Knowledge (XXG)

Pinhole camera model

Source 📝

32: 1658: 89: 590: 160: 1227:
Rotate the coordinate system in the image plane 180° (in either direction). This is the way any practical implementation of a pinhole camera would solve the problem; for a photographic camera we rotate the image before looking at it, and for a digital camera we read out the pixels in such an order
142:
Some of the effects that the pinhole camera model does not take into account can be compensated, for example by applying suitable coordinate transformations on the image coordinates; other effects are sufficiently small to be neglected if a high quality camera is used. This means that the pinhole
127:
or blurring of unfocused objects caused by lenses and finite sized apertures. It also does not take into account that most practical cameras have only discrete image coordinates. This means that the pinhole camera model can only be used as a first order approximation of the mapping from a
1218:
followed by a 180° rotation in the image plane. This corresponds to how a real pinhole camera operates; the resulting image is rotated 180° and the relative size of projected objects depends on their distance to the focal point and the overall size of the image depends on the distance
1088: 1365: 1470: 899: 764: 962: 827: 973: 1253: 586:. This can be done with the help of the following figure which shows the same scene as the previous figure but now from above, looking down in the negative direction of the X2 axis. 1150: 580: 461:
aperture of the camera, through which all projection lines must pass, is assumed to be infinitely small, a point. In the literature this point in 3D space is referred to as the
337: 1200: 517: 451: 1597: 1571: 1495: 1431: 1405: 197:
is located. The three axes of the coordinate system are referred to as X1, X2, X3. Axis X3 is pointing in the viewing direction of the camera and is referred to as the
1521: 1545: 1868: 637: 695: 668: 394: 1577:; two camera matrices are equivalent if they are equal up to a scalar multiplication. This description of the pinhole camera mapping, as a linear transformation 250:
of the pinhole camera. A practical implementation of a pinhole camera implies that the image plane is located such that it intersects the X3 axis at coordinate
236: 139:. Its validity depends on the quality of the camera and, in general, decreases from the center of the image to the edges as lens distortion effects increase. 218:
An image plane, where the 3D world is projected through the aperture of the camera. The image plane is parallel to axes X1 and X2 and is located at distance
1223:
between the image plane and the focal point. In order to produce an unrotated image, which is what we expect from a camera, there are two possibilities:
1551:. This implies that the left and right hand sides are equal up to a non-zero scalar multiplication. A consequence of this relation is that also 1247:
In both cases, the resulting mapping from 3D coordinates to 2D image coordinates is given by the expression above, but without the negation, thus
1599:
instead of as a fraction of two linear expressions, makes it possible to simplify many derivations of relations between 3D and 2D coordinates.
369:. This point is given by the intersection of the projection line (green) and the image plane. In any practical situation we can assume that 1675: 1987: 1930: 175:
coordinate system in the figure is left-handed, that is the direction of the OZ axis is in reverse to the system the reader may be used to.
53: 123:, where the camera aperture is described as a point and no lenses are used to focus light. The model does not include, for example, 1940: 1919: 1897: 1878: 1857: 1741: 75: 1722: 1433:
be a representation of the image of this point in the pinhole camera (a 3-dimensional vector). Then the following relation holds
1694: 1439: 838: 703: 1961: 1774: 1679: 1243:
which cannot be implemented in practice, but provides a theoretical camera which may be simpler to analyse than the real one.
1701: 1823: 183:
related to the mapping of a pinhole camera is illustrated in the figure. The figure contains the following basic objects:
1083:{\displaystyle {\begin{pmatrix}y_{1}\\y_{2}\end{pmatrix}}=-{\frac {f}{x_{3}}}{\begin{pmatrix}x_{1}\\x_{2}\end{pmatrix}}} 1360:{\displaystyle {\begin{pmatrix}y_{1}\\y_{2}\end{pmatrix}}={\frac {f}{x_{3}}}{\begin{pmatrix}x_{1}\\x_{2}\end{pmatrix}}} 1708: 904: 769: 46: 40: 1668: 1690: 57: 143:
camera model often can be used as a reasonable description of how a camera depicts a 3D scene, for example in
1798: 1408: 1382: 109: 1215: 1096: 526: 283: 1613: 1381:
The mapping from 3D coordinates of points in space to 2D image coordinates can also be represented in
1608: 1159: 476: 410: 133: 124: 1715: 1580: 1554: 1478: 1414: 1388: 403:
and with axes Y1 and Y2 which are parallel to X1 and X2, respectively. The coordinates of point
1500: 265:
at the intersection of the optical axis and the image plane. This point is referred to as the
1957: 1936: 1915: 1893: 1874: 1853: 1770: 598: 148: 20: 1529: 1992: 1641: 1574: 1548: 612: 673: 646: 372: 144: 1627:, the equivalent location of the pinhole in relation to the image plane in a real camera. 1635: 1630: 1618: 221: 120: 93: 1621:, the equivalent location of the pinhole in relation to object space in a real camera. 1981: 1907: 1523: 1376: 113: 211:. The plane which is spanned by axes X1 and X2 is the front side of the camera, or 1638:, the practical implementation of the mathematical model described in this article. 247: 199: 1657: 832:
A similar investigation, looking in the negative direction of the X1 axis gives
1624: 1093:
which is an expression that describes the relation between the 3D coordinates
602: 105: 88: 1214:
The mapping from 3D to 2D coordinates described by a pinhole camera is a
606: 192: 180: 129: 399:
There is also a 2D coordinate system in the image plane, with origin at
16:
Model of 3D points projected onto planar image via a lens-less aperture
589: 350:
into the camera. This is the green line which passes through point
159: 1890:
Practical Handbook on Image Processing for Scientific Applications
588: 158: 136: 87: 396:> 0 which means that the intersection point is well defined. 1651: 25: 1951: 1764: 1239:
and rework the previous calculations. This would generate a
601:, both having parts of the projection line (green) as their 1465:{\displaystyle \mathbf {y} \sim \mathbf {C} \,\mathbf {x} } 1231:
Place the image plane so that it intersects the X3 axis at
1932:
Epipolar geometry in Stereo, Motion and Object Recognition
894:{\displaystyle {\frac {-y_{2}}{f}}={\frac {x_{2}}{x_{3}}}} 759:{\displaystyle {\frac {-y_{1}}{f}}={\frac {x_{1}}{x_{3}}}} 593:
The geometry of a pinhole camera as seen from the X2 axis
697:. Since the two triangles are similar it follows that 1322: 1262: 1045: 982: 1583: 1557: 1532: 1503: 1481: 1442: 1417: 1391: 1256: 1162: 1099: 976: 907: 841: 772: 706: 676: 649: 615: 529: 479: 413: 375: 286: 224: 187:
A 3D orthogonal coordinate system with its origin at
104:
describes the mathematical relationship between the
1682:. Unsourced material may be challenged and removed. 1591: 1565: 1539: 1515: 1489: 1464: 1425: 1399: 1359: 1194: 1144: 1082: 956: 893: 821: 758: 689: 662: 631: 574: 511: 445: 388: 331: 230: 957:{\displaystyle y_{2}=-{\frac {f\,x_{2}}{x_{3}}}} 822:{\displaystyle y_{1}=-{\frac {f\,x_{1}}{x_{3}}}} 242:in the negative direction of the X3 axis, where 473:Next we want to understand how the coordinates 1867:Richard Hartley and Andrew Zisserman (2003). 163:The geometry of a pinhole camera. Note: the x 8: 1956:(2 ed.). Springer Nature. p. 925. 1953:Computer Vision: Algorithms and Applications 1766:Computer Vision: Algorithms and Applications 1769:(2 ed.). Springer Nature. p. 74. 643:and the catheti of the right triangle are 1870:Multiple View Geometry in computer vision 1742:Learn how and when to remove this message 1584: 1582: 1558: 1556: 1533: 1531: 1502: 1482: 1480: 1457: 1456: 1451: 1443: 1441: 1418: 1416: 1392: 1390: 1343: 1329: 1317: 1309: 1300: 1283: 1269: 1257: 1255: 1210:Rotated image and the virtual image plane 1183: 1170: 1161: 1133: 1120: 1107: 1098: 1066: 1052: 1040: 1032: 1023: 1003: 989: 977: 975: 946: 935: 930: 924: 912: 906: 883: 873: 867: 852: 842: 840: 811: 800: 795: 789: 777: 771: 748: 738: 732: 717: 707: 705: 681: 675: 654: 648: 623: 614: 563: 550: 537: 528: 500: 487: 478: 434: 421: 412: 380: 374: 320: 307: 294: 285: 223: 76:Learn how and when to remove this message 1848:David A. Forsyth and Jean Ponce (2003). 39:This article includes a list of general 19:For broader coverage of this topic, see 1824:"Elements of Geometric Computer Vision" 1755: 407:relative to this coordinate system is 1407:be a representation of a 3D point in 280:somewhere in the world at coordinate 7: 1680:adding citations to reliable sources 339:relative to the axes X1, X2, and X3. 1929:Gang Xu and Zhengyou Zhang (1996). 1547:means equality between elements of 1145:{\displaystyle (x_{1},x_{2},x_{3})} 575:{\displaystyle (x_{1},x_{2},x_{3})} 332:{\displaystyle (x_{1},x_{2},x_{3})} 1850:Computer Vision, A Modern Approach 1411:(a 4-dimensional vector), and let 463:optical (or lens or camera) center 45:it lacks sufficient corresponding 14: 1656: 1585: 1559: 1483: 1458: 1452: 1444: 1419: 1393: 30: 1910:and George C. Stockman (2001). 1667:needs additional citations for 1573:can be seen as an element of a 1935:. Kluwer Academic Publishers. 1873:. Cambridge University Press. 1822:Andrea Fusiello (2005-12-27). 1241:virtual (or front) image plane 1189: 1163: 1139: 1100: 569: 530: 506: 480: 440: 414: 365:onto the image plane, denoted 326: 287: 1: 1195:{\displaystyle (y_{1},y_{2})} 512:{\displaystyle (y_{1},y_{2})} 446:{\displaystyle (y_{1},y_{2})} 1592:{\displaystyle \mathbf {C} } 1566:{\displaystyle \mathbf {C} } 1490:{\displaystyle \mathbf {C} } 1426:{\displaystyle \mathbf {y} } 1400:{\displaystyle \mathbf {x} } 1988:Geometry in computer vision 1797:Carlo Tomasi (2016-08-09). 116:onto the image plane of an 2009: 1950:Szeliski, Richard (2022). 1763:Szeliski, Richard (2022). 1374: 1371:In homogeneous coordinates 1156:and its image coordinates 967:This can be summarized as 597:In this figure we see two 523:depend on the coordinates 191:. This is also where the 18: 1516:{\displaystyle 3\times 4} 609:of the left triangle are 1826:. Homepages.inf.ed.ac.uk 1228:that it becomes rotated. 361:The projection of point 1799:"A Simple Camera Model" 1540:{\displaystyle \,\sim } 1409:homogeneous coordinates 1383:homogeneous coordinates 110:three-dimensional space 60:more precise citations. 1691:"Pinhole camera model" 1593: 1567: 1541: 1517: 1491: 1466: 1427: 1401: 1361: 1216:perspective projection 1196: 1146: 1084: 958: 895: 823: 760: 691: 664: 633: 632:{\displaystyle -y_{1}} 594: 576: 513: 447: 390: 333: 232: 176: 97: 1614:Collinearity equation 1594: 1568: 1542: 1518: 1492: 1467: 1428: 1402: 1362: 1197: 1147: 1085: 959: 896: 824: 761: 692: 690:{\displaystyle x_{3}} 665: 663:{\displaystyle x_{1}} 634: 592: 577: 514: 448: 391: 389:{\displaystyle x_{3}} 334: 233: 162: 125:geometric distortions 91: 1888:Bernd Jähne (1997). 1676:improve this article 1581: 1555: 1530: 1501: 1479: 1440: 1415: 1389: 1254: 1206:in the image plane. 1160: 1097: 974: 905: 839: 770: 704: 674: 647: 613: 527: 477: 411: 373: 284: 222: 102:pinhole camera model 1609:Camera resectioning 1589: 1563: 1537: 1513: 1487: 1462: 1423: 1397: 1357: 1351: 1291: 1192: 1142: 1080: 1074: 1011: 954: 891: 819: 756: 687: 660: 629: 595: 572: 509: 443: 386: 329: 228: 177: 98: 1914:. Prentice Hall. 1852:. Prentice Hall. 1752: 1751: 1744: 1726: 1549:projective spaces 1315: 1038: 952: 889: 862: 817: 754: 727: 599:similar triangles 231:{\displaystyle f} 149:computer graphics 86: 85: 78: 21:Epipolar geometry 2000: 1974: 1972: 1970: 1946: 1925: 1908:Linda G. Shapiro 1903: 1884: 1863: 1835: 1834: 1832: 1831: 1819: 1813: 1812: 1810: 1809: 1803: 1794: 1788: 1787: 1785: 1783: 1760: 1747: 1740: 1736: 1733: 1727: 1725: 1684: 1660: 1652: 1642:Rectilinear lens 1598: 1596: 1595: 1590: 1588: 1575:projective space 1572: 1570: 1569: 1564: 1562: 1546: 1544: 1543: 1538: 1522: 1520: 1519: 1514: 1496: 1494: 1493: 1488: 1486: 1471: 1469: 1468: 1463: 1461: 1455: 1447: 1432: 1430: 1429: 1424: 1422: 1406: 1404: 1403: 1398: 1396: 1366: 1364: 1363: 1358: 1356: 1355: 1348: 1347: 1334: 1333: 1316: 1314: 1313: 1301: 1296: 1295: 1288: 1287: 1274: 1273: 1201: 1199: 1198: 1193: 1188: 1187: 1175: 1174: 1151: 1149: 1148: 1143: 1138: 1137: 1125: 1124: 1112: 1111: 1089: 1087: 1086: 1081: 1079: 1078: 1071: 1070: 1057: 1056: 1039: 1037: 1036: 1024: 1016: 1015: 1008: 1007: 994: 993: 963: 961: 960: 955: 953: 951: 950: 941: 940: 939: 925: 917: 916: 900: 898: 897: 892: 890: 888: 887: 878: 877: 868: 863: 858: 857: 856: 843: 828: 826: 825: 820: 818: 816: 815: 806: 805: 804: 790: 782: 781: 765: 763: 762: 757: 755: 753: 752: 743: 742: 733: 728: 723: 722: 721: 708: 696: 694: 693: 688: 686: 685: 669: 667: 666: 661: 659: 658: 638: 636: 635: 630: 628: 627: 581: 579: 578: 573: 568: 567: 555: 554: 542: 541: 518: 516: 515: 510: 505: 504: 492: 491: 452: 450: 449: 444: 439: 438: 426: 425: 395: 393: 392: 387: 385: 384: 338: 336: 335: 330: 325: 324: 312: 311: 299: 298: 238:from the origin 237: 235: 234: 229: 81: 74: 70: 67: 61: 56:this article by 47:inline citations 34: 33: 26: 2008: 2007: 2003: 2002: 2001: 1999: 1998: 1997: 1978: 1977: 1968: 1966: 1964: 1949: 1943: 1928: 1922: 1912:Computer Vision 1906: 1900: 1887: 1881: 1866: 1860: 1847: 1844: 1839: 1838: 1829: 1827: 1821: 1820: 1816: 1807: 1805: 1801: 1796: 1795: 1791: 1781: 1779: 1777: 1762: 1761: 1757: 1748: 1737: 1731: 1728: 1685: 1683: 1673: 1661: 1650: 1605: 1579: 1578: 1553: 1552: 1528: 1527: 1499: 1498: 1477: 1476: 1438: 1437: 1413: 1412: 1387: 1386: 1379: 1373: 1350: 1349: 1339: 1336: 1335: 1325: 1318: 1305: 1290: 1289: 1279: 1276: 1275: 1265: 1258: 1252: 1251: 1212: 1202:given by point 1179: 1166: 1158: 1157: 1129: 1116: 1103: 1095: 1094: 1073: 1072: 1062: 1059: 1058: 1048: 1041: 1028: 1010: 1009: 999: 996: 995: 985: 978: 972: 971: 942: 931: 926: 908: 903: 902: 879: 869: 848: 844: 837: 836: 807: 796: 791: 773: 768: 767: 744: 734: 713: 709: 702: 701: 677: 672: 671: 650: 645: 644: 619: 611: 610: 559: 546: 533: 525: 524: 496: 483: 475: 474: 471: 430: 417: 409: 408: 376: 371: 370: 344:projection line 316: 303: 290: 282: 281: 267:principal point 220: 219: 213:principal plane 194:camera aperture 174: 170: 166: 157: 145:computer vision 92:A diagram of a 82: 71: 65: 62: 52:Please help to 51: 35: 31: 24: 17: 12: 11: 5: 2006: 2004: 1996: 1995: 1990: 1980: 1979: 1976: 1975: 1962: 1947: 1941: 1926: 1920: 1904: 1898: 1885: 1879: 1864: 1858: 1843: 1840: 1837: 1836: 1814: 1789: 1775: 1754: 1753: 1750: 1749: 1664: 1662: 1655: 1649: 1646: 1645: 1644: 1639: 1636:Pinhole camera 1633: 1631:Ibn al-Haytham 1628: 1622: 1619:Entrance pupil 1616: 1611: 1604: 1601: 1587: 1561: 1536: 1512: 1509: 1506: 1485: 1473: 1472: 1460: 1454: 1450: 1446: 1421: 1395: 1375:Main article: 1372: 1369: 1368: 1367: 1354: 1346: 1342: 1338: 1337: 1332: 1328: 1324: 1323: 1321: 1312: 1308: 1304: 1299: 1294: 1286: 1282: 1278: 1277: 1272: 1268: 1264: 1263: 1261: 1245: 1244: 1235:instead of at 1229: 1211: 1208: 1191: 1186: 1182: 1178: 1173: 1169: 1165: 1141: 1136: 1132: 1128: 1123: 1119: 1115: 1110: 1106: 1102: 1091: 1090: 1077: 1069: 1065: 1061: 1060: 1055: 1051: 1047: 1046: 1044: 1035: 1031: 1027: 1022: 1019: 1014: 1006: 1002: 998: 997: 992: 988: 984: 983: 981: 965: 964: 949: 945: 938: 934: 929: 923: 920: 915: 911: 886: 882: 876: 872: 866: 861: 855: 851: 847: 830: 829: 814: 810: 803: 799: 794: 788: 785: 780: 776: 751: 747: 741: 737: 731: 726: 720: 716: 712: 684: 680: 657: 653: 626: 622: 618: 571: 566: 562: 558: 553: 549: 545: 540: 536: 532: 508: 503: 499: 495: 490: 486: 482: 470: 467: 455: 454: 442: 437: 433: 429: 424: 420: 416: 397: 383: 379: 359: 354:and the point 340: 328: 323: 319: 315: 310: 306: 302: 297: 293: 289: 274: 259: 227: 216: 205:principal axis 172: 168: 164: 156: 153: 121:pinhole camera 108:of a point in 94:pinhole camera 84: 83: 38: 36: 29: 15: 13: 10: 9: 6: 4: 3: 2: 2005: 1994: 1991: 1989: 1986: 1985: 1983: 1965: 1959: 1955: 1954: 1948: 1944: 1942:0-7923-4199-6 1938: 1934: 1933: 1927: 1923: 1921:0-13-030796-3 1917: 1913: 1909: 1905: 1901: 1899:0-8493-8906-2 1895: 1892:. CRC Press. 1891: 1886: 1882: 1880:0-521-54051-8 1876: 1872: 1871: 1865: 1861: 1859:0-12-379777-2 1855: 1851: 1846: 1845: 1841: 1825: 1818: 1815: 1804:. cs.duke.edu 1800: 1793: 1790: 1778: 1772: 1768: 1767: 1759: 1756: 1746: 1743: 1735: 1724: 1721: 1717: 1714: 1710: 1707: 1703: 1700: 1696: 1693: –  1692: 1688: 1687:Find sources: 1681: 1677: 1671: 1670: 1665:This article 1663: 1659: 1654: 1653: 1647: 1643: 1640: 1637: 1634: 1632: 1629: 1626: 1623: 1620: 1617: 1615: 1612: 1610: 1607: 1606: 1602: 1600: 1576: 1550: 1534: 1525: 1524:camera matrix 1510: 1507: 1504: 1448: 1436: 1435: 1434: 1410: 1384: 1378: 1377:Camera matrix 1370: 1352: 1344: 1340: 1330: 1326: 1319: 1310: 1306: 1302: 1297: 1292: 1284: 1280: 1270: 1266: 1259: 1250: 1249: 1248: 1242: 1238: 1234: 1230: 1226: 1225: 1224: 1222: 1217: 1209: 1207: 1205: 1184: 1180: 1176: 1171: 1167: 1155: 1134: 1130: 1126: 1121: 1117: 1113: 1108: 1104: 1075: 1067: 1063: 1053: 1049: 1042: 1033: 1029: 1025: 1020: 1017: 1012: 1004: 1000: 990: 986: 979: 970: 969: 968: 947: 943: 936: 932: 927: 921: 918: 913: 909: 884: 880: 874: 870: 864: 859: 853: 849: 845: 835: 834: 833: 812: 808: 801: 797: 792: 786: 783: 778: 774: 749: 745: 739: 735: 729: 724: 718: 714: 710: 700: 699: 698: 682: 678: 655: 651: 642: 624: 620: 616: 608: 604: 600: 591: 587: 585: 564: 560: 556: 551: 547: 543: 538: 534: 522: 501: 497: 493: 488: 484: 468: 466: 464: 460: 435: 431: 427: 422: 418: 406: 402: 398: 381: 377: 368: 364: 360: 357: 353: 349: 345: 341: 321: 317: 313: 308: 304: 300: 295: 291: 279: 275: 272: 268: 264: 260: 257: 253: 249: 245: 241: 225: 217: 214: 210: 209:principal ray 206: 202: 201: 196: 195: 190: 186: 185: 184: 182: 161: 154: 152: 150: 146: 140: 138: 135: 131: 126: 122: 119: 115: 111: 107: 103: 95: 90: 80: 77: 69: 66:February 2008 59: 55: 49: 48: 42: 37: 28: 27: 22: 1967:. Retrieved 1952: 1931: 1911: 1889: 1869: 1849: 1842:Bibliography 1828:. Retrieved 1817: 1806:. Retrieved 1792: 1780:. Retrieved 1765: 1758: 1738: 1732:January 2008 1729: 1719: 1712: 1705: 1698: 1686: 1674:Please help 1669:verification 1666: 1474: 1380: 1246: 1240: 1236: 1232: 1220: 1213: 1203: 1153: 1092: 966: 831: 640: 596: 583: 520: 472: 462: 458: 456: 404: 400: 366: 362: 355: 351: 347: 343: 277: 271:image center 270: 266: 262: 255: 251: 248:focal length 243: 239: 212: 208: 204: 200:optical axis 198: 193: 188: 178: 141: 117: 101: 99: 72: 63: 44: 1969:30 December 1782:30 December 603:hypotenuses 469:Formulation 106:coordinates 58:introducing 1982:Categories 1963:3030343723 1830:2013-12-18 1808:2021-02-18 1776:3030343723 1702:newspapers 1648:References 1625:Exit pupil 114:projection 41:references 1535:∼ 1508:× 1449:∼ 1152:of point 1021:− 922:− 846:− 787:− 711:− 617:− 582:of point 519:of point 346:of point 1603:See also 1526:and the 276:A point 261:A point 256:f > 0 181:geometry 155:Geometry 130:3D scene 112:and its 1993:Cameras 1716:scholar 1497:is the 1385:. Let 607:catheti 605:. The 459:pinhole 246:is the 54:improve 1960:  1939:  1918:  1896:  1877:  1856:  1773:  1718:  1711:  1704:  1697:  1689:  1475:where 254:where 43:, but 1802:(PDF) 1723:JSTOR 1709:books 207:, or 137:image 132:to a 118:ideal 1971:2023 1958:ISBN 1937:ISBN 1916:ISBN 1894:ISBN 1875:ISBN 1854:ISBN 1784:2023 1771:ISBN 1695:news 670:and 639:and 457:The 342:The 179:The 147:and 100:The 1678:by 901:or 766:or 269:or 1984:: 1237:-f 465:. 252:-f 203:, 151:. 134:2D 1973:. 1945:. 1924:. 1902:. 1883:. 1862:. 1833:. 1811:. 1786:. 1745:) 1739:( 1734:) 1730:( 1720:· 1713:· 1706:· 1699:· 1672:. 1586:C 1560:C 1511:4 1505:3 1484:C 1459:x 1453:C 1445:y 1420:y 1394:x 1353:) 1345:2 1341:x 1331:1 1327:x 1320:( 1311:3 1307:x 1303:f 1298:= 1293:) 1285:2 1281:y 1271:1 1267:y 1260:( 1233:f 1221:f 1204:Q 1190:) 1185:2 1181:y 1177:, 1172:1 1168:y 1164:( 1154:P 1140:) 1135:3 1131:x 1127:, 1122:2 1118:x 1114:, 1109:1 1105:x 1101:( 1076:) 1068:2 1064:x 1054:1 1050:x 1043:( 1034:3 1030:x 1026:f 1018:= 1013:) 1005:2 1001:y 991:1 987:y 980:( 948:3 944:x 937:2 933:x 928:f 919:= 914:2 910:y 885:3 881:x 875:2 871:x 865:= 860:f 854:2 850:y 813:3 809:x 802:1 798:x 793:f 784:= 779:1 775:y 750:3 746:x 740:1 736:x 730:= 725:f 719:1 715:y 683:3 679:x 656:1 652:x 641:f 625:1 621:y 584:P 570:) 565:3 561:x 557:, 552:2 548:x 544:, 539:1 535:x 531:( 521:Q 507:) 502:2 498:y 494:, 489:1 485:y 481:( 453:. 441:) 436:2 432:y 428:, 423:1 419:y 415:( 405:Q 401:R 382:3 378:x 367:Q 363:P 358:. 356:O 352:P 348:P 327:) 322:3 318:x 314:, 309:2 305:x 301:, 296:1 292:x 288:( 278:P 273:. 263:R 258:. 244:f 240:O 226:f 215:. 189:O 173:3 171:x 169:2 167:x 165:1 96:. 79:) 73:( 68:) 64:( 50:. 23:.

Index

Epipolar geometry
references
inline citations
improve
introducing
Learn how and when to remove this message

pinhole camera
coordinates
three-dimensional space
projection
pinhole camera
geometric distortions
3D scene
2D
image
computer vision
computer graphics

geometry
camera aperture
optical axis
focal length

similar triangles
hypotenuses
catheti
perspective projection
Camera matrix
homogeneous coordinates

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.