolymer 853: 847: 842: 835: 830: 828: 822: 817: 808: 802: 797: 794: 1515:, subatomic particles that transmit the 585: 474:particles in the air, creating a plasma. 197:, both of which can move around freely. 1819:. John Wiley & Sons. pp. 3ā€“5. 1755: 1229:, eventually dripping out from the cup. 462:Artificial plasma produced in air by a 1695:Photonic matter is a phenomenon where 966:this degree of freedom is frozen in a 130:is one of the distinct forms in which 2145:from the original on 11 December 2013 1816:Gas Dynamics: Theory and Applications 1352:, āˆ’273.15 Ā°C (āˆ’459.67 Ā°F). 1251:, which forms a superfluid below the 954:Crystals with some degree of disorder 946:. Thermodynamically, a glass is in a 7: 3434: 1883:Piel, Alexander (7 September 2017). 1538:but they are presently theoretical. 390:In a gas, the molecules have enough 332:A liquid is a nearly incompressible 3458: 2027:10.1021/je900550v 10.1021/je900550v 1497:, a heavier analogue of the common 2114:from the original on 19 March 2011 1638:and a frozen amorphous structure. 1204:high-temperature superconductivity 934:plus additives), metallic alloys, 25: 2212:Glanz, James (10 February 2000). 2072:Introduction to Superconductivity 1972:Electronic Structure of Materials 1922:from the original on 3 March 2016 1342:University of Colorado at Boulder 3457: 3445: 3433: 3422: 3421: 2453: 2100:J.R. Minkel (20 February 2009). 1487:Tolmanā€“Oppenheimerā€“Volkoff limit 1348:, at temperatures very close to 903: 894: 104: 83: 50: 1997:Journal of Physical Chemistry B 1767:. Alpha Science. pp. 1ā€“3. 1432:outside an atomic nucleus will 111:A simplified phase diagram for 1195:are used as electromagnets in 813: 786:is denoted (aq), for example, 1: 3020:Spontaneous symmetry breaking 2842:Macroscopic quantum phenomena 1910:M. Chaplin (20 August 2009). 1440:and in the even more massive 977:magnetic disorder is frozen. 2852:Order and disorder (physics) 1841:"Plasma, Plasma, Everywhere" 431:supercritical carbon dioxide 2301:Mann, Adam (8 April 2019). 2133:L. Valigra (22 June 2005). 1916:Water Structure and Science 1161:Superfluids and condensates 1157:long-range magnetic order. 1061:Magnetically ordered states 287:and other non-crystalline, 3519: 3498:Engineering thermodynamics 3200:Spin gapless semiconductor 3109:Nearly free electron model 1858:Aschwanden, M. J. (2004). 1792:. McGraw-Hill. p. 4. 1688: 1660: 1645: 1627: 1612: 1597: 1545: 1455: 1414:Electron-degenerate matter 1390: 1359: 1309: 1232: 1206:was discovered in certain 1197:magnetic resonance imaging 1169: 1013: 984: 883: 752:, boils into a gas at its 744:, a substance exists as a 525: 451: 417:of the liquid (or solid). 405:At temperatures below its 372: 317: 234: 166:(in extreme density), and 36: 29: 3417: 3149:Density functional theory 3124:electronic band structure 2991: 2451: 1422:Neutron-degenerate matter 1403:Pauli exclusion principle 1376:Pauli exclusion principle 942:, molecular liquids, and 926:material that exhibits a 409:, a gas is also called a 164:neutron-degenerate matter 156:Boseā€“Einstein condensates 3493:Condensed matter physics 3319:Bogoliubov quasiparticle 3063:Quantum spin Hall effect 2955:Boseā€“Einstein condensate 2919:Condensed matter physics 2877:Thermo-dielectric effect 2776:Enthalpy of vaporization 2470:Boseā€“Einstein condensate 2280:10.1103/PhysRevB.55.3104 1744:List of states of matter 1724:Condensed matter physics 1671:gives rise to quantized 1462:In regular cold matter, 1312:Boseā€“Einstein condensate 1294:Boseā€“Einstein condensate 1276:Boseā€“Einstein condensate 1154:geometrically frustrated 922:is a non-crystalline or 251:forces between particles 39:List of states of matter 30:Not to be confused with 2771:Enthalpy of sublimation 2046:Properties of Materials 1941:D.L. Goodstein (1985). 1714:Hidden states of matter 1704:, and cannot interact. 1678:quantum spin Hall state 1557:Very high energy states 1193:Superconducting magnets 1024:SBS block copolymer in 1004:liquid crystal displays 466:. The extremely strong 206:is sometimes used as a 2786:Latent internal energy 2536:Color-glass condensate 1548:Color-glass condensate 1542:Color-glass condensate 1307: 1230: 1178:electrical resistivity 1028: 862: 583: 537: 475: 440:in the manufacture of 384: 329: 246: 93:'s orange glow in its 68:state, encased inside 3195:Topological insulator 3129:Anderson localization 2596:Magnetically ordered 2364:30 March 2023 at the 1912:"Water phase Diagram" 1862:. Praxis Publishing. 1589:Other proposed states 1521:particle accelerators 1405:, which prevents two 1302:Velocity in a gas of 1301: 1221: 1083:ā€”for instance, solid 1023: 1010:Microphase separation 981:Liquid crystal states 863: 581: 535: 470:between the two rods 461: 382: 327: 244: 226:Four classical states 160:Fermionic condensates 3073:Aharonovā€“Bohm effect 2960:Fermionic condensate 2475:Fermionic condensate 1970:A.P. Sutton (1993). 1750:Notes and references 1571:Hagedorn temperature 1368:fermionic condensate 1362:Fermionic condensate 1356:Fermionic condensate 1280:fermionic condensate 1261:temperature gradient 1257:thermal conductivity 1243:because it has zero 875:Non-classical states 793: 773:Fermionic condensate 468:potential difference 407:critical temperature 363:critical temperature 3464:Physics WikiProject 3139:tight binding model 3119:Fermi liquid theory 3104:Free electron model 3053:Quantum Hall effect 3034:Electrons in solids 2690:Chemical ionization 2582:Programmable matter 2572:Quantum spin liquid 2440:Supercritical fluid 2307:National Geographic 2272:1997PhRvB..55.3104M 2107:Scientific American 2069:M. Tinkham (2004). 1847:. 7 September 1999. 1813:G. Turrell (1997). 1763:M.A. Wahab (2005). 1663:Quantum Hall effect 1528:color-flavor locked 1489:(approximately 2ā€“3 1322:Satyendra Nath Bose 1142:quantum spin liquid 968:quenched disordered 964:orientational glass 760:state in which the 617: 422:supercritical fluid 297:thermal equilibrium 162:(in extreme cold), 3025:Critical phenomena 2837:Leidenfrost effect 2766:Enthalpy of fusion 2531:Quarkā€“gluon plasma 2218:The New York Times 2079:. pp. 17ā€“23. 1669:quantum Hall state 1657:Quantum Hall state 1648:Chain-melted state 1642:Chain-melted state 1575:Planck temperature 1505:Quarkā€“gluon plasma 1382:High-energy states 1308: 1265:quantized vortices 1253:lambda temperature 1231: 1029: 858: 777:quarkā€“gluon plasma 586: 584: 556:states. Likewise, 538: 500:plasma televisions 492:fluorescent lights 476: 385: 330: 275:face-centred cubic 271:body-centred cubic 263:crystal structures 259:crystalline solids 247: 220:crystal structures 168:quarkā€“gluon plasma 3488:Phase transitions 3473: 3472: 3359:Exciton-polariton 3244: 3243: 3216:Thermoelectricity 2885: 2884: 2867:Superheated vapor 2862:Superconductivity 2832:Equation of state 2680:Flash evaporation 2632:Phase transitions 2617:String-net liquid 2510:Photonic molecule 2480:Degenerate matter 2249:Physical Review B 2177:978-0-444-86227-3 2170:. North-Holland. 2164:Satz, H. (1981). 2009:10.1021/jp9734437 2003:(18): 3387ā€“3394. 1981:978-0-19-851754-2 1956:978-0-486-49506-4 1896:978-3-319-63427-2 1869:978-3-540-22321-4 1826:978-0-471-97573-1 1799:978-0-07-240217-9 1788:F. White (2003). 1774:978-1-84265-218-3 1719:Classical element 1615:String-net liquid 1609:String-net liquid 1446:metallic hydrogen 1399:degenerate matter 1393:Degenerate matter 1387:Degenerate matter 1172:Superconductivity 1068:atoms often have 1044:covalently bonded 997:para-azoxyanisole 940:aqueous solutions 856: 845: 833: 820: 811: 800: 726: 725: 588:Phase transitions 579: 542:phase transitions 528:Phase transitions 522:Phase transitions 426:critical pressure 16:(Redirected from 3510: 3503:Phases of matter 3461: 3460: 3449: 3437: 3436: 3425: 3424: 3364:Phonon polariton 3256:Amorphous magnet 3236:Electrostriction 3231:Flexoelectricity 3226:Ferroelectricity 3221:Piezoelectricity 3078:Josephson effect 3058:Spin Hall effect 3038: 3015:Phase transition 2997: 2980:Luttinger liquid 2927:States of matter 2912: 2905: 2898: 2889: 2822:Compressed fluid 2457: 2402:States of matter 2395: 2388: 2381: 2372: 2323: 2322: 2320: 2318: 2313:on 14 April 2021 2309:. Archived from 2298: 2292: 2291: 2265: 2263:cond-mat/9607217 2243: 2237: 2236: 2234: 2232: 2209: 2203: 2202: 2200: 2188: 2182: 2181: 2161: 2155: 2154: 2152: 2150: 2130: 2124: 2123: 2121: 2119: 2097: 2091: 2090: 2066: 2060: 2059: 2042:White, Mary Anne 2038: 2029: 2019: 2013: 2012: 1992: 1986: 1985: 1967: 1961: 1960: 1943:States of Matter 1938: 1932: 1931: 1929: 1927: 1907: 1901: 1900: 1880: 1874: 1873: 1855: 1849: 1848: 1837: 1831: 1830: 1810: 1804: 1803: 1785: 1779: 1778: 1760: 1563:baryon asymmetry 1416:is found inside 1116:nickel(II) oxide 1070:magnetic moments 1066:Transition metal 973:Similarly, in a 948:metastable state 928:glass transition 907: 898: 867: 865: 864: 859: 857: 854: 852: 851: 846: 843: 840: 839: 834: 831: 827: 826: 821: 818: 812: 809: 807: 806: 801: 798: 784:aqueous solution 618: 611: 604: 597: 580: 550:phase transition 506:, some types of 454:Plasma (physics) 293:long-range order 289:amorphous solids 108: 87: 54: 21: 3518: 3517: 3513: 3512: 3511: 3509: 3508: 3507: 3478: 3477: 3474: 3469: 3413: 3394:Granular matter 3389:Amorphous solid 3375: 3300: 3286:Antiferromagnet 3276:Superparamagnet 3249:Magnetic phases 3240: 3204: 3153: 3114:Bloch's theorem 3087: 3029: 3010:Order parameter 3003:Phase phenomena 2998: 2989: 2921: 2916: 2886: 2881: 2812:Baryonic matter 2800: 2754: 2725:Saturated fluid 2665:Crystallization 2626: 2600:Antiferromagnet 2540: 2514: 2458: 2449: 2409: 2399: 2366:Wayback Machine 2332: 2327: 2326: 2316: 2314: 2300: 2299: 2295: 2245: 2244: 2240: 2230: 2228: 2211: 2210: 2206: 2198:nucl-th/0002042 2190: 2189: 2185: 2178: 2163: 2162: 2158: 2148: 2146: 2132: 2131: 2127: 2117: 2115: 2099: 2098: 2094: 2087: 2068: 2067: 2063: 2056: 2040: 2039: 2032: 2020: 2016: 1994: 1993: 1989: 1982: 1969: 1968: 1964: 1957: 1940: 1939: 1935: 1925: 1923: 1909: 1908: 1904: 1897: 1882: 1881: 1877: 1870: 1857: 1856: 1852: 1839: 1838: 1834: 1827: 1812: 1811: 1807: 1800: 1790:Fluid Mechanics 1787: 1786: 1782: 1775: 1762: 1761: 1757: 1752: 1710: 1693: 1691:Photonic matter 1687: 1685:Photonic matter 1665: 1659: 1650: 1644: 1632: 1626: 1617: 1611: 1602: 1596: 1591: 1559: 1550: 1544: 1532:superconductive 1460: 1454: 1395: 1389: 1384: 1364: 1358: 1318:Albert Einstein 1314: 1296: 1237: 1216: 1185:Meissner effect 1174: 1168: 1163: 1150:antiferromagnet 1136: 1132: 1112:antiferromagnet 1089:magnetic domain 1072:due to the net 1063: 1048:nanometre-sized 1018: 1012: 989: 983: 960:plastic crystal 956: 924:amorphous solid 917: 916: 915: 914: 910: 909: 908: 900: 899: 888: 882: 877: 841: 829: 816: 796: 791: 790: 626: 623: 615: 571: 554:superconductive 530: 524: 512:ordinary matter 488:electric sparks 456: 450: 377: 371: 360: 322: 316: 239: 233: 228: 218:with different 128:state of matter 120: 119: 118: 117: 116: 109: 100: 99: 98: 88: 79: 78: 77: 55: 42: 35: 28: 23: 22: 15: 12: 11: 5: 3516: 3514: 3506: 3505: 3500: 3495: 3490: 3480: 3479: 3471: 3470: 3468: 3467: 3455: 3452:Physics Portal 3443: 3431: 3418: 3415: 3414: 3412: 3411: 3406: 3401: 3399:Liquid crystal 3396: 3391: 3385: 3383: 3377: 3376: 3374: 3373: 3368: 3367: 3366: 3361: 3351: 3346: 3341: 3336: 3331: 3326: 3321: 3316: 3310: 3308: 3306:Quasiparticles 3302: 3301: 3299: 3298: 3293: 3288: 3283: 3278: 3273: 3268: 3266:Superdiamagnet 3263: 3258: 3252: 3250: 3246: 3245: 3242: 3241: 3239: 3238: 3233: 3228: 3223: 3218: 3212: 3210: 3206: 3205: 3203: 3202: 3197: 3192: 3190:Superconductor 3187: 3182: 3177: 3172: 3170:Mott insulator 3167: 3161: 3159: 3155: 3154: 3152: 3151: 3146: 3141: 3136: 3131: 3126: 3121: 3116: 3111: 3106: 3101: 3095: 3093: 3089: 3088: 3086: 3085: 3080: 3075: 3070: 3065: 3060: 3055: 3050: 3044: 3042: 3035: 3031: 3030: 3028: 3027: 3022: 3017: 3012: 3006: 3004: 3000: 2999: 2992: 2990: 2988: 2987: 2982: 2977: 2972: 2967: 2962: 2957: 2952: 2947: 2942: 2937: 2931: 2929: 2923: 2922: 2917: 2915: 2914: 2907: 2900: 2892: 2883: 2882: 2880: 2879: 2874: 2869: 2864: 2859: 2854: 2849: 2844: 2839: 2834: 2829: 2824: 2819: 2814: 2808: 2806: 2802: 2801: 2799: 2798: 2793: 2791:Trouton's rule 2788: 2783: 2778: 2773: 2768: 2762: 2760: 2756: 2755: 2753: 2752: 2747: 2742: 2737: 2732: 2727: 2722: 2717: 2712: 2707: 2702: 2697: 2692: 2687: 2682: 2677: 2672: 2667: 2662: 2660:Critical point 2657: 2652: 2647: 2642: 2636: 2634: 2628: 2627: 2625: 2624: 2619: 2614: 2613: 2612: 2607: 2602: 2594: 2589: 2584: 2579: 2574: 2569: 2564: 2562:Liquid crystal 2559: 2554: 2548: 2546: 2542: 2541: 2539: 2538: 2533: 2528: 2522: 2520: 2516: 2515: 2513: 2512: 2507: 2502: 2497: 2495:Strange matter 2492: 2490:Rydberg matter 2487: 2482: 2477: 2472: 2466: 2464: 2460: 2459: 2452: 2450: 2448: 2447: 2442: 2437: 2428: 2423: 2417: 2415: 2411: 2410: 2400: 2398: 2397: 2390: 2383: 2375: 2369: 2368: 2356: 2351: 2344: 2339: 2331: 2330:External links 2328: 2325: 2324: 2293: 2238: 2204: 2183: 2176: 2156: 2125: 2092: 2085: 2061: 2054: 2030: 2014: 1987: 1980: 1962: 1955: 1933: 1902: 1895: 1875: 1868: 1850: 1832: 1825: 1805: 1798: 1780: 1773: 1754: 1753: 1751: 1748: 1747: 1746: 1741: 1736: 1731: 1726: 1721: 1716: 1709: 1706: 1689:Main article: 1686: 1683: 1661:Main article: 1658: 1655: 1646:Main article: 1643: 1640: 1628:Main article: 1625: 1622: 1613:Main article: 1610: 1607: 1598:Main article: 1595: 1592: 1590: 1587: 1558: 1555: 1546:Main article: 1543: 1540: 1495:strange quarks 1479:Strange matter 1456:Main article: 1453: 1450: 1391:Main article: 1388: 1385: 1383: 1380: 1360:Main article: 1357: 1354: 1346:quantum levels 1310:Main article: 1295: 1292: 1233:Main article: 1215: 1212: 1170:Main article: 1167: 1166:Superconductor 1164: 1162: 1159: 1134: 1130: 1097:magnetic field 1062: 1059: 1014:Main article: 1011: 1008: 987:Liquid crystal 985:Main article: 982: 979: 955: 952: 912: 911: 902: 901: 893: 892: 891: 890: 889: 884:Main article: 881: 878: 876: 873: 869: 868: 850: 838: 825: 815: 805: 799:2 Na (s) + 2 H 779:are examples. 724: 723: 721: 716: 714: 712: 708: 707: 702: 700: 695: 690: 686: 685: 683: 678: 676: 671: 667: 666: 664: 659: 654: 652: 648: 647: 642: 637: 632: 627: 624: 621: 614: 613: 606: 599: 591: 566:liquid crystal 526:Main article: 523: 520: 464:Jacob's Ladder 452:Main article: 449: 446: 415:vapor pressure 392:kinetic energy 373:Main article: 370: 367: 358: 318:Main article: 315: 312: 235:Main article: 232: 229: 227: 224: 170:(at extremely 152:liquid crystal 110: 103: 102: 101: 89: 82: 81: 80: 56: 49: 48: 47: 46: 45: 32:Phase (matter) 26: 24: 18:Physical state 14: 13: 10: 9: 6: 4: 3: 2: 3515: 3504: 3501: 3499: 3496: 3494: 3491: 3489: 3486: 3485: 3483: 3476: 3466: 3465: 3456: 3454: 3453: 3448: 3444: 3442: 3441: 3432: 3430: 3429: 3420: 3419: 3416: 3410: 3407: 3405: 3402: 3400: 3397: 3395: 3392: 3390: 3387: 3386: 3384: 3382: 3378: 3372: 3369: 3365: 3362: 3360: 3357: 3356: 3355: 3352: 3350: 3347: 3345: 3342: 3340: 3337: 3335: 3332: 3330: 3327: 3325: 3322: 3320: 3317: 3315: 3312: 3311: 3309: 3307: 3303: 3297: 3294: 3292: 3289: 3287: 3284: 3282: 3279: 3277: 3274: 3272: 3269: 3267: 3264: 3262: 3259: 3257: 3254: 3253: 3251: 3247: 3237: 3234: 3232: 3229: 3227: 3224: 3222: 3219: 3217: 3214: 3213: 3211: 3207: 3201: 3198: 3196: 3193: 3191: 3188: 3186: 3183: 3181: 3178: 3176: 3175:Semiconductor 3173: 3171: 3168: 3166: 3163: 3162: 3160: 3156: 3150: 3147: 3145: 3144:Hubbard model 3142: 3140: 3137: 3135: 3132: 3130: 3127: 3125: 3122: 3120: 3117: 3115: 3112: 3110: 3107: 3105: 3102: 3100: 3097: 3096: 3094: 3090: 3084: 3081: 3079: 3076: 3074: 3071: 3069: 3066: 3064: 3061: 3059: 3056: 3054: 3051: 3049: 3046: 3045: 3043: 3039: 3036: 3032: 3026: 3023: 3021: 3018: 3016: 3013: 3011: 3008: 3007: 3005: 3001: 2996: 2986: 2983: 2981: 2978: 2976: 2973: 2971: 2968: 2966: 2963: 2961: 2958: 2956: 2953: 2951: 2948: 2946: 2943: 2941: 2938: 2936: 2933: 2932: 2930: 2928: 2924: 2920: 2913: 2908: 2906: 2901: 2899: 2894: 2893: 2890: 2878: 2875: 2873: 2870: 2868: 2865: 2863: 2860: 2858: 2855: 2853: 2850: 2848: 2847:Mpemba effect 2845: 2843: 2840: 2838: 2835: 2833: 2830: 2828: 2827:Cooling curve 2825: 2823: 2820: 2818: 2815: 2813: 2810: 2809: 2807: 2803: 2797: 2794: 2792: 2789: 2787: 2784: 2782: 2779: 2777: 2774: 2772: 2769: 2767: 2764: 2763: 2761: 2757: 2751: 2750:Vitrification 2748: 2746: 2743: 2741: 2738: 2736: 2733: 2731: 2728: 2726: 2723: 2721: 2718: 2716: 2715:Recombination 2713: 2711: 2710:Melting point 2708: 2706: 2703: 2701: 2698: 2696: 2693: 2691: 2688: 2686: 2683: 2681: 2678: 2676: 2673: 2671: 2668: 2666: 2663: 2661: 2658: 2656: 2655:Critical line 2653: 2651: 2648: 2646: 2645:Boiling point 2643: 2641: 2638: 2637: 2635: 2633: 2629: 2623: 2620: 2618: 2615: 2611: 2608: 2606: 2603: 2601: 2598: 2597: 2595: 2593: 2590: 2588: 2585: 2583: 2580: 2578: 2577:Exotic matter 2575: 2573: 2570: 2568: 2565: 2563: 2560: 2558: 2555: 2553: 2550: 2549: 2547: 2543: 2537: 2534: 2532: 2529: 2527: 2524: 2523: 2521: 2517: 2511: 2508: 2506: 2503: 2501: 2498: 2496: 2493: 2491: 2488: 2486: 2483: 2481: 2478: 2476: 2473: 2471: 2468: 2467: 2465: 2461: 2456: 2446: 2443: 2441: 2438: 2436: 2432: 2429: 2427: 2424: 2422: 2419: 2418: 2416: 2412: 2407: 2403: 2396: 2391: 2389: 2384: 2382: 2377: 2376: 2373: 2367: 2363: 2360: 2357: 2355: 2352: 2348: 2345: 2343: 2340: 2337: 2334: 2333: 2329: 2312: 2308: 2304: 2297: 2294: 2289: 2285: 2281: 2277: 2273: 2269: 2264: 2259: 2255: 2251: 2250: 2242: 2239: 2227: 2223: 2219: 2215: 2208: 2205: 2199: 2194: 2187: 2184: 2179: 2173: 2169: 2168: 2160: 2157: 2144: 2140: 2136: 2129: 2126: 2113: 2109: 2108: 2103: 2096: 2093: 2088: 2082: 2078: 2077:Courier Dover 2074: 2073: 2065: 2062: 2057: 2055:0-19-511331-4 2051: 2047: 2043: 2037: 2035: 2031: 2028: 2024: 2018: 2015: 2010: 2006: 2002: 1998: 1991: 1988: 1983: 1977: 1973: 1966: 1963: 1958: 1952: 1948: 1947:Dover Phoenix 1944: 1937: 1934: 1921: 1917: 1913: 1906: 1903: 1898: 1892: 1888: 1887: 1879: 1876: 1871: 1865: 1861: 1854: 1851: 1846: 1842: 1836: 1833: 1828: 1822: 1818: 1817: 1809: 1806: 1801: 1795: 1791: 1784: 1781: 1776: 1770: 1766: 1759: 1756: 1749: 1745: 1742: 1740: 1737: 1735: 1732: 1730: 1729:Cooling curve 1727: 1725: 1722: 1720: 1717: 1715: 1712: 1711: 1707: 1705: 1703: 1698: 1692: 1684: 1682: 1680: 1679: 1674: 1670: 1664: 1656: 1654: 1649: 1641: 1639: 1637: 1636:superfluidity 1631: 1623: 1621: 1616: 1608: 1606: 1601: 1593: 1588: 1586: 1584: 1580: 1576: 1572: 1568: 1567:string theory 1564: 1556: 1554: 1549: 1541: 1539: 1537: 1536:neutron stars 1533: 1529: 1524: 1522: 1518: 1514: 1510: 1506: 1502: 1500: 1496: 1492: 1488: 1484: 1481:is a type of 1480: 1476: 1473: 1469: 1465: 1459: 1451: 1449: 1447: 1443: 1439: 1435: 1431: 1427: 1426:neutron stars 1423: 1419: 1415: 1411: 1408: 1404: 1400: 1394: 1386: 1381: 1379: 1377: 1373: 1369: 1363: 1355: 1353: 1351: 1350:absolute zero 1347: 1343: 1339: 1335: 1331: 1326: 1323: 1319: 1313: 1305: 1300: 1293: 1291: 1289: 1285: 1281: 1277: 1273: 1268: 1266: 1262: 1258: 1254: 1250: 1246: 1242: 1236: 1228: 1224: 1223:Liquid helium 1220: 1213: 1211: 1209: 1205: 1200: 1198: 1194: 1190: 1186: 1181: 1179: 1173: 1165: 1160: 1158: 1155: 1151: 1147: 1143: 1138: 1128: 1124: 1119: 1117: 1113: 1108: 1106: 1102: 1101:magnetization 1098: 1094: 1090: 1086: 1082: 1077: 1075: 1071: 1067: 1060: 1058: 1055: 1054:Ionic liquids 1051: 1049: 1045: 1041: 1037: 1033: 1027: 1022: 1017: 1009: 1007: 1005: 1000: 998: 994: 993:nematic phase 988: 980: 978: 976: 971: 969: 965: 961: 953: 951: 949: 945: 941: 937: 933: 929: 925: 921: 906: 897: 887: 879: 874: 872: 848: 836: 823: 803: 789: 788: 787: 785: 780: 778: 774: 770: 765: 763: 759: 755: 754:boiling point 751: 750:melting point 747: 743: 742:absolute zero 739: 735: 731: 728:The state or 722: 720: 719:Recombination 717: 715: 713: 710: 709: 706: 703: 701: 699: 696: 694: 691: 688: 687: 684: 682: 679: 677: 675: 672: 669: 668: 665: 663: 660: 658: 655: 653: 650: 649: 646: 643: 641: 638: 636: 633: 631: 628: 620: 619: 612: 607: 605: 600: 598: 593: 592: 589: 569: 567: 563: 559: 558:ferromagnetic 555: 551: 547: 543: 534: 529: 521: 519: 517: 513: 509: 505: 501: 497: 493: 489: 485: 480: 473: 469: 465: 460: 455: 447: 445: 443: 442:decaffeinated 439: 436: 432: 427: 423: 418: 416: 412: 408: 403: 401: 400:boiling point 397: 393: 388: 381: 376: 368: 366: 364: 356: 351: 347: 346:melting point 343: 339: 335: 326: 321: 313: 311: 309: 305: 300: 298: 294: 290: 286: 282: 280: 276: 272: 268: 264: 260: 255: 252: 243: 238: 230: 225: 223: 221: 217: 216:phases of ice 213: 209: 205: 204: 198: 196: 192: 188: 184: 180: 175: 173: 169: 165: 161: 157: 153: 149: 145: 141: 137: 133: 129: 125: 114: 107: 96: 92: 86: 75: 71: 67: 63: 59: 53: 44: 40: 33: 19: 3475: 3462: 3450: 3438: 3426: 3344:Pines' demon 3083:Kondo effect 2985:Time crystal 2926: 2872:Superheating 2745:Vaporization 2740:Triple point 2735:Supercooling 2700:Lambda point 2650:Condensation 2567:Time crystal 2545:Other states 2485:Quantum Hall 2401: 2315:. Retrieved 2311:the original 2306: 2296: 2253: 2247: 2241: 2229:. Retrieved 2217: 2207: 2186: 2166: 2159: 2147:. Retrieved 2128: 2116:. Retrieved 2105: 2095: 2071: 2064: 2045: 2017: 2000: 1996: 1990: 1971: 1965: 1942: 1936: 1924:. Retrieved 1915: 1905: 1889:. Springer. 1885: 1878: 1859: 1853: 1845:NASA Science 1844: 1835: 1815: 1808: 1789: 1783: 1764: 1758: 1739:Superheating 1734:Supercooling 1694: 1676: 1673:Hall voltage 1668: 1666: 1651: 1633: 1618: 1603: 1560: 1551: 1525: 1517:strong force 1503: 1491:solar masses 1483:quark matter 1477: 1468:strong force 1461: 1452:Quark matter 1442:brown dwarfs 1424:is found in 1412: 1396: 1367: 1365: 1330:Eric Cornell 1327: 1315: 1269: 1240: 1238: 1201: 1189:diamagnetism 1182: 1175: 1139: 1120: 1109: 1078: 1064: 1052: 1030: 1001: 990: 972: 957: 918: 870: 781: 766: 729: 727: 698:Condensation 681:Vaporization 568:technology. 539: 504:Sun's corona 481: 477: 419: 404: 389: 386: 350:triple point 331: 301: 283: 256: 248: 201: 199: 176: 127: 121: 43: 3381:Soft matter 3281:Ferromagnet 3099:Drude model 3068:Berry phase 3048:Hall effect 2781:Latent heat 2730:Sublimation 2675:Evaporation 2610:Ferromagnet 2605:Ferrimagnet 2587:Dark matter 2519:High energy 2350:flowing..." 2317:13 November 2256:(5): 3104. 2149:23 February 2118:23 February 1926:23 February 1418:white dwarf 1334:Carl Wieman 1259:so that no 1227:Rollin film 1187:or perfect 1146:ferromagnet 1123:ferrimagnet 1105:Curie point 1081:ferromagnet 936:ionic melts 844:(aq) + 2 OH 769:Superfluids 738:temperature 662:Sublimation 590:of matter ( 496:neon lights 433:is used to 338:temperature 304:sublimation 172:high energy 3482:Categories 3296:Spin glass 3291:Metamagnet 3271:Paramagnet 3158:Conduction 3134:BCS theory 2975:Superfluid 2970:Supersolid 2796:Volatility 2759:Quantities 2720:Regelation 2695:Ionization 2670:Deposition 2622:Superglass 2592:Antimatter 2526:QCD matter 2505:Supersolid 2500:Superfluid 2463:Low energy 2086:0486435032 1630:Superglass 1624:Superglass 1600:Supersolid 1594:Supersolid 1499:down quark 1458:QCD matter 1241:superfluid 1235:Superfluid 1214:Superfluid 1199:machines. 1032:Copolymers 975:spin glass 832:(g) + 2 Na 775:) and the 705:Ionization 693:Deposition 562:mesophases 308:deposition 3354:Polariton 3261:Diamagnet 3209:Couplings 3185:Conductor 3180:Semimetal 3165:Insulator 3041:Phenomena 2965:Fermi gas 2288:119498444 2226:0362-4331 1702:rest mass 1579:cosmology 1407:fermionic 1316:In 1924, 1288:lithium-6 1245:viscosity 1127:magnetite 1016:Copolymer 849:− 814:→ 762:electrons 484:lightning 396:ideal gas 200:The term 195:electrons 187:molecules 3428:Category 3409:Colloids 2857:Spinodal 2805:Concepts 2685:Freezing 2362:Archived 2143:Archived 2139:MIT News 2112:Archived 2044:(1999). 1920:Archived 1708:See also 1583:Big Bang 1430:neutrons 1372:fermions 1304:rubidium 1284:helium-3 1274:forms a 1272:helium-4 1057:liquid. 944:polymers 932:silicate 734:pressure 674:Freezing 444:coffee. 438:caffeine 342:pressure 295:are not 291:without 60:in both 3440:Commons 3404:Polymer 3371:Polaron 3349:Plasmon 3329:Exciton 2817:Binodal 2705:Melting 2640:Boiling 2557:Crystal 2552:Colloid 2268:Bibcode 1697:photons 1472:hadrons 1438:Jupiter 1340:at the 1286:and by 1208:ceramic 970:state. 711:Plasma 670:Liquid 657:Melting 435:extract 285:Glasses 208:synonym 124:physics 70:acrylic 58:Bromine 3339:Phonon 3334:Magnon 3092:Theory 2950:Plasma 2940:Liquid 2445:Plasma 2426:Liquid 2286:  2231:10 May 2224:  2174:  2083:  2052:  1978:  1953:  1893:  1866:  1823:  1796:  1771:  1513:gluons 1509:quarks 1464:quarks 1374:. The 1249:helium 1099:. The 1093:magnet 771:(like 758:plasma 651:Solid 645:Plasma 635:Liquid 546:states 502:. The 498:or in 472:ionize 448:Plasma 320:Liquid 314:Liquid 269:has a 179:volume 148:plasma 146:, and 140:liquid 132:matter 95:plasma 91:Helium 62:liquid 3314:Anyon 2935:Solid 2435:Vapor 2421:Solid 2414:State 2284:S2CID 2258:arXiv 2193:arXiv 1470:into 1434:decay 1336:, of 1121:In a 1079:In a 920:Glass 886:Glass 880:Glass 810:O (l) 746:solid 730:phase 630:Solid 516:stars 508:flame 411:vapor 355:water 334:fluid 237:Solid 231:Solid 203:phase 183:atoms 136:solid 113:water 97:state 76:state 74:solid 3324:Hole 2406:list 2319:2023 2233:2020 2222:ISSN 2172:ISBN 2151:2010 2120:2010 2081:ISBN 2050:ISBN 1976:ISBN 1951:ISBN 1928:2010 1891:ISBN 1864:ISBN 1821:ISBN 1794:ISBN 1769:ISBN 1569:, a 1338:JILA 1332:and 1320:and 1085:iron 1074:spin 855:(aq) 736:and 689:Gas 625:From 340:and 267:iron 191:ions 158:and 126:, a 64:and 2945:Gas 2431:Gas 2276:doi 2023:doi 2005:doi 2001:102 1129:(Fe 1110:An 1040:oil 1026:TEM 640:Gas 375:Gas 369:Gas 357:, H 279:Ice 257:In 212:ice 189:or 174:). 144:gas 122:In 72:in 66:gas 3484:: 2433:/ 2305:. 2282:. 2274:. 2266:. 2254:55 2252:. 2220:. 2216:. 2141:. 2137:. 2110:. 2104:. 2075:. 2033:^ 1999:. 1949:. 1945:. 1918:. 1914:. 1843:. 1667:A 1585:. 1366:A 1290:. 1267:. 1191:. 1140:A 1006:. 958:A 938:, 622:To 616:) 518:. 494:, 490:, 486:, 420:A 365:. 310:. 185:, 142:, 138:, 2911:e 2904:t 2897:v 2408:) 2404:( 2394:e 2387:t 2380:v 2321:. 2290:. 2278:: 2270:: 2260:: 2235:. 2201:. 2195:: 2180:. 2153:. 2122:. 2089:. 2058:. 2025:: 2011:. 2007:: 1984:. 1959:. 1930:. 1899:. 1872:. 1829:. 1802:. 1777:. 1135:4 1133:O 1131:3 837:+ 824:2 819:H 804:2 610:e 603:t 596:v 359:2 41:. 34:. 20:)

Index

Physical state
Phase (matter)
List of states of matter

Bromine
liquid
gas
acrylic
solid

Helium
plasma

water
physics
matter
solid
liquid
gas
plasma
liquid crystal
Boseā€“Einstein condensates
Fermionic condensates
neutron-degenerate matter
quarkā€“gluon plasma
high energy
volume
atoms
molecules
ions

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

ā†‘