Knowledge (XXG)

Komagataella

Source 📝

65: 2587:
Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S, Bobrowicz P, Stadheim TA, Li H, Choi BK, Hopkins D, Wischnewski H, Roser J, Mitchell T, Strawbridge RR, Hoopes J, Wildt S, Gerngross TU (September 2006). "Humanization of yeast to produce complex terminally sialylated glycoproteins".
560:
was mainly used as the host system for transformation. Due to its abilities of recombination with foreign DNA and processing large proteins, much research has been carried out to investigate the possibility of producing new proteins and the function of artificially designed proteins, using
202:. Later studies have further distinguished new species in this genus, resulting in a total of 7 recognized species. It is not uncommon to see the old name still in use in the context of protein production, as of 2023; in less formal use, the yeast may confusingly be referred to as 873:
can grow up to a very high cell density. Under ideal conditions, it can multiply to the point where the cell suspension is practically a paste. As the protein yield from expression system in a microbe is roughly equal to the product of the proteins produced per cell, which makes
1602:
M. M. Guarna G. J. Lesnicki B. M. Tam J. Robinson C. Z. Radziminski D. Hasenwinkle A. Boraston E. Jervis R. T. A. MacGillivray R. F. B. Turner D. G. Kilburn (1997). "On-line monitoring and control of methanol concentration in shake-flask cultures of Pichia pastoris".
1144:
Yamada, Yuzo; Matsuda, Minako; Maeda, Kojiro; Mikata, Kozaburo (January 1995). "The Phylogenetic Relationships of Methanol-assimilating Yeasts Based on the Partial Sequences of 18S and 26S Ribosomal RNAs: The Proposal of Komagataella Gen. Nov. (Saccharomycetaceae)".
747:
is unable to produce a number of proteins, since it does not contain the appropriate chaperones. The technologies of introducing genes of mammalian chaperonins into the yeast genome and overexpressing existing chaperonins still require improvement.
1681:
Brigitte Gasser, Roland Prielhofer, Hans Marx, Michael Maurer, Justyna Nocon, Matthias Steiger, Verena Puxbaum, Michael Sauer & Diethard Mattanovich (2013). "Pichia pastoris: protein production host and model organism for biomedical research".
975:
in its normal glycosylation form, by exchanging the enzymes responsible for the fungal type glycosylation, with the mammalian homologs. Thus, the altered glycosylation pattern allowed the protein to be fully functional.
1859:
Gould, S. J., McCollum, D., Spong, A. P., Heyman, J. A., & Subramani, S. (1992). "Development of the yeast Pichia pastoris as a model organism for a genetic and molecular analysis of peroxisome assembly".
428:
can be grown and used easily in lab. Like other widely used yeast models, it has relatively short life span and fast regeneration time. Moreover, some inexpensive culture media have been designed, so that
2250:
Morton, C. L., & Potter, P. M. (2000). "Comparison of Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, Spodoptera frugiperda, and COS7 cells for recombinant gene expression".
2199:
Zhou, X., Yu, Y., Tao, J., & Yu, L. (2014). "Production of LYZL6, a novel human c-type lysozyme, in recombinant Pichia pastoris employing high cell density fed-batch fermentation".
692:
promoter, which means that protein production can be induced by the addition of methanol on medium. After several researches, scientists found that the promotor derived from
2360:"Identification of novel factors enhancing recombinant protein production in multi-copy Komagataella phaffii based on transcriptomic analysis of overexpression effects" 2674: 2295: 2236: 2072: 1968: 1903: 1845: 1786: 1719: 1588: 1513: 1409: 1101: 2972: 2828: 2088:"Modeling Pichia pastoris growth on methanol and optimizing the production of a recombinant protein, the heavy-chain fragment C of botulinum neurotoxin, serotype A" 2998: 2553:"Increased expression and secretion of recombinant hIFNγ through amino acid starvation-induced selective pressure on the adjacent HIS4 gene in Pichia pastoris" 715:
can grow with extremely high cell density on the culture. This feature is compatible with heterologous protein expression, giving higher yields of production.
44: 603:
are used for biotechnical purposes, with significant differences among them in growth and protein production. Some common variants possess a mutation in the
867:
with reasonably strong methanol solution, which would kill most other micro-organisms. In this case, the expression system is cheap to set up and maintain.
2639:
Spohner, S. C., Müller, H., Quitmann, H., & Czermak, P. (2015). "Expression of enzymes for the usage in food and feed industry with Pichia pastoris".
409:. The growth rate of its colonies can vary by a large range, from near to 0 to a doubling time of one hour, which is suitable for industrial processes. 1735:"Pichia pastoris versus Saccharomyces cerevisiae: a case study on the recombinant production of human granulocyte-macrophage colony-stimulating factor" 514:
has the ability to functionally process proteins with large molecular weight, which is useful in a translational host. Considering all the advantages,
537:, with complete genome data and its ability to carry out complex eukaryotic genetic processing in a relatively small genome. The functional genes for 2127:
Daly R, Hearn MT (2005). "Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production".
2959: 2815: 2201: 449:
system. The complete genomic data allows scientists to identify homologous proteins and evolutionary relationships between other yeast species and
1354: 2480: 2439: 1117: 770:, due to its features of fast growth rate, high protein production rate, as well as undemanding growth conditions. Protein production in 726:, which is one of the most well-studied yeast model organisms. As a result, the experiment protocol and materials are easy to build for 1618: 465:. Then the homologous comparison to other more complicated eukaryotic species can be processed, to obtain their functions and origins. 825:
might produce a misfolded protein when disulfides are included in final product, leading to inactive or insoluble forms of proteins.
2048: 1821: 1444: 1255:"Biotechnological strains of Komagataella (Pichia) pastoris are Komagataella phaffii as determined from multigene sequence analysis" 2087: 797:, so that a large number of clones has to be screened for protein production, to find the best producer. The biggest advantage of 2172: 2092: 1605: 1529:"Improvement of a fermentation process for the production of two PfAMA1-DiCo-based malaria vaccine candidates in Pichia pastoris" 3064: 2422:
Cregg JM, Tolstorukov I, Kusari A, Sunga J, Madden K, Chappell T (2009). "Chapter 13 Expression in the Yeast Pichia pastoris".
2552: 1923: 2105: 1640:
De Schutter K, Lin YC, Tiels P, Van Hecke A, Glinka S, Weber-Lehmann J, Rouzé P, Van de Peer Y, Callewaert N (June 2009).
1297:
Heistinger, L; Dohm, JC; Paes, BG; Koizar, D; Troyer, C; Ata, Ö; Steininger-Mairinger, T; Mattanovich, D (25 April 2022).
666: 486:
have been well studied for decades and used by researchers for various purposes throughout history. The two yeast genera;
2311:"Hac1p homologues from higher eukaryotes can improve the secretion of heterologous proteins in the yeast Pichia pastoris" 64: 3049: 2691:
Barone, GD; Emmerstorfer-Augustin, A; Biundo, A; Pisano, I; Coccetti, P; Mapelli, V; Camattari, A (26 February 2023).
1350:"Pichia pastoris exhibits high viability and a low maintenance energy requirement at near-zero specific growth rates" 3003: 1000:
can keep the bread soft. Meanwhile, in beer, enzymes could be used to lower the alcohol concentration. Recombinant
889: 612: 441:
GS115 genome has been sequenced by the Flanders Institute for Biotechnology and Ghent University, and published in
1460:
Zörgö E, Chwialkowska K, Gjuvsland AB, Garré E, Sunnerhagen P, Liti G, Blomberg A, Omholt SW, Warringer J (2013).
608: 305: 1348:
Rebnegger, C., Vos, T., Graf, A. B., Valli, M., Pronk, J. T., Daran-Lapujade, P., & Mattanovich, D. (2016).
1299:"Genotypic and phenotypic diversity among Komagataella species reveals a hidden pathway for xylose utilization" 604: 474: 264: 1206:"Microbe Profile: Komagataella phaffii: a methanol devouring biotech yeast formerly known as Pichia pastoris" 254: 2252: 936: 884: 1984:"Comparative genome-scale analysis of Pichia pastoris variants informs selection of an optimal base strain" 274: 3054: 2744: 2506:"Is Pichia pastoris a realistic platform for industrial production of recombinant human interferon gamma?" 912:. These types of media significantly increase the cost of producing heterologous proteins. Additionally, 897: 573:
platforms, which is a typical application for a standard experimental model organism, as described below.
284: 295: 2668: 2289: 2230: 1962: 1897: 1839: 1780: 1713: 1582: 1507: 1403: 1095: 398: 315: 2463:
Brondyk WH (2009). "Chapter 11 Selecting an Appropriate Method for Expressing a Recombinant Protein".
700:
is extremely suitable to control the expression of foreign genes, which had been transformed into the
43: 3013: 2933: 2856: 2807: 2597: 2371: 1542: 1363: 1115:
Koichi Ogata, Hideo Nishikawa & Masahiro Ohsugi (1969). "A Yeast Capable of Utilizing Methanol".
1064: 374: 2951: 1800:
Heidebrecht, Aniela, and Thomas Scheibel (2013). "Recombinant production of spider silk proteins".
1684: 971:. In 2006, a research group managed to create a new strain called YSH597. This strain can express 640: 378: 401:, haploid cells undergo mitosis for reproduction. In the sexual life cycle, diploid cells undergo 2621: 2533: 2340: 2277: 2152: 2066: 1885: 669: 226: 59: 2170:
Romanos, Mike. (1995). "Advances in the use of Pichia pastoris for high-level gene expression".
424:
was investigated and identified as a good model organism with several advantages. First of all,
2911: 2833: 3021: 2977: 2920: 2864: 2776: 2724: 2656: 2613: 2525: 2486: 2476: 2445: 2435: 2399: 2332: 2269: 2218: 2144: 2109: 2054: 2044: 2013: 1950: 1877: 1827: 1817: 1768: 1701: 1663: 1622: 1570: 1495: 1440: 1391: 1330: 1276: 1235: 1227: 1162: 1083: 757: 570: 175: 116: 3026: 2869: 2714: 2704: 2648: 2605: 2567: 2517: 2468: 2427: 2389: 2379: 2322: 2261: 2210: 2181: 2136: 2101: 2036: 2003: 1995: 1940: 1932: 1869: 1809: 1758: 1748: 1693: 1653: 1614: 1560: 1550: 1533: 1485: 1475: 1432: 1381: 1371: 1320: 1310: 1266: 1217: 1154: 1126: 1073: 956: 878:
of great use when trying to produce large quantities of protein without expensive equipment.
762: 708: 534: 126: 2086:
Wenhui Zhang Mark A. Bevins Bradley A. Plantz Leonard A. Smith Michael M. Meagher. (2000).
3059: 1001: 864: 654: 588: 446: 222: 106: 2719: 2692: 2601: 2375: 1546: 1367: 2946: 2802: 2394: 2359: 2008: 1983: 1813: 1763: 1734: 1565: 1528: 1490: 1461: 1436: 1386: 1349: 1325: 1298: 989: 972: 968: 952: 779: 479: 230: 2521: 2472: 2431: 1945: 1918: 3043: 2185: 1739: 1466: 993: 960: 909: 900:
from multicellular organisms require complex and expensive types of media, including
814: 498: 218: 2625: 2537: 2344: 2281: 859:, meaning that it can grow with the simple methanol, as the only source of energy — 766:
is the most frequently used organism for expression system, to produce heterologous
2781: 2156: 1889: 1130: 856: 688:. Usually, the gene for the desired protein is introduced under the control of the 592: 214: 168: 2925: 2652: 996:, with many functions. For example, some enzymes produced by genetically modified 2896: 2214: 1480: 346:. They are heterotrophs and they can use several carbon sources for living, like 2905: 1016: 921: 901: 2384: 1555: 1315: 959:. At the beginning, one drawback of this protein expression system is the over- 17: 2327: 2310: 2265: 2040: 2031:
Higgins, D. R., & Cregg, J. M. (1998). "Introduction to Pichia pastoris".
1753: 1271: 1254: 740: 538: 493: 458: 433:
can grow quickly on them, with high cell density. Whole genome sequencing for
96: 2767: 2693:"Industrial Production of Proteins with Pichia pastoris-Komagataella phaffii" 2504:
Razaghi A, Tan E, Lua LH, Owens L, Karthikeyan OP, Heimann K (January 2017).
1231: 2789: 2609: 2572: 1917:
Cregg, J. M., Barringer, K. J., Hessler, A. Y., & Madden, K. R. (1985).
1642:"Genome sequence of the recombinant protein production host Pichia pastoris" 1060:"Genome sequence of the recombinant protein production host Pichia pastoris" 1053: 1051: 810: 644: 518:
can be usefully employed as both a genetic and experimental model organism.
386: 76: 2728: 2660: 2617: 2529: 2490: 2449: 2403: 2358:
Yu, Xiao-Wei; Sun, Wei-Hong; Wang, Ying-Zheng; Xu, Yan (24 November 2017).
2336: 2273: 2222: 2148: 2113: 2017: 1831: 1772: 1705: 1667: 1626: 1574: 1499: 1395: 1334: 1280: 1239: 1087: 2058: 1954: 1936: 1881: 1873: 1619:
10.1002/(SICI)1097-0290(19971105)56:3<279::AID-BIT5>3.0.CO;2-G
1166: 2985: 2890: 2841: 2761: 2709: 1376: 1222: 1205: 917: 767: 681: 355: 351: 343: 185: 1204:
Heistinger, Lina; Gasser, Brigitte; Mattanovich, Diethard (2020-07-01).
939:. All the applications are based on its feature of expressing proteins. 541:
assembly were investigated by comparing wild-type and mutant strains of
2964: 2820: 1697: 1183: 1158: 1012: 964: 905: 794: 789:
cells have to be produced immediately before use. Expression yields in
685: 406: 382: 359: 347: 291:– responsible for most, if not all, industrial & research use 237:
has become important for biological research and biotech applications.
1999: 635:
is able to grow on simple, inexpensive medium, with high growth rate.
502:, have similar growth conditions and tolerances; thus, the culture of 453:. In addition, all seven species were sequenced by 2022. Furthermore, 2846: 1658: 1641: 1078: 1059: 677: 647:, which makes it suitable for both small- and large-scale production. 488: 461:
cells, which means researchers could investigate the proteins inside
445:. The genome sequence and gene annotation can be browsed through the 394: 86: 2990: 2738: 2551:
Ali Razaghi; Roger Huerlimann; Leigh Owens; Kirsten Heimann (2015).
2505: 2140: 920:
source, which is suitable for isotopic labelling applications, like
506:
can be adopted by labs without many modifications. Moreover, unlike
2794: 2106:
10.1002/1097-0290(20001005)70:1<1::AID-BIT1>3.0.CO;2-Y
832:
is also used as an expression system with similar advantages over
402: 279:(Guillierm., 1919) Y.Yamada, M.Matsuda, K.Maeda & Mikata, 1995 171: 2938: 310:(Dlauchy, Tornai-Leh., Fülöp & G.Péter, 2003) Kurtzman, 2005 246: 2742: 1004:
can degum high-phosphorus oils by breaking down phospholipids.
935:
have been used in several kinds of biotech industries, such as
2035:. Methods in Molecular Biology. Vol. 103. pp. 1–15. 1184:"Komagataella Y.Yamada, M.Matsuda, K.Maeda & Mikata, 1995" 1035:
YSH597 is based on strain NRRL-Y11430, now considered part of
1462:"Ancient Evolutionary Trade-Offs between Yeast Ploidy States" 882:
Comparing to other expression systems, such as S2-cells from
1423:
Kurtzman (1998). "42 - Pichia E.C. Hansen emend. Kurtzman".
916:
can grow in media containing only one carbon source and one
785:
cells can be stored frozen, and thawed before use, whereas
2467:. Methods in Enzymology. Vol. 463. pp. 131–47. 2426:. Methods in Enzymology. Vol. 463. pp. 169–89. 27:
Genus of fungus used industrially and as model organism
1919:"Pichia pastoris as a host system for transformations" 1259:
Journal of Industrial Microbiology & Biotechnology
951:
had been used for the production of over 500 types of
599:
suited for this task. Currently, several strains of
192:
was reassigned into the sole representative of genus
718:
The technology required for genetic manipulation of
680:
and energy source. The AOX promoters are induced by
472:
is its similarity to the well-studied yeast model —
269:
G.I.Naumov, E.S.Naumova & K.L.Boundy-Mills, 2018
2880: 2751: 988:is used to produce different kinds of enzymes, as 259:G.I.Naumov, E.S.Naumova, Tyurin & Kozlov, 2013 143:Y. Yamada, M. Matsuda, K. Maeda & Mikata, 1995 2309:Bankefa, OE; Wang, M; Zhu, T; Li, Y (July 2018). 984:In food industries, like brewery and bake house, 533:can be used for genetic analysis and large-scale 1199: 1197: 2686: 2684: 2417: 2415: 2413: 1292: 1290: 607:, leading to the selection of cells which are 565:as a transformation host. In the last decade, 896:usually gives much better yields. Generally, 615:. The technology for vector integration into 8: 2673:: CS1 maint: multiple names: authors list ( 2294:: CS1 maint: multiple names: authors list ( 2235:: CS1 maint: multiple names: authors list ( 2071:: CS1 maint: multiple names: authors list ( 1967:: CS1 maint: multiple names: authors list ( 1902:: CS1 maint: multiple names: authors list ( 1844:: CS1 maint: multiple names: authors list ( 1785:: CS1 maint: multiple names: authors list ( 1718:: CS1 maint: multiple names: authors list ( 1587:: CS1 maint: multiple names: authors list ( 1527:Kastilan, R., Boes, A., Spiegel, H. (2017). 1512:: CS1 maint: multiple names: authors list ( 1408:: CS1 maint: multiple names: authors list ( 1100:: CS1 maint: multiple names: authors list ( 1058:De Schutter, K., Lin, Y., Tiels, P. (2009). 1147:Bioscience, Biotechnology, and Biochemistry 188:as a source of carbon and energy. In 1995, 2739: 2465:Guide to Protein Purification, 2nd Edition 2424:Guide to Protein Purification, 2nd Edition 42: 31: 2718: 2708: 2571: 2393: 2383: 2326: 2202:Journal of Bioscience and Bioengineering 2007: 1944: 1762: 1752: 1733:Tran, A., Nguyen, T., Nguyen, C. (2017). 1657: 1564: 1554: 1489: 1479: 1385: 1375: 1324: 1314: 1270: 1221: 1077: 967:structure, which is a potential cause of 752:Comparison with other expression systems 704:genome, producing heterologous proteins. 1253:Kurtzman, Cletus Paul (November 2009). 1047: 1028: 848:in laboratory and industrial settings: 2666: 2287: 2228: 2064: 1960: 1895: 1837: 1778: 1711: 1580: 1505: 1401: 1355:Applied and Environmental Microbiology 1178: 1176: 1093: 389:. In this case, two types of cells of 1118:Agricultural and Biological Chemistry 221:. With strong potential for being an 7: 3014:c150c448-86a1-4163-846d-8d8466b027ea 2857:e05e39a0-d273-44ac-bb09-46fe644f64c4 556:As an experimental model organism, 1814:10.1016/B978-0-12-407679-2.00004-1 595:proteins. Several properties make 25: 2522:10.1016/j.biologicals.2016.09.015 552:as an experimental model organism 2173:Current Opinion in Biotechnology 2129:Journal of Molecular Recognition 2093:Biotechnology and Bioengineering 1988:Biotechnology and Bioengineering 1802:Advances in Applied Microbiology 1606:Biotechnology and Bioengineering 1437:10.1016/B978-044481312-1/50046-0 63: 2560:European Pharmaceutical Journal 774:is usually faster than that in 178:. It was found in the 1960s as 1924:Molecular and Cellular Biology 1131:10.1080/00021369.1969.10859497 1: 2653:10.1016/j.jbiotec.2015.01.027 2473:10.1016/S0076-6879(09)63011-1 2432:10.1016/S0076-6879(09)63013-5 1862:The Yeasts: A Taxonomic Study 1425:The Yeasts: A Taxonomic Study 844:has two main advantages over 619:genome is similar to that in 580:as expression system platform 529:As a genetic model organism, 2215:10.1016/j.jbiosc.2014.03.009 2186:10.1016/0958-1669(95)80087-5 1481:10.1371/journal.pgen.1003388 358:. However, they cannot use 184:, with its feature of using 890:Chinese hamster ovary cells 855:, as mentioned above, is a 525:as a genetic model organism 342:is found on trees, such as 306:Komagataella pseudopastoris 3081: 2385:10.1038/s41598-017-16577-x 1556:10.1038/s41598-017-11819-4 1316:10.1186/s12934-022-01796-3 2328:10.1007/s10529-018-2571-y 1754:10.1186/s13104-017-2471-6 1272:10.1007/s10295-009-0638-4 943:Biotherapeutic production 739:As some proteins require 665:, which include strongly 587:is frequently used as an 153: 148: 60:Scientific classification 58: 50: 41: 34: 2641:Journal of Biotechnology 1303:Microbial Cell Factories 830:Saccharomyces cerevisiae 760:research, the bacterium 724:Saccharomyces cerevisiae 672:. These two genes allow 621:Saccharomyces cerevisiae 569:was engineered to build 475:Saccharomyces cerevisiae 437:had been performed. The 265:Komagataella mondaviorum 2610:10.1126/science.1130256 2573:10.1515/afpuc-2015-0031 2253:Molecular Biotechnology 2041:10.1385/0-89603-421-6:1 947:In the last few years, 937:pharmaceutical industry 928:Industrial applications 885:Drosophila melanogaster 793:vary between different 420:In the last few years, 255:Komagataella kurtzmanii 3065:Taxa described in 1995 1015:is used to break down 809:is capable of forming 722:is similar to that of 591:for the production of 397:cells. In the asexual 209:After years of study, 2315:Biotechnology Letters 1937:10.1128/MCB.5.12.3376 1874:10.1002/yea.320080805 963:with high density of 676:to use methanol as a 468:Another advantage of 275:Komagataella pastoris 229:, as well as being a 2710:10.3390/biom13030441 1982:Brady, J.R. (2020). 1646:Nature Biotechnology 1377:10.1128/AEM.00638-16 1223:10.1099/mic.0.000958 1065:Nature Biotechnology 743:for proper folding, 443:Nature Biotechnology 375:asexual reproduction 285:Komagataella phaffii 235:Komagataella phaffii 233:for genetic study, 199:Komagataella phaffii 52:Komagataella phaffii 2602:2006Sci...313.1441H 2376:2017NatSR...716249Y 2266:10.1385/MB:16:3:193 1685:Future Microbiology 1547:2017NatSR...711991K 1368:2016ApEnM..82.4570R 1019:, an antinutrient. 908:, as well as other 684:, and repressed by 639:can grow in either 416:as a model organism 395:haploid and diploid 296:Komagataella populi 3050:Saccharomycetaceae 2364:Scientific Reports 1698:10.2217/fmb.12.133 1159:10.1271/bbb.59.439 613:expression vectors 611:successfully with 227:protein production 219:biotech industries 213:is widely used in 3037: 3036: 3022:Open Tree of Life 2865:Open Tree of Life 2745:Taxon identifiers 2482:978-0-12-374536-1 2441:978-0-12-374536-1 2000:10.1002/bit.27209 1931:(12): 3376–3385. 1362:(15): 4570–4583. 1265:(11): 1435–1438. 1125:(10): 1519–1520. 980:Enzyme production 863:can grow fast in 828:The well-studied 817:in proteins, but 758:molecular biology 589:expression system 571:expression system 381:reproduction, by 373:can undergo both 316:Komagataella ulmi 223:expression system 176:Saccharomycetales 174:within the order 160: 159: 144: 117:Saccharomycetales 16:(Redirected from 3072: 3030: 3029: 3017: 3016: 3007: 3006: 2994: 2993: 2981: 2980: 2968: 2967: 2955: 2954: 2942: 2941: 2929: 2928: 2916: 2915: 2914: 2901: 2900: 2899: 2873: 2872: 2860: 2859: 2850: 2849: 2837: 2836: 2824: 2823: 2811: 2810: 2798: 2797: 2785: 2784: 2772: 2771: 2770: 2740: 2733: 2732: 2722: 2712: 2688: 2679: 2678: 2672: 2664: 2636: 2630: 2629: 2596:(5792): 1441–3. 2584: 2578: 2577: 2575: 2557: 2548: 2542: 2541: 2501: 2495: 2494: 2460: 2454: 2453: 2419: 2408: 2407: 2397: 2387: 2355: 2349: 2348: 2330: 2321:(7): 1149–1156. 2306: 2300: 2299: 2293: 2285: 2247: 2241: 2240: 2234: 2226: 2196: 2190: 2189: 2167: 2161: 2160: 2124: 2118: 2117: 2083: 2077: 2076: 2070: 2062: 2033:Pichia Protocols 2028: 2022: 2021: 2011: 1979: 1973: 1972: 1966: 1958: 1948: 1914: 1908: 1907: 1901: 1893: 1856: 1850: 1849: 1843: 1835: 1797: 1791: 1790: 1784: 1776: 1766: 1756: 1730: 1724: 1723: 1717: 1709: 1678: 1672: 1671: 1661: 1659:10.1038/nbt.1544 1637: 1631: 1630: 1599: 1593: 1592: 1586: 1578: 1568: 1558: 1524: 1518: 1517: 1511: 1503: 1493: 1483: 1457: 1451: 1450: 1420: 1414: 1413: 1407: 1399: 1389: 1379: 1345: 1339: 1338: 1328: 1318: 1294: 1285: 1284: 1274: 1250: 1244: 1243: 1225: 1201: 1192: 1191: 1180: 1171: 1170: 1141: 1135: 1134: 1112: 1106: 1105: 1099: 1091: 1081: 1079:10.1038/nbt.1544 1055: 1040: 1033: 1007:In animal feed, 778:, with reasons: 763:Escherichia coli 535:genetic crossing 321: 311: 301: 290: 280: 270: 260: 142: 127:Phaffomycetaceae 68: 67: 46: 32: 21: 3080: 3079: 3075: 3074: 3073: 3071: 3070: 3069: 3040: 3039: 3038: 3033: 3025: 3020: 3012: 3010: 3002: 2997: 2989: 2984: 2976: 2971: 2963: 2958: 2950: 2945: 2937: 2932: 2924: 2919: 2910: 2909: 2904: 2895: 2894: 2889: 2876: 2868: 2863: 2855: 2853: 2845: 2840: 2832: 2827: 2819: 2814: 2806: 2801: 2793: 2788: 2780: 2775: 2766: 2765: 2760: 2753:Pichia pastoris 2747: 2737: 2736: 2690: 2689: 2682: 2665: 2638: 2637: 2633: 2586: 2585: 2581: 2555: 2550: 2549: 2545: 2503: 2502: 2498: 2483: 2462: 2461: 2457: 2442: 2421: 2420: 2411: 2357: 2356: 2352: 2308: 2307: 2303: 2286: 2249: 2248: 2244: 2227: 2198: 2197: 2193: 2169: 2168: 2164: 2141:10.1002/jmr.687 2126: 2125: 2121: 2085: 2084: 2080: 2063: 2051: 2030: 2029: 2025: 1981: 1980: 1976: 1959: 1916: 1915: 1911: 1894: 1858: 1857: 1853: 1836: 1824: 1799: 1798: 1794: 1777: 1732: 1731: 1727: 1710: 1680: 1679: 1675: 1639: 1638: 1634: 1601: 1600: 1596: 1579: 1526: 1525: 1521: 1504: 1474:(3): e1003388. 1459: 1458: 1454: 1447: 1422: 1421: 1417: 1400: 1347: 1346: 1342: 1296: 1295: 1288: 1252: 1251: 1247: 1203: 1202: 1195: 1182: 1181: 1174: 1143: 1142: 1138: 1114: 1113: 1109: 1092: 1057: 1056: 1049: 1044: 1043: 1034: 1030: 1025: 1002:phospholipase C 990:processing aids 982: 953:biotherapeutics 945: 930: 865:cell suspension 754: 737: 655:alcohol oxidase 629: 582: 554: 527: 418: 368: 336: 334:Natural habitat 331: 319: 309: 299: 288: 278: 268: 258: 243: 181:Pichia pastoris 141: 107:Saccharomycetes 62: 28: 23: 22: 18:Pichia pastoris 15: 12: 11: 5: 3078: 3076: 3068: 3067: 3062: 3057: 3052: 3042: 3041: 3035: 3034: 3032: 3031: 3018: 3008: 2995: 2982: 2969: 2956: 2943: 2930: 2917: 2902: 2886: 2884: 2878: 2877: 2875: 2874: 2861: 2851: 2838: 2825: 2812: 2799: 2786: 2773: 2757: 2755: 2749: 2748: 2743: 2735: 2734: 2680: 2631: 2579: 2543: 2496: 2481: 2455: 2440: 2409: 2350: 2301: 2260:(3): 193–202. 2242: 2209:(4): 420–425. 2191: 2180:(5): 527–533. 2162: 2119: 2078: 2049: 2023: 1994:(2): 543–555. 1974: 1909: 1868:(8): 613–628. 1851: 1822: 1792: 1725: 1692:(2): 191–208. 1673: 1632: 1613:(3): 279–286. 1594: 1519: 1452: 1445: 1415: 1340: 1286: 1245: 1216:(7): 614–616. 1193: 1172: 1153:(3): 439–444. 1136: 1107: 1072:(6): 561–566. 1046: 1045: 1042: 1041: 1027: 1026: 1024: 1021: 994:food additives 981: 978: 973:erythropoietin 969:immunogenicity 944: 941: 929: 926: 910:growth factors 880: 879: 868: 815:glycosylations 753: 750: 736: 733: 732: 731: 716: 705: 648: 628: 625: 581: 575: 553: 547: 526: 520: 480:model organism 417: 411: 367: 364: 344:chestnut trees 335: 332: 330: 324: 323: 322: 320:Kurtzman, 2012 312: 302: 300:Kurtzman, 2012 292: 289:Kurtzman, 2005 281: 271: 261: 242: 239: 231:model organism 169:methylotrophic 158: 157: 151: 150: 146: 145: 134: 130: 129: 124: 120: 119: 114: 110: 109: 104: 100: 99: 94: 90: 89: 84: 80: 79: 74: 70: 69: 56: 55: 48: 47: 39: 38: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3077: 3066: 3063: 3061: 3058: 3056: 3055:Fungal models 3053: 3051: 3048: 3047: 3045: 3028: 3023: 3019: 3015: 3009: 3005: 3000: 2996: 2992: 2987: 2983: 2979: 2974: 2970: 2966: 2961: 2957: 2953: 2948: 2944: 2940: 2935: 2931: 2927: 2922: 2918: 2913: 2907: 2903: 2898: 2892: 2888: 2887: 2885: 2883: 2879: 2871: 2866: 2862: 2858: 2852: 2848: 2843: 2839: 2835: 2830: 2826: 2822: 2817: 2813: 2809: 2804: 2800: 2796: 2791: 2787: 2783: 2778: 2774: 2769: 2763: 2759: 2758: 2756: 2754: 2750: 2746: 2741: 2730: 2726: 2721: 2716: 2711: 2706: 2702: 2698: 2694: 2687: 2685: 2681: 2676: 2670: 2662: 2658: 2654: 2650: 2646: 2642: 2635: 2632: 2627: 2623: 2619: 2615: 2611: 2607: 2603: 2599: 2595: 2591: 2583: 2580: 2574: 2569: 2565: 2561: 2554: 2547: 2544: 2539: 2535: 2531: 2527: 2523: 2519: 2515: 2511: 2507: 2500: 2497: 2492: 2488: 2484: 2478: 2474: 2470: 2466: 2459: 2456: 2451: 2447: 2443: 2437: 2433: 2429: 2425: 2418: 2416: 2414: 2410: 2405: 2401: 2396: 2391: 2386: 2381: 2377: 2373: 2369: 2365: 2361: 2354: 2351: 2346: 2342: 2338: 2334: 2329: 2324: 2320: 2316: 2312: 2305: 2302: 2297: 2291: 2283: 2279: 2275: 2271: 2267: 2263: 2259: 2255: 2254: 2246: 2243: 2238: 2232: 2224: 2220: 2216: 2212: 2208: 2204: 2203: 2195: 2192: 2187: 2183: 2179: 2175: 2174: 2166: 2163: 2158: 2154: 2150: 2146: 2142: 2138: 2135:(2): 119–38. 2134: 2130: 2123: 2120: 2115: 2111: 2107: 2103: 2099: 2095: 2094: 2089: 2082: 2079: 2074: 2068: 2060: 2056: 2052: 2050:0-89603-421-6 2046: 2042: 2038: 2034: 2027: 2024: 2019: 2015: 2010: 2005: 2001: 1997: 1993: 1989: 1985: 1978: 1975: 1970: 1964: 1956: 1952: 1947: 1942: 1938: 1934: 1930: 1926: 1925: 1920: 1913: 1910: 1905: 1899: 1891: 1887: 1883: 1879: 1875: 1871: 1867: 1863: 1855: 1852: 1847: 1841: 1833: 1829: 1825: 1823:9780124076792 1819: 1815: 1811: 1807: 1803: 1796: 1793: 1788: 1782: 1774: 1770: 1765: 1760: 1755: 1750: 1746: 1742: 1741: 1740:BMC Res Notes 1736: 1729: 1726: 1721: 1715: 1707: 1703: 1699: 1695: 1691: 1687: 1686: 1677: 1674: 1669: 1665: 1660: 1655: 1651: 1647: 1643: 1636: 1633: 1628: 1624: 1620: 1616: 1612: 1608: 1607: 1598: 1595: 1590: 1584: 1576: 1572: 1567: 1562: 1557: 1552: 1548: 1544: 1540: 1536: 1535: 1530: 1523: 1520: 1515: 1509: 1501: 1497: 1492: 1487: 1482: 1477: 1473: 1469: 1468: 1467:PLOS Genetics 1463: 1456: 1453: 1448: 1446:9780444813121 1442: 1438: 1434: 1430: 1426: 1419: 1416: 1411: 1405: 1397: 1393: 1388: 1383: 1378: 1373: 1369: 1365: 1361: 1357: 1356: 1351: 1344: 1341: 1336: 1332: 1327: 1322: 1317: 1312: 1308: 1304: 1300: 1293: 1291: 1287: 1282: 1278: 1273: 1268: 1264: 1260: 1256: 1249: 1246: 1241: 1237: 1233: 1229: 1224: 1219: 1215: 1211: 1207: 1200: 1198: 1194: 1189: 1185: 1179: 1177: 1173: 1168: 1164: 1160: 1156: 1152: 1148: 1140: 1137: 1132: 1128: 1124: 1120: 1119: 1111: 1108: 1103: 1097: 1089: 1085: 1080: 1075: 1071: 1067: 1066: 1061: 1054: 1052: 1048: 1038: 1032: 1029: 1022: 1020: 1018: 1014: 1010: 1005: 1003: 999: 995: 991: 987: 979: 977: 974: 970: 966: 962: 961:glycosylation 958: 954: 950: 942: 940: 938: 934: 927: 925: 923: 919: 915: 911: 907: 903: 899: 895: 891: 887: 886: 877: 872: 869: 866: 862: 858: 854: 851: 850: 849: 847: 846:S. cerevisiae 843: 839: 835: 831: 826: 824: 820: 816: 812: 808: 804: 800: 796: 792: 788: 784: 781: 777: 773: 769: 765: 764: 759: 751: 749: 746: 742: 734: 729: 725: 721: 717: 714: 710: 706: 703: 699: 695: 691: 687: 683: 679: 675: 671: 668: 664: 660: 656: 652: 649: 646: 642: 638: 634: 631: 630: 626: 624: 622: 618: 614: 610: 606: 602: 598: 594: 590: 586: 579: 576: 574: 572: 568: 564: 559: 551: 548: 546: 544: 540: 536: 532: 524: 521: 519: 517: 513: 509: 508:S. cerevisiae 505: 501: 500: 499:Saccharomyces 495: 491: 490: 485: 484:S. cerevisiae 482:for biology, 481: 477: 476: 471: 466: 464: 460: 456: 452: 448: 444: 440: 436: 432: 427: 423: 415: 412: 410: 408: 404: 400: 396: 392: 388: 384: 380: 376: 372: 365: 363: 361: 357: 353: 349: 345: 341: 333: 328: 325: 318: 317: 313: 308: 307: 303: 298: 297: 293: 287: 286: 282: 277: 276: 272: 267: 266: 262: 257: 256: 252: 251: 250: 248: 245:According to 240: 238: 236: 232: 228: 224: 220: 217:research and 216: 212: 207: 205: 201: 200: 195: 191: 187: 183: 182: 177: 173: 170: 166: 165: 156: 152: 147: 140: 139: 135: 132: 131: 128: 125: 122: 121: 118: 115: 112: 111: 108: 105: 102: 101: 98: 95: 92: 91: 88: 85: 82: 81: 78: 75: 72: 71: 66: 61: 57: 53: 49: 45: 40: 37: 33: 30: 19: 2912:Komagataella 2882:Komagataella 2881: 2752: 2700: 2697:Biomolecules 2696: 2669:cite journal 2644: 2640: 2634: 2593: 2589: 2582: 2566:(2): 43–50. 2563: 2559: 2546: 2513: 2509: 2499: 2464: 2458: 2423: 2370:(1): 16249. 2367: 2363: 2353: 2318: 2314: 2304: 2290:cite journal 2257: 2251: 2245: 2231:cite journal 2206: 2200: 2194: 2177: 2171: 2165: 2132: 2128: 2122: 2097: 2091: 2081: 2032: 2026: 1991: 1987: 1977: 1963:cite journal 1928: 1922: 1912: 1898:cite journal 1865: 1861: 1854: 1840:cite journal 1805: 1801: 1795: 1781:cite journal 1744: 1738: 1728: 1714:cite journal 1689: 1683: 1676: 1652:(6): 561–6. 1649: 1645: 1635: 1610: 1604: 1597: 1583:cite journal 1538: 1532: 1522: 1508:cite journal 1471: 1465: 1455: 1428: 1424: 1418: 1404:cite journal 1359: 1353: 1343: 1306: 1302: 1262: 1258: 1248: 1213: 1210:Microbiology 1209: 1188:www.gbif.org 1187: 1150: 1146: 1139: 1122: 1116: 1110: 1096:cite journal 1069: 1063: 1036: 1031: 1008: 1006: 998:Komagataella 997: 986:Komagataella 985: 983: 949:Komagataella 948: 946: 933:Komagataella 932: 931: 914:Komagataella 913: 894:Komagataella 893: 883: 881: 876:Komagataella 875: 871:Komagataella 870: 861:Komagataella 860: 857:methylotroph 853:Komagataella 852: 845: 842:Komagataella 841: 838:Komagataella 837: 833: 829: 827: 822: 818: 807:Komagataella 806: 802: 799:Komagataella 798: 791:Komagataella 790: 787:Komagataella 786: 782: 776:Komagataella 775: 771: 761: 756:In standard 755: 745:Komagataella 744: 738: 735:Disadvantage 728:Komagataella 727: 723: 720:Komagataella 719: 713:Komagataella 712: 702:Komagataella 701: 698:Komagataella 697: 693: 689: 674:Komagataella 673: 662: 658: 651:Komagataella 650: 641:shake flasks 637:Komagataella 636: 633:Komagataella 632: 620: 617:Komagataella 616: 601:Komagataella 600: 597:Komagataella 596: 593:heterologous 585:Komagataella 584: 583: 578:Komagataella 577: 567:Komagataella 566: 563:Komagataella 562: 558:Komagataella 557: 555: 550:Komagataella 549: 543:Komagataella 542: 531:Komagataella 530: 528: 523:Komagataella 522: 516:Komagataella 515: 512:Komagataella 511: 507: 504:Komagataella 503: 497: 487: 483: 473: 470:Komagataella 469: 467: 463:Komagataella 462: 455:Komagataella 454: 451:Komagataella 450: 442: 438: 435:Komagataella 434: 431:Komagataella 430: 426:Komagataella 425: 422:Komagataella 421: 419: 414:Komagataella 413: 391:Komagataella 390: 371:Komagataella 370: 369: 366:Reproduction 340:Komagataella 339: 337: 327:Komagataella 326: 314: 304: 294: 283: 273: 263: 253: 244: 234: 211:Komagataella 210: 208: 203: 198: 197: 194:Komagataella 193: 189: 180: 179: 164:Komagataella 163: 162: 161: 154: 138:Komagataella 137: 136: 51: 36:Komagataella 35: 29: 2906:Wikispecies 2647:: 420–425. 2510:Biologicals 1808:: 115–153. 1431:: 273–352. 1017:phytic acid 922:protein NMR 902:amino acids 707:With a key 609:transformed 457:are single 403:sporulation 338:In nature, 215:biochemical 196:, becoming 190:P. pastoris 3044:Categories 2703:(3): 441. 2100:(1): 1–8. 1747:(1): 148. 1023:References 1011:-produced 955:, such as 898:cell lines 840:. However 813:bonds and 741:chaperonin 539:peroxisome 494:sensu lato 459:eukaryotic 439:K. phaffii 399:life cycle 155:See text 97:Ascomycota 93:Division: 2897:Q10547278 2516:: 52–60. 2067:cite book 1309:(1): 70. 1232:1350-0872 1037:K. phaffi 1009:K. phaffi 821:cannot. 811:disulfide 780:Competent 670:promoters 667:inducible 645:fermenter 627:Advantage 605:HIS4 gene 387:ascospore 329:in nature 83:Kingdom: 77:Eukaryota 2986:MycoBank 2947:Fungorum 2891:Wikidata 2842:MycoBank 2834:10780229 2803:Fungorum 2762:Wikidata 2729:36979376 2720:10046876 2661:25687104 2626:43334198 2618:16960007 2538:28204059 2530:27810255 2491:19892171 2450:19892173 2404:29176680 2345:29155989 2337:29785668 2282:22792748 2274:11252804 2223:24745549 2149:15565717 2114:10940857 2018:31654411 1832:23415154 1773:28376863 1706:23374125 1668:19465926 1627:18636643 1575:28931852 1541:(1): 7. 1500:23555297 1396:27208115 1335:35468837 1281:19760441 1240:32720891 1088:19465926 918:nitrogen 906:vitamins 805:is that 768:proteins 696:gene in 682:methanol 653:has two 356:methanol 352:glycerol 241:Taxonomy 186:methanol 149:Species 123:Family: 73:Domain: 2978:1012130 2965:2599347 2939:6655148 2821:2599390 2768:Q148697 2598:Bibcode 2590:Science 2395:5701153 2372:Bibcode 2157:7476149 2059:9680629 2009:7003935 1955:3915774 1890:8840145 1882:1441741 1764:5379694 1566:5607246 1543:Bibcode 1491:3605057 1387:4984280 1364:Bibcode 1326:9036795 1167:7766181 1013:phytase 965:mannose 834:E. coli 823:E. coli 819:E. coli 803:E. coli 783:E. coli 772:E. coli 686:glucose 657:genes, 478:. As a 407:meiosis 393:exist: 383:budding 360:lactose 348:glucose 133:Genus: 113:Order: 103:Class: 3060:Yeasts 3027:312891 3011:NZOR: 3004:460517 2870:333983 2854:NZOR: 2847:303634 2808:303634 2795:PICHPA 2727:  2717:  2659:  2624:  2616:  2536:  2528:  2489:  2479:  2448:  2438:  2402:  2392:  2343:  2335:  2280:  2272:  2221:  2155:  2147:  2112:  2057:  2047:  2016:  2006:  1953:  1946:369166 1943:  1888:  1880:  1830:  1820:  1771:  1761:  1704:  1666:  1625:  1573:  1563:  1534:Nature 1498:  1488:  1443:  1394:  1384:  1333:  1323:  1279:  1238:  1230:  1165:  1086:  795:clones 678:carbon 496:) and 489:Pichia 379:sexual 204:pichia 54:GS115 2991:27606 2973:IRMNG 2952:27606 2829:IRMNG 2782:6VJ3K 2622:S2CID 2556:(PDF) 2534:S2CID 2341:S2CID 2278:S2CID 2153:S2CID 1886:S2CID 801:over 709:trait 643:or a 447:ORCAE 172:yeast 167:is a 87:Fungi 2999:NCBI 2960:GBIF 2926:58SW 2816:GBIF 2790:EPPO 2725:PMID 2675:link 2657:PMID 2614:PMID 2526:PMID 2487:PMID 2477:ISBN 2446:PMID 2436:ISBN 2400:PMID 2333:PMID 2296:link 2270:PMID 2237:link 2219:PMID 2145:PMID 2110:PMID 2073:link 2055:PMID 2045:ISBN 2014:PMID 1969:link 1951:PMID 1904:link 1878:PMID 1846:link 1828:PMID 1818:ISBN 1787:link 1769:PMID 1720:link 1702:PMID 1664:PMID 1623:PMID 1589:link 1571:PMID 1514:link 1496:PMID 1441:ISBN 1410:link 1392:PMID 1331:PMID 1277:PMID 1236:PMID 1228:ISSN 1163:PMID 1102:link 1084:PMID 992:and 957:IFNγ 888:and 694:AOX1 690:Aox1 663:Aox2 661:and 659:Aox1 405:and 385:and 377:and 354:and 247:GBIF 225:for 2934:EoL 2921:CoL 2777:CoL 2715:PMC 2705:doi 2649:doi 2645:202 2606:doi 2594:313 2568:doi 2518:doi 2469:doi 2428:doi 2390:PMC 2380:doi 2323:doi 2262:doi 2211:doi 2207:118 2182:doi 2137:doi 2102:doi 2037:doi 2004:PMC 1996:doi 1992:117 1941:PMC 1933:doi 1870:doi 1810:doi 1759:PMC 1749:doi 1694:doi 1654:doi 1615:doi 1561:PMC 1551:doi 1486:PMC 1476:doi 1433:doi 1382:PMC 1372:doi 1321:PMC 1311:doi 1267:doi 1218:doi 1214:166 1155:doi 1127:doi 1074:doi 836:as 3046:: 3024:: 3001:: 2988:: 2975:: 2962:: 2949:: 2936:: 2923:: 2908:: 2893:: 2867:: 2844:: 2831:: 2818:: 2805:: 2792:: 2779:: 2764:: 2723:. 2713:. 2701:13 2699:. 2695:. 2683:^ 2671:}} 2667:{{ 2655:. 2643:. 2620:. 2612:. 2604:. 2592:. 2564:62 2562:. 2558:. 2532:. 2524:. 2514:45 2512:. 2508:. 2485:. 2475:. 2444:. 2434:. 2412:^ 2398:. 2388:. 2378:. 2366:. 2362:. 2339:. 2331:. 2319:40 2317:. 2313:. 2292:}} 2288:{{ 2276:. 2268:. 2258:16 2256:. 2233:}} 2229:{{ 2217:. 2205:. 2176:. 2151:. 2143:. 2133:18 2131:. 2108:. 2098:70 2096:. 2090:. 2069:}} 2065:{{ 2053:. 2043:. 2012:. 2002:. 1990:. 1986:. 1965:}} 1961:{{ 1949:. 1939:. 1927:. 1921:. 1900:}} 1896:{{ 1884:. 1876:. 1864:. 1842:}} 1838:{{ 1826:. 1816:. 1806:82 1804:. 1783:}} 1779:{{ 1767:. 1757:. 1745:10 1743:. 1737:. 1716:}} 1712:{{ 1700:. 1688:. 1662:. 1650:27 1648:. 1644:. 1621:. 1611:56 1609:. 1585:}} 1581:{{ 1569:. 1559:. 1549:. 1537:. 1531:. 1510:}} 1506:{{ 1494:. 1484:. 1470:. 1464:. 1439:. 1427:. 1406:}} 1402:{{ 1390:. 1380:. 1370:. 1360:82 1358:. 1352:. 1329:. 1319:. 1307:21 1305:. 1301:. 1289:^ 1275:. 1263:36 1261:. 1257:. 1234:. 1226:. 1212:. 1208:. 1196:^ 1186:. 1175:^ 1161:. 1151:59 1149:. 1123:33 1121:. 1098:}} 1094:{{ 1082:. 1070:27 1068:. 1062:. 1050:^ 924:. 904:, 892:, 711:, 623:. 545:. 510:, 362:. 350:, 249:: 206:. 2731:. 2707:: 2677:) 2663:. 2651:: 2628:. 2608:: 2600:: 2576:. 2570:: 2540:. 2520:: 2493:. 2471:: 2452:. 2430:: 2406:. 2382:: 2374:: 2368:7 2347:. 2325:: 2298:) 2284:. 2264:: 2239:) 2225:. 2213:: 2188:. 2184:: 2178:6 2159:. 2139:: 2116:. 2104:: 2075:) 2061:. 2039:: 2020:. 1998:: 1971:) 1957:. 1935:: 1929:5 1906:) 1892:. 1872:: 1866:8 1848:) 1834:. 1812:: 1789:) 1775:. 1751:: 1722:) 1708:. 1696:: 1690:8 1670:. 1656:: 1629:. 1617:: 1591:) 1577:. 1553:: 1545:: 1539:1 1516:) 1502:. 1478:: 1472:9 1449:. 1435:: 1429:1 1412:) 1398:. 1374:: 1366:: 1337:. 1313:: 1283:. 1269:: 1242:. 1220:: 1190:. 1169:. 1157:: 1133:. 1129:: 1104:) 1090:. 1076:: 1039:. 730:. 492:( 20:)

Index

Pichia pastoris

Scientific classification
Edit this classification
Eukaryota
Fungi
Ascomycota
Saccharomycetes
Saccharomycetales
Phaffomycetaceae
Komagataella
methylotrophic
yeast
Saccharomycetales
methanol
biochemical
biotech industries
expression system
protein production
model organism
GBIF
Komagataella kurtzmanii
Komagataella mondaviorum
Komagataella pastoris
Komagataella phaffii
Komagataella populi
Komagataella pseudopastoris
Komagataella ulmi
chestnut trees
glucose

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.