Knowledge

Hydraulic head

Source 📝

124: 33: 1730: 1739: 2190: 1691: 116: 1510: 100: 1850:
For relatively short pipe systems, with a relatively large number of bends and fittings, minor losses can easily exceed major losses. In design, minor losses are usually estimated from tables using coefficients or a simpler and less accurate reduction of minor losses to equivalent length of pipe, a
1693:
This vector describes the direction of the groundwater flow, where negative values indicate flow along the dimension, and zero indicates 'no flow'. As with any other example in physics, energy must flow from high to low, which is why the flow is in the negative gradient. This vector can be used in
165:), and given information of the piezometer's elevation and screen depth. Hydraulic head can similarly be measured in a column of water using a standpipe piezometer by measuring the height of the water surface in the tube relative to a common datum. The hydraulic head can be used to determine a 1755:
example (first figure), where the hydraulic head is constant, there is no flow. However, if there is a difference in hydraulic head from the top to bottom due to draining from the bottom (second figure), the water will flow downward, due to the difference in head, also called the
1686:{\displaystyle \nabla h=\left({\frac {\partial h}{\partial x}},{\frac {\partial h}{\partial y}},{\frac {\partial h}{\partial z}}\right)={\frac {\partial h}{\partial x}}\mathbf {i} +{\frac {\partial h}{\partial y}}\mathbf {j} +{\frac {\partial h}{\partial z}}\mathbf {k} } 1795:
upon water levels observed in wells has been known for many years. The effect is a direct one, an increase in atmospheric pressure is an increase in load on the water in the aquifer, which increases the depth to water (lowers the water level elevation).
1116:, in particular). This means that the hydraulic head calculation is dependent on the density of the water within the piezometer. If one or more hydraulic head measurements are to be compared, they need to be standardized, usually to their 1835:, is divided into two main categories, "major losses" associated with energy loss per length of pipe, and "minor losses" associated with bends, fittings, valves, etc. The most common equation used to calculate major head losses is the 349: 1187: 1401: 994: 574: 734: 1259: 454: 775: 662: 1225: 467:, the internal molecular motion of a fluid that exerts a force on its container. It is equal to the pressure divided by the force/volume of the fluid in a gravitational field: 509: 258: 382: 2154: 841: 1037: 1126: 1067: 890: 1474: 1449: 1311: 1424: 1093: 1014: 920: 864: 682: 615: 1788:
through time, so this is often disregarded (contributing to large errors at locations where hydraulic gradients are low or the angle between wells is acute.)
2040: 225:. On Earth, additional height of fresh water adds a static pressure of about 9.8 kPa per meter (0.098 bar/m) or 0.433 psi per foot of water column height. 232:
of a pump is the maximum height (pressure) it can deliver. The capability of the pump at a certain RPM can be read from its Q-H curve (flow vs. height).
948: 1808: 2123: 1952: 1921: 197:, the total energy at a given point in a fluid is the kinetic energy associated with the speed of flow of the fluid, plus energy from 2179: 2006: 76: 54: 524:) is due to the frictional forces acting against a fluid's motion by the container. For a continuous medium, this is described by 2159: 2033: 542: 691: 577: 2080: 409: 627: 1840: 1836: 781:, expressed as a length measurement. In a flowing fluid, it represents the energy of the fluid due to its bulk motion. 123: 153:
It is usually measured as a liquid surface elevation, expressed in units of length, at the entrance (or bottom) of a
470: 2026: 1096: 222: 1860: 1870: 581: 2116: 1800:
first qualitatively observed these effects in the 17th century, and they were more rigorously described by the
814: 47: 41: 808: 194: 2278: 1981: 1232: 205:. Head is expressed in units of distance such as meters or feet. The force per unit volume on a fluid in a 2222: 2070: 1703: 533: 58: 741: 119:
Fluid flows from the tank at the top to the basin at the bottom under the pressure of the hydraulic head.
1890: 1504: 1484: 930:
In an example with a 400 m deep piezometer, with an elevation of 1000 m, and a depth to water of 100 m:
1729: 1198: 2283: 1792: 1777: 1496: 796: 2109: 2018: 1781: 793: 399: 206: 190: 2012:
for other references which discuss hydraulic head in the context of hydrogeology, see that page's
1738: 2273: 2237: 1875: 354: 2288: 2263: 2002: 1948: 1917: 1880: 1773: 1295: 896:, in terms of the elevation difference of the water column relative to the piezometer bottom ( 389: 104: 1022: 2198: 2140: 2075: 1885: 1865: 1804: 800: 385: 236: 128: 93: 1052: 875: 799:
of a column of water at the base of the piezometer, and the elevation head is the relative
2207: 2189: 1828: 1300: 464: 202: 198: 1851:
method often used for shortcut calculations of pneumatic conveying lines pressure drop.
1456: 1431: 2268: 2212: 1940: 1844: 1769: 1752: 1695: 1409: 1078: 999: 905: 849: 667: 600: 525: 344:{\displaystyle h_{v}={\tfrac {1}{2}}\rho v^{2}/\rho g={\frac {1}{2}}{\frac {v^{2}}{g}}} 252: 178: 147: 143: 1282:
between two or more hydraulic head measurements over the length of the flow path. For
2257: 2232: 2217: 2090: 1797: 1305: 1112:
of water, which can vary depending on both the temperature and chemical composition (
893: 459: 247: 239:
because their pumping characteristics tend to be independent of the fluid's density.
1780:), since this is truly what drives groundwater flow. Often detailed observations of 161:, it can be calculated from the depth to water in a piezometric well (a specialized 2227: 2054: 2013: 1801: 1488: 1308:
hydraulic gradient can be calculated between two points with known head values as:
2242: 2169: 2164: 1476:
is the flow path length between the two piezometers (length, usually in m or ft)
1283: 1044: 1040: 201:
in the fluid, plus energy from the height of the fluid relative to an arbitrary
17: 1451:
is the difference between two hydraulic heads (length, usually in m or ft), and
1182:{\displaystyle h_{\mathrm {fw} }=\psi {\frac {\rho }{\rho _{\mathrm {fw} }}}+z} 2174: 2132: 1824: 1785: 1291: 162: 154: 1304:
and can be used to determine whether a reach is gaining or losing energy. A
594: 99: 1396:{\displaystyle i={\frac {dh}{dl}}={\frac {h_{2}-h_{1}}{\mathrm {length} }}} 115: 2085: 1820: 1279: 1113: 402:
acting on a column of fluid. The elevation head is simply the elevation (
1491:, which can be practically obtained only from numerical models, such as 2050: 1748: 1500: 1492: 1262: 1109: 1070: 193:
fluid to the height of an equivalent static column of that fluid. From
158: 1480:
The hydraulic gradient can be expressed in vector notation, using the
1699: 923: 897: 867: 618: 186: 622: 122: 114: 98: 1772:
in the calculation of hydraulic head, it is more correct to use
2105: 2022: 2149: 1481: 1016:
is the gauge pressure (Force per unit area, often Pa or psi),
989:{\displaystyle \psi ={\frac {P}{\gamma }}={\frac {P}{\rho g}}} 89:
Specific measurement of liquid pressure above a vertical datum
26: 2101: 406:) of the fluid above an arbitrarily designated zero point: 1227:
is the fresh water head (Length, measured in m or ft), and
1073:
of the liquid (Mass per unit volume, frequently kg¡m), and
621:
from an initial velocity of 0, a mass will have reached a
576:
while in a piped system head losses are described by the
1265:
of fresh water (Mass per unit volume, typically in kg¡m)
1043:
of the liquid (Force per unit volume, typically N¡m or
1819:
In any real moving fluid, energy is dissipated due to
1713: 276: 1513: 1459: 1434: 1412: 1314: 1235: 1201: 1129: 1081: 1055: 1025: 1002: 951: 908: 878: 852: 817: 744: 694: 670: 630: 603: 545: 473: 412: 357: 261: 1706:
to determine the flux of water in three dimensions.
684:
is the acceleration due to gravity. Rearranged as a
532:) to the gradient of the hydraulic head through the 2197: 2139: 784:The total hydraulic head of a fluid is composed of 131:, where the water level is above the ground surface 1685: 1468: 1443: 1418: 1395: 1253: 1219: 1181: 1087: 1061: 1031: 1008: 988: 914: 884: 858: 835: 769: 728: 676: 656: 609: 568: 503: 448: 376: 343: 2155:List of conventional hydroelectric power stations 1945:Hydraulics of Open Channel Flow: An Introduction 870:in m or ft), also known as the piezometric head. 811:for incompressible fluids, can be expressed as: 103:Available difference in hydraulic head across a 1914:Flow of Industrial Fluids: Theory and Equations 1982:"Pipe equivalent length (Pneumatic conveying)" 1907: 1905: 1747:The distribution of hydraulic head through an 2117: 2034: 1751:determines where groundwater will flow. In a 111:due to turbines, wall friction and turbulence 8: 1935: 1933: 1971:, Section 3.7 (Fourth edition) McGraw-Hill 1839:. Older, more empirical approaches are the 922:is the elevation at the piezometer bottom ( 2124: 2110: 2102: 2041: 2027: 2019: 1426:is the hydraulic gradient (dimensionless), 1294:or discharge. It also has applications in 1099:(velocity change per unit time, often m¡s) 1678: 1658: 1650: 1630: 1622: 1602: 1574: 1551: 1528: 1512: 1458: 1433: 1411: 1371: 1364: 1351: 1344: 1321: 1313: 1241: 1240: 1234: 1207: 1206: 1200: 1161: 1160: 1151: 1135: 1134: 1128: 1080: 1054: 1024: 1001: 971: 958: 950: 907: 877: 851: 816: 751: 745: 743: 707: 701: 693: 669: 647: 639: 637: 629: 602: 546: 544: 490: 478: 472: 435: 417: 411: 368: 356: 330: 324: 314: 300: 294: 275: 266: 260: 77:Learn how and when to remove this message 1290:, since it determines the quantity of a 242:There are generally four types of head: 40:This article includes a list of general 1901: 1811:(USDA)) using air flow models in 1907. 1809:United States Department of Agriculture 945:The pressure head can be expressed as: 569:{\displaystyle \mathbf {q} =-K\nabla h} 1108:The pressure head is dependent on the 792:. The pressure head is the equivalent 729:{\displaystyle h={\frac {v^{2}}{2g}}.} 1827:dissipates even more energy for high 1254:{\displaystyle \rho _{\mathrm {fw} }} 7: 1768:Even though it is convention to use 449:{\displaystyle h_{e}=\rho gh/\rho g} 770:{\displaystyle {\frac {v^{2}}{2g}}} 657:{\displaystyle v={\sqrt {{2g}{h}}}} 1999:Dynamics of Fluids in Porous Media 1669: 1661: 1641: 1633: 1613: 1605: 1585: 1577: 1562: 1554: 1539: 1531: 1514: 1387: 1384: 1381: 1378: 1375: 1372: 1245: 1242: 1211: 1208: 1165: 1162: 1139: 1136: 560: 398:is due to the fluid's weight, the 46:it lacks sufficient corresponding 25: 2180:Run-of-the-river hydroelectricity 1487:. This requires a hydraulic head 1220:{\displaystyle h_{\mathrm {fw} }} 217:is the density of the fluid, and 2188: 1831:flows. This dissipation, called 1737: 1728: 1679: 1651: 1623: 547: 528:which relates volume flow rate ( 31: 2160:Pumped-storage hydroelectricity 127:Measuring hydraulic head in an 1120:, which can be calculated as: 803:in terms of an elevation. The 521: 504:{\displaystyle h_{p}=p/\rho g} 185:is a concept that relates the 108: 1: 1715:Relation between heads for a 235:Head is useful in specifying 142:is a specific measurement of 1507:, this can be expressed as: 169:between two or more points. 1967:Streeter, Victor L. (1958) 1927:, 410 pages. See pp. 43–44. 807:, a simplified form of the 377:{\displaystyle \rho gh_{v}} 251:is due to the bulk motion ( 2305: 1791:The effects of changes in 1784:are not available at each 1298:where it is also known as 1097:gravitational acceleration 223:gravitational acceleration 91: 2186: 2061: 1947:, Butterworth–Heinemann, 1871:Minor losses in pipe flow 836:{\displaystyle h=\psi +z} 578:Hagen–Poiseuille equation 1912:Mulley, Raymond (2004), 1286:, it is also called the 92:Not to be confused with 2014:further reading section 1958:, 650 pages. See p. 22. 1841:Hazen–Williams equation 1837:Darcy–Weisbach equation 1032:{\displaystyle \gamma } 866:is the hydraulic head ( 61:more precise citations. 2223:Gorlov helical turbine 2071:hydraulic conductivity 1704:hydraulic conductivity 1687: 1503:for open channels. In 1470: 1445: 1420: 1397: 1255: 1221: 1183: 1089: 1063: 1033: 1010: 990: 916: 886: 860: 837: 771: 730: 678: 658: 611: 570: 534:hydraulic conductivity 505: 450: 378: 345: 132: 120: 112: 1891:Hydraulic accumulator 1861:Borda–Carnot equation 1688: 1505:Cartesian coordinates 1471: 1446: 1421: 1398: 1256: 1222: 1184: 1090: 1064: 1062:{\displaystyle \rho } 1034: 1011: 991: 917: 887: 885:{\displaystyle \psi } 861: 838: 772: 731: 679: 659: 612: 571: 506: 451: 379: 346: 195:Bernoulli's principle 126: 118: 102: 1793:atmospheric pressure 1778:atmospheric pressure 1764:Atmospheric pressure 1511: 1457: 1432: 1410: 1312: 1233: 1199: 1127: 1079: 1053: 1023: 1000: 949: 906: 876: 850: 815: 742: 692: 668: 628: 601: 582:Bernoulli’s equation 543: 471: 410: 355: 259: 2053:properties used in 1782:barometric pressure 1724: 1495:for groundwater or 809:Bernoulli principle 400:gravitational force 207:gravitational field 2238:Cross-flow turbine 1876:Total dynamic head 1776:(gauge pressure + 1758:hydraulic gradient 1714: 1683: 1469:{\displaystyle dl} 1466: 1444:{\displaystyle dh} 1441: 1416: 1393: 1276:hydraulic gradient 1270:Hydraulic gradient 1251: 1217: 1179: 1085: 1059: 1029: 1006: 986: 912: 882: 856: 833: 767: 726: 674: 654: 607: 566: 501: 446: 374: 341: 285: 167:hydraulic gradient 133: 121: 113: 2251: 2250: 2099: 2098: 1881:Stage (hydrology) 1807:(working for the 1774:absolute pressure 1745: 1744: 1694:conjunction with 1676: 1648: 1620: 1592: 1569: 1546: 1419:{\displaystyle i} 1391: 1339: 1296:open-channel flow 1171: 1088:{\displaystyle g} 1009:{\displaystyle P} 984: 966: 915:{\displaystyle z} 859:{\displaystyle h} 765: 721: 677:{\displaystyle g} 652: 610:{\displaystyle h} 597:through a height 390:irrotational flow 339: 322: 284: 237:centrifugal pumps 105:hydroelectric dam 87: 86: 79: 16:(Redirected from 2296: 2199:Hydroelectricity 2192: 2141:Hydroelectricity 2126: 2119: 2112: 2103: 2043: 2036: 2029: 2020: 1986: 1985: 1978: 1972: 1965: 1959: 1957: 1937: 1928: 1926: 1909: 1886:Head (hydrology) 1866:Dynamic pressure 1805:Edgar Buckingham 1741: 1732: 1725: 1692: 1690: 1689: 1684: 1682: 1677: 1675: 1667: 1659: 1654: 1649: 1647: 1639: 1631: 1626: 1621: 1619: 1611: 1603: 1598: 1594: 1593: 1591: 1583: 1575: 1570: 1568: 1560: 1552: 1547: 1545: 1537: 1529: 1475: 1473: 1472: 1467: 1450: 1448: 1447: 1442: 1425: 1423: 1422: 1417: 1402: 1400: 1399: 1394: 1392: 1390: 1370: 1369: 1368: 1356: 1355: 1345: 1340: 1338: 1330: 1322: 1260: 1258: 1257: 1252: 1250: 1249: 1248: 1226: 1224: 1223: 1218: 1216: 1215: 1214: 1188: 1186: 1185: 1180: 1172: 1170: 1169: 1168: 1152: 1144: 1143: 1142: 1118:fresh water head 1104:Fresh water head 1094: 1092: 1091: 1086: 1068: 1066: 1065: 1060: 1038: 1036: 1035: 1030: 1015: 1013: 1012: 1007: 995: 993: 992: 987: 985: 983: 972: 967: 959: 921: 919: 918: 913: 900:in m or ft), and 891: 889: 888: 883: 865: 863: 862: 857: 842: 840: 839: 834: 801:potential energy 776: 774: 773: 768: 766: 764: 756: 755: 746: 735: 733: 732: 727: 722: 720: 712: 711: 702: 683: 681: 680: 675: 663: 661: 660: 655: 653: 651: 646: 638: 616: 614: 613: 608: 575: 573: 572: 567: 550: 510: 508: 507: 502: 494: 483: 482: 455: 453: 452: 447: 439: 422: 421: 386:dynamic pressure 384:is equal to the 383: 381: 380: 375: 373: 372: 350: 348: 347: 342: 340: 335: 334: 325: 323: 315: 304: 299: 298: 286: 277: 271: 270: 140:piezometric head 129:artesian aquifer 94:Head (hydrology) 82: 75: 71: 68: 62: 57:this article by 48:inline citations 35: 34: 27: 21: 18:Piezometric head 2304: 2303: 2299: 2298: 2297: 2295: 2294: 2293: 2254: 2253: 2252: 2247: 2208:Francis turbine 2193: 2184: 2135: 2130: 2100: 2095: 2057: 2047: 1997:Bear, J. 1972. 1994: 1989: 1980: 1979: 1975: 1969:Fluid Mechanics 1966: 1962: 1955: 1941:Chanson, Hubert 1939: 1938: 1931: 1924: 1911: 1910: 1903: 1899: 1857: 1829:Reynolds number 1817: 1766: 1712: 1668: 1660: 1640: 1632: 1612: 1604: 1584: 1576: 1561: 1553: 1538: 1530: 1527: 1523: 1509: 1508: 1455: 1454: 1430: 1429: 1408: 1407: 1360: 1347: 1346: 1331: 1323: 1310: 1309: 1301:stream gradient 1280:vector gradient 1272: 1236: 1231: 1230: 1202: 1197: 1196: 1156: 1130: 1125: 1124: 1106: 1077: 1076: 1051: 1050: 1021: 1020: 998: 997: 976: 947: 946: 904: 903: 874: 873: 848: 847: 813: 812: 757: 747: 740: 739: 713: 703: 690: 689: 666: 665: 626: 625: 599: 598: 591: 541: 540: 514:Resistance head 474: 469: 468: 465:static pressure 413: 408: 407: 364: 353: 352: 326: 290: 262: 257: 256: 199:static pressure 175: 144:liquid pressure 97: 90: 83: 72: 66: 63: 53:Please help to 52: 36: 32: 23: 22: 15: 12: 11: 5: 2302: 2300: 2292: 2291: 2286: 2281: 2279:Fluid dynamics 2276: 2271: 2266: 2256: 2255: 2249: 2248: 2246: 2245: 2240: 2235: 2230: 2225: 2220: 2215: 2213:Kaplan turbine 2210: 2204: 2202: 2195: 2194: 2187: 2185: 2183: 2182: 2177: 2172: 2167: 2162: 2157: 2152: 2146: 2144: 2137: 2136: 2131: 2129: 2128: 2121: 2114: 2106: 2097: 2096: 2094: 2093: 2088: 2083: 2078: 2073: 2068: 2066:hydraulic head 2062: 2059: 2058: 2048: 2046: 2045: 2038: 2031: 2023: 2017: 2016: 2010: 1993: 1990: 1988: 1987: 1973: 1960: 1954:978-0750659789 1953: 1929: 1923:978-0849327674 1922: 1900: 1898: 1895: 1894: 1893: 1888: 1883: 1878: 1873: 1868: 1863: 1856: 1853: 1845:Prony equation 1816: 1813: 1802:soil physicist 1770:gauge pressure 1765: 1762: 1743: 1742: 1734: 1733: 1711: 1710:In groundwater 1708: 1681: 1674: 1671: 1666: 1663: 1657: 1653: 1646: 1643: 1638: 1635: 1629: 1625: 1618: 1615: 1610: 1607: 1601: 1597: 1590: 1587: 1582: 1579: 1573: 1567: 1564: 1559: 1556: 1550: 1544: 1541: 1536: 1533: 1526: 1522: 1519: 1516: 1478: 1477: 1465: 1462: 1452: 1440: 1437: 1427: 1415: 1389: 1386: 1383: 1380: 1377: 1374: 1367: 1363: 1359: 1354: 1350: 1343: 1337: 1334: 1329: 1326: 1320: 1317: 1271: 1268: 1267: 1266: 1247: 1244: 1239: 1228: 1213: 1210: 1205: 1190: 1189: 1178: 1175: 1167: 1164: 1159: 1155: 1150: 1147: 1141: 1138: 1133: 1105: 1102: 1101: 1100: 1084: 1074: 1058: 1048: 1028: 1005: 982: 979: 975: 970: 965: 962: 957: 954: 928: 927: 911: 901: 881: 871: 855: 832: 829: 826: 823: 820: 790:elevation head 777:is called the 763: 760: 754: 750: 725: 719: 716: 710: 706: 700: 697: 673: 650: 645: 642: 636: 633: 606: 590: 587: 586: 585: 565: 562: 559: 556: 553: 549: 511: 500: 497: 493: 489: 486: 481: 477: 463:is due to the 456: 445: 442: 438: 434: 431: 428: 425: 420: 416: 396:Elevation head 393: 371: 367: 363: 360: 338: 333: 329: 321: 318: 313: 310: 307: 303: 297: 293: 289: 283: 280: 274: 269: 265: 253:kinetic energy 191:incompressible 179:fluid dynamics 174: 171: 148:vertical datum 136:Hydraulic head 88: 85: 84: 39: 37: 30: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2301: 2290: 2287: 2285: 2282: 2280: 2277: 2275: 2272: 2270: 2267: 2265: 2262: 2261: 2259: 2244: 2241: 2239: 2236: 2234: 2233:Turgo turbine 2231: 2229: 2226: 2224: 2221: 2219: 2218:Tyson turbine 2216: 2214: 2211: 2209: 2206: 2205: 2203: 2200: 2196: 2191: 2181: 2178: 2176: 2173: 2171: 2168: 2166: 2163: 2161: 2158: 2156: 2153: 2151: 2148: 2147: 2145: 2142: 2138: 2134: 2127: 2122: 2120: 2115: 2113: 2108: 2107: 2104: 2092: 2091:water content 2089: 2087: 2084: 2082: 2079: 2077: 2074: 2072: 2069: 2067: 2064: 2063: 2060: 2056: 2052: 2044: 2039: 2037: 2032: 2030: 2025: 2024: 2021: 2015: 2011: 2008: 2007:0-486-65675-6 2004: 2000: 1996: 1995: 1991: 1983: 1977: 1974: 1970: 1964: 1961: 1956: 1950: 1946: 1942: 1936: 1934: 1930: 1925: 1919: 1916:, CRC Press, 1915: 1908: 1906: 1902: 1896: 1892: 1889: 1887: 1884: 1882: 1879: 1877: 1874: 1872: 1869: 1867: 1864: 1862: 1859: 1858: 1854: 1852: 1848: 1846: 1842: 1838: 1834: 1830: 1826: 1822: 1814: 1812: 1810: 1806: 1803: 1799: 1794: 1789: 1787: 1783: 1779: 1775: 1771: 1763: 1761: 1759: 1754: 1750: 1740: 1736: 1735: 1731: 1727: 1726: 1722: 1721:downward flow 1718: 1709: 1707: 1705: 1701: 1697: 1672: 1664: 1655: 1644: 1636: 1627: 1616: 1608: 1599: 1595: 1588: 1580: 1571: 1565: 1557: 1548: 1542: 1534: 1524: 1520: 1517: 1506: 1502: 1498: 1497:standard step 1494: 1490: 1486: 1483: 1463: 1460: 1453: 1438: 1435: 1428: 1413: 1406: 1405: 1404: 1365: 1361: 1357: 1352: 1348: 1341: 1335: 1332: 1327: 1324: 1318: 1315: 1307: 1306:dimensionless 1303: 1302: 1297: 1293: 1289: 1285: 1281: 1277: 1269: 1264: 1237: 1229: 1203: 1195: 1194: 1193: 1176: 1173: 1157: 1153: 1148: 1145: 1131: 1123: 1122: 1121: 1119: 1115: 1111: 1103: 1098: 1082: 1075: 1072: 1056: 1049: 1046: 1042: 1026: 1019: 1018: 1017: 1003: 980: 977: 973: 968: 963: 960: 955: 952: 943: 941: 938:= 300 m, and 937: 933: 925: 909: 902: 899: 895: 894:pressure head 879: 872: 869: 853: 846: 845: 844: 830: 827: 824: 821: 818: 810: 806: 805:head equation 802: 798: 795: 791: 787: 786:pressure head 782: 780: 779:velocity head 761: 758: 752: 748: 736: 723: 717: 714: 708: 704: 698: 695: 687: 671: 648: 643: 640: 634: 631: 624: 620: 604: 596: 588: 583: 579: 563: 557: 554: 551: 538: 535: 531: 527: 523: 519: 518:friction head 515: 512: 498: 495: 491: 487: 484: 479: 475: 466: 462: 461: 460:Pressure head 457: 443: 440: 436: 432: 429: 426: 423: 418: 414: 405: 401: 397: 394: 391: 387: 369: 365: 361: 358: 336: 331: 327: 319: 316: 311: 308: 305: 301: 295: 291: 287: 281: 278: 272: 267: 263: 255:) of a fluid. 254: 250: 249: 248:Velocity head 245: 244: 243: 240: 238: 233: 231: 226: 224: 220: 216: 212: 208: 204: 200: 196: 192: 188: 184: 180: 172: 170: 168: 164: 160: 156: 151: 149: 145: 141: 137: 130: 125: 117: 110: 106: 101: 95: 81: 78: 70: 60: 56: 50: 49: 43: 38: 29: 28: 19: 2228:Pelton wheel 2081:permeability 2065: 2055:hydrogeology 1998: 1976: 1968: 1963: 1944: 1913: 1849: 1832: 1818: 1790: 1767: 1757: 1746: 1720: 1716: 1479: 1299: 1287: 1275: 1273: 1191: 1117: 1107: 944: 939: 935: 931: 929: 804: 789: 785: 783: 778: 737: 685: 595:free falling 592: 536: 529: 517: 513: 458: 403: 395: 246: 241: 234: 229: 227: 218: 214: 210: 209:is equal to 182: 176: 166: 152: 139: 135: 134: 73: 64: 45: 2284:Water wells 2243:Water wheel 2170:Micro hydro 2165:Small hydro 2076:storativity 1753:hydrostatic 1719:case and a 1717:hydrostatic 1696:Darcy's law 1288:Darcy slope 1284:groundwater 1041:unit weight 926:in m or ft) 526:Darcy's law 230:static head 109:head losses 59:introducing 2258:Categories 2175:Pico hydro 2143:generation 2133:Hydropower 1992:References 1825:turbulence 1292:Darcy flux 589:Components 351:Note that 173:Definition 163:water well 155:piezometer 67:April 2020 42:references 2274:Hydrology 2201:equipment 2049:Physical 2001:, Dover. 1833:head loss 1815:Head loss 1670:∂ 1662:∂ 1642:∂ 1634:∂ 1614:∂ 1606:∂ 1586:∂ 1578:∂ 1563:∂ 1555:∂ 1540:∂ 1532:∂ 1515:∇ 1358:− 1238:ρ 1158:ρ 1154:ρ 1149:ψ 1057:ρ 1027:γ 978:ρ 964:γ 953:ψ 942:= 900 m. 934:= 600 m, 880:ψ 825:ψ 738:The term 561:∇ 555:− 522:Head Loss 496:ρ 441:ρ 427:ρ 359:ρ 306:ρ 288:ρ 107:, before 2289:Pressure 2264:Aquifers 2086:porosity 1943:(2004), 1855:See also 1843:and the 1821:friction 1485:operator 1114:salinity 797:pressure 157:. In an 146:above a 2051:aquifer 1749:aquifer 1501:HEC-RAS 1493:MODFLOW 1263:density 1261:is the 1110:density 1095:is the 1071:density 1069:is the 1039:is the 892:is the 221:is the 211:ρg 159:aquifer 55:improve 2005:  1951:  1920:  1798:Pascal 1723:case. 1700:tensor 1698:and a 1403:where 1192:where 996:where 924:Length 898:Length 868:Length 843:where 664:where 619:vacuum 593:After 215:ρ 213:where 189:in an 187:energy 44:, but 2269:Water 1897:Notes 1489:field 1278:is a 1047:/ft), 794:gauge 623:speed 617:in a 203:datum 2003:ISBN 1949:ISBN 1918:ISBN 1786:well 1274:The 788:and 686:head 580:and 516:(or 388:for 228:The 183:head 2150:Dam 1702:of 1499:or 1482:del 1045:lbf 520:or 177:In 138:or 2260:: 1932:^ 1904:^ 1847:. 1823:; 1760:. 688:: 539:: 181:, 150:. 2125:e 2118:t 2111:v 2042:e 2035:t 2028:v 2009:. 1984:. 1680:k 1673:z 1665:h 1656:+ 1652:j 1645:y 1637:h 1628:+ 1624:i 1617:x 1609:h 1600:= 1596:) 1589:z 1581:h 1572:, 1566:y 1558:h 1549:, 1543:x 1535:h 1525:( 1521:= 1518:h 1464:l 1461:d 1439:h 1436:d 1414:i 1388:h 1385:t 1382:g 1379:n 1376:e 1373:l 1366:1 1362:h 1353:2 1349:h 1342:= 1336:l 1333:d 1328:h 1325:d 1319:= 1316:i 1246:w 1243:f 1212:w 1209:f 1204:h 1177:z 1174:+ 1166:w 1163:f 1146:= 1140:w 1137:f 1132:h 1083:g 1004:P 981:g 974:P 969:= 961:P 956:= 940:h 936:ψ 932:z 910:z 854:h 831:z 828:+ 822:= 819:h 762:g 759:2 753:2 749:v 724:. 718:g 715:2 709:2 705:v 699:= 696:h 672:g 649:h 644:g 641:2 635:= 632:v 605:h 584:. 564:h 558:K 552:= 548:q 537:K 530:q 499:g 492:/ 488:p 485:= 480:p 476:h 444:g 437:/ 433:h 430:g 424:= 419:e 415:h 404:h 392:. 370:v 366:h 362:g 337:g 332:2 328:v 320:2 317:1 312:= 309:g 302:/ 296:2 292:v 282:2 279:1 273:= 268:v 264:h 219:g 96:. 80:) 74:( 69:) 65:( 51:. 20:)

Index

Piezometric head
references
inline citations
improve
introducing
Learn how and when to remove this message
Head (hydrology)

hydroelectric dam
head losses


artesian aquifer
liquid pressure
vertical datum
piezometer
aquifer
water well
fluid dynamics
energy
incompressible
Bernoulli's principle
static pressure
datum
gravitational field
gravitational acceleration
centrifugal pumps
Velocity head
kinetic energy
dynamic pressure

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑