Knowledge (XXG)

Pinhole camera model

Source 📝

43: 1669: 100: 601: 171: 1238:
Rotate the coordinate system in the image plane 180° (in either direction). This is the way any practical implementation of a pinhole camera would solve the problem; for a photographic camera we rotate the image before looking at it, and for a digital camera we read out the pixels in such an order
153:
Some of the effects that the pinhole camera model does not take into account can be compensated, for example by applying suitable coordinate transformations on the image coordinates; other effects are sufficiently small to be neglected if a high quality camera is used. This means that the pinhole
138:
or blurring of unfocused objects caused by lenses and finite sized apertures. It also does not take into account that most practical cameras have only discrete image coordinates. This means that the pinhole camera model can only be used as a first order approximation of the mapping from a
1229:
followed by a 180° rotation in the image plane. This corresponds to how a real pinhole camera operates; the resulting image is rotated 180° and the relative size of projected objects depends on their distance to the focal point and the overall size of the image depends on the distance
1099: 1376: 1481: 910: 775: 973: 838: 984: 1264: 597:. This can be done with the help of the following figure which shows the same scene as the previous figure but now from above, looking down in the negative direction of the X2 axis. 1161: 591: 472:
aperture of the camera, through which all projection lines must pass, is assumed to be infinitely small, a point. In the literature this point in 3D space is referred to as the
348: 1211: 528: 462: 1608: 1582: 1506: 1442: 1416: 208:
is located. The three axes of the coordinate system are referred to as X1, X2, X3. Axis X3 is pointing in the viewing direction of the camera and is referred to as the
1532: 1556: 1879: 648: 706: 679: 405: 1588:; two camera matrices are equivalent if they are equal up to a scalar multiplication. This description of the pinhole camera mapping, as a linear transformation 261:
of the pinhole camera. A practical implementation of a pinhole camera implies that the image plane is located such that it intersects the X3 axis at coordinate
247: 150:. Its validity depends on the quality of the camera and, in general, decreases from the center of the image to the edges as lens distortion effects increase. 229:
An image plane, where the 3D world is projected through the aperture of the camera. The image plane is parallel to axes X1 and X2 and is located at distance
1234:
between the image plane and the focal point. In order to produce an unrotated image, which is what we expect from a camera, there are two possibilities:
1562:. This implies that the left and right hand sides are equal up to a non-zero scalar multiplication. A consequence of this relation is that also 1258:
In both cases, the resulting mapping from 3D coordinates to 2D image coordinates is given by the expression above, but without the negation, thus
1610:
instead of as a fraction of two linear expressions, makes it possible to simplify many derivations of relations between 3D and 2D coordinates.
380:. This point is given by the intersection of the projection line (green) and the image plane. In any practical situation we can assume that 1686: 1998: 1941: 186:
coordinate system in the figure is left-handed, that is the direction of the OZ axis is in reverse to the system the reader may be used to.
64: 134:, where the camera aperture is described as a point and no lenses are used to focus light. The model does not include, for example, 1951: 1930: 1908: 1889: 1868: 1752: 86: 1733: 1444:
be a representation of the image of this point in the pinhole camera (a 3-dimensional vector). Then the following relation holds
1705: 1450: 849: 714: 1972: 1785: 1690: 1254:
which cannot be implemented in practice, but provides a theoretical camera which may be simpler to analyse than the real one.
1712: 1834: 194:
related to the mapping of a pinhole camera is illustrated in the figure. The figure contains the following basic objects:
1094:{\displaystyle {\begin{pmatrix}y_{1}\\y_{2}\end{pmatrix}}=-{\frac {f}{x_{3}}}{\begin{pmatrix}x_{1}\\x_{2}\end{pmatrix}}} 1371:{\displaystyle {\begin{pmatrix}y_{1}\\y_{2}\end{pmatrix}}={\frac {f}{x_{3}}}{\begin{pmatrix}x_{1}\\x_{2}\end{pmatrix}}} 1719: 915: 780: 57: 51: 1679: 1701: 68: 154:
camera model often can be used as a reasonable description of how a camera depicts a 3D scene, for example in
1809: 1419: 1393: 120: 1226: 1107: 537: 294: 1624: 1392:
The mapping from 3D coordinates of points in space to 2D image coordinates can also be represented in
1619: 1170: 487: 421: 144: 135: 1726: 1591: 1565: 1489: 1425: 1399: 414:
and with axes Y1 and Y2 which are parallel to X1 and X2, respectively. The coordinates of point
1511: 276:
at the intersection of the optical axis and the image plane. This point is referred to as the
1968: 1947: 1926: 1904: 1885: 1864: 1781: 609: 159: 31: 17: 1540: 2003: 1652: 1585: 1559: 623: 684: 657: 383: 155: 1638:, the equivalent location of the pinhole in relation to the image plane in a real camera. 1646: 1641: 1629: 232: 131: 104: 1632:, the equivalent location of the pinhole in relation to object space in a real camera. 1992: 1918: 1534: 1387: 124: 222:. The plane which is spanned by axes X1 and X2 is the front side of the camera, or 1649:, the practical implementation of the mathematical model described in this article. 258: 210: 1668: 843:
A similar investigation, looking in the negative direction of the X1 axis gives
1635: 1104:
which is an expression that describes the relation between the 3D coordinates
613: 116: 99: 1225:
The mapping from 3D to 2D coordinates described by a pinhole camera is a
617: 203: 191: 140: 410:
There is also a 2D coordinate system in the image plane, with origin at
27:
Model of 3D points projected onto planar image via a lens-less aperture
600: 361:
into the camera. This is the green line which passes through point
170: 1901:
Practical Handbook on Image Processing for Scientific Applications
599: 169: 147: 98: 407:> 0 which means that the intersection point is well defined. 1662: 36: 1962: 1775: 1250:
and rework the previous calculations. This would generate a
612:, both having parts of the projection line (green) as their 1476:{\displaystyle \mathbf {y} \sim \mathbf {C} \,\mathbf {x} } 1242:
Place the image plane so that it intersects the X3 axis at
1943:
Epipolar geometry in Stereo, Motion and Object Recognition
905:{\displaystyle {\frac {-y_{2}}{f}}={\frac {x_{2}}{x_{3}}}} 770:{\displaystyle {\frac {-y_{1}}{f}}={\frac {x_{1}}{x_{3}}}} 604:
The geometry of a pinhole camera as seen from the X2 axis
708:. Since the two triangles are similar it follows that 1333: 1273: 1056: 993: 1594: 1568: 1543: 1514: 1492: 1453: 1428: 1402: 1267: 1173: 1110: 987: 918: 852: 783: 717: 687: 660: 626: 540: 490: 424: 386: 297: 235: 198:
A 3D orthogonal coordinate system with its origin at
115:
describes the mathematical relationship between the
1693:. Unsourced material may be challenged and removed. 1602: 1576: 1550: 1526: 1500: 1475: 1436: 1410: 1370: 1205: 1155: 1093: 967: 904: 832: 769: 700: 673: 642: 585: 522: 456: 399: 342: 241: 968:{\displaystyle y_{2}=-{\frac {f\,x_{2}}{x_{3}}}} 833:{\displaystyle y_{1}=-{\frac {f\,x_{1}}{x_{3}}}} 253:in the negative direction of the X3 axis, where 484:Next we want to understand how the coordinates 1878:Richard Hartley and Andrew Zisserman (2003). 174:The geometry of a pinhole camera. Note: the x 8: 1967:(2 ed.). Springer Nature. p. 925. 1964:Computer Vision: Algorithms and Applications 1777:Computer Vision: Algorithms and Applications 1780:(2 ed.). Springer Nature. p. 74. 654:and the catheti of the right triangle are 1881:Multiple View Geometry in computer vision 1753:Learn how and when to remove this message 1595: 1593: 1569: 1567: 1544: 1542: 1513: 1493: 1491: 1468: 1467: 1462: 1454: 1452: 1429: 1427: 1403: 1401: 1354: 1340: 1328: 1320: 1311: 1294: 1280: 1268: 1266: 1221:Rotated image and the virtual image plane 1194: 1181: 1172: 1144: 1131: 1118: 1109: 1077: 1063: 1051: 1043: 1034: 1014: 1000: 988: 986: 957: 946: 941: 935: 923: 917: 894: 884: 878: 863: 853: 851: 822: 811: 806: 800: 788: 782: 759: 749: 743: 728: 718: 716: 692: 686: 665: 659: 634: 625: 574: 561: 548: 539: 511: 498: 489: 445: 432: 423: 391: 385: 331: 318: 305: 296: 234: 87:Learn how and when to remove this message 1859:David A. Forsyth and Jean Ponce (2003). 50:This article includes a list of general 30:For broader coverage of this topic, see 1835:"Elements of Geometric Computer Vision" 1766: 418:relative to this coordinate system is 1418:be a representation of a 3D point in 291:somewhere in the world at coordinate 7: 1691:adding citations to reliable sources 350:relative to the axes X1, X2, and X3. 1940:Gang Xu and Zhengyou Zhang (1996). 1558:means equality between elements of 1156:{\displaystyle (x_{1},x_{2},x_{3})} 586:{\displaystyle (x_{1},x_{2},x_{3})} 343:{\displaystyle (x_{1},x_{2},x_{3})} 1861:Computer Vision, A Modern Approach 1422:(a 4-dimensional vector), and let 474:optical (or lens or camera) center 56:it lacks sufficient corresponding 25: 1667: 1596: 1570: 1494: 1469: 1463: 1455: 1430: 1404: 41: 1921:and George C. Stockman (2001). 1678:needs additional citations for 1584:can be seen as an element of a 1946:. Kluwer Academic Publishers. 1884:. Cambridge University Press. 1833:Andrea Fusiello (2005-12-27). 1252:virtual (or front) image plane 1200: 1174: 1150: 1111: 580: 541: 517: 491: 451: 425: 376:onto the image plane, denoted 337: 298: 18:Pinhole camera principal point 1: 1206:{\displaystyle (y_{1},y_{2})} 523:{\displaystyle (y_{1},y_{2})} 457:{\displaystyle (y_{1},y_{2})} 1603:{\displaystyle \mathbf {C} } 1577:{\displaystyle \mathbf {C} } 1501:{\displaystyle \mathbf {C} } 1437:{\displaystyle \mathbf {y} } 1411:{\displaystyle \mathbf {x} } 1999:Geometry in computer vision 1808:Carlo Tomasi (2016-08-09). 127:onto the image plane of an 2020: 1961:Szeliski, Richard (2022). 1774:Szeliski, Richard (2022). 1385: 1382:In homogeneous coordinates 1167:and its image coordinates 978:This can be summarized as 608:In this figure we see two 534:depend on the coordinates 202:. This is also where the 29: 1527:{\displaystyle 3\times 4} 620:of the left triangle are 1837:. Homepages.inf.ed.ac.uk 1239:that it becomes rotated. 372:The projection of point 1810:"A Simple Camera Model" 1551:{\displaystyle \,\sim } 1420:homogeneous coordinates 1394:homogeneous coordinates 121:three-dimensional space 71:more precise citations. 1702:"Pinhole camera model" 1604: 1578: 1552: 1528: 1502: 1477: 1438: 1412: 1372: 1227:perspective projection 1207: 1157: 1095: 969: 906: 834: 771: 702: 675: 644: 643:{\displaystyle -y_{1}} 605: 587: 524: 458: 401: 344: 243: 187: 108: 1625:Collinearity equation 1605: 1579: 1553: 1529: 1503: 1478: 1439: 1413: 1373: 1208: 1158: 1096: 970: 907: 835: 772: 703: 701:{\displaystyle x_{3}} 676: 674:{\displaystyle x_{1}} 645: 603: 588: 525: 459: 402: 400:{\displaystyle x_{3}} 345: 244: 173: 136:geometric distortions 102: 1899:Bernd Jähne (1997). 1687:improve this article 1592: 1566: 1541: 1512: 1490: 1451: 1426: 1400: 1265: 1217:in the image plane. 1171: 1108: 985: 916: 850: 781: 715: 685: 658: 624: 538: 488: 422: 384: 295: 233: 113:pinhole camera model 1620:Camera resectioning 1600: 1574: 1548: 1524: 1498: 1473: 1434: 1408: 1368: 1362: 1302: 1203: 1153: 1091: 1085: 1022: 965: 902: 830: 767: 698: 671: 640: 606: 583: 520: 454: 397: 340: 239: 188: 109: 1925:. Prentice Hall. 1863:. Prentice Hall. 1763: 1762: 1755: 1737: 1560:projective spaces 1326: 1049: 963: 900: 873: 828: 765: 738: 610:similar triangles 242:{\displaystyle f} 160:computer graphics 97: 96: 89: 32:Epipolar geometry 16:(Redirected from 2011: 1985: 1983: 1981: 1957: 1936: 1919:Linda G. Shapiro 1914: 1895: 1874: 1846: 1845: 1843: 1842: 1830: 1824: 1823: 1821: 1820: 1814: 1805: 1799: 1798: 1796: 1794: 1771: 1758: 1751: 1747: 1744: 1738: 1736: 1695: 1671: 1663: 1653:Rectilinear lens 1609: 1607: 1606: 1601: 1599: 1586:projective space 1583: 1581: 1580: 1575: 1573: 1557: 1555: 1554: 1549: 1533: 1531: 1530: 1525: 1507: 1505: 1504: 1499: 1497: 1482: 1480: 1479: 1474: 1472: 1466: 1458: 1443: 1441: 1440: 1435: 1433: 1417: 1415: 1414: 1409: 1407: 1377: 1375: 1374: 1369: 1367: 1366: 1359: 1358: 1345: 1344: 1327: 1325: 1324: 1312: 1307: 1306: 1299: 1298: 1285: 1284: 1212: 1210: 1209: 1204: 1199: 1198: 1186: 1185: 1162: 1160: 1159: 1154: 1149: 1148: 1136: 1135: 1123: 1122: 1100: 1098: 1097: 1092: 1090: 1089: 1082: 1081: 1068: 1067: 1050: 1048: 1047: 1035: 1027: 1026: 1019: 1018: 1005: 1004: 974: 972: 971: 966: 964: 962: 961: 952: 951: 950: 936: 928: 927: 911: 909: 908: 903: 901: 899: 898: 889: 888: 879: 874: 869: 868: 867: 854: 839: 837: 836: 831: 829: 827: 826: 817: 816: 815: 801: 793: 792: 776: 774: 773: 768: 766: 764: 763: 754: 753: 744: 739: 734: 733: 732: 719: 707: 705: 704: 699: 697: 696: 680: 678: 677: 672: 670: 669: 649: 647: 646: 641: 639: 638: 592: 590: 589: 584: 579: 578: 566: 565: 553: 552: 529: 527: 526: 521: 516: 515: 503: 502: 463: 461: 460: 455: 450: 449: 437: 436: 406: 404: 403: 398: 396: 395: 349: 347: 346: 341: 336: 335: 323: 322: 310: 309: 249:from the origin 248: 246: 245: 240: 92: 85: 81: 78: 72: 67:this article by 58:inline citations 45: 44: 37: 21: 2019: 2018: 2014: 2013: 2012: 2010: 2009: 2008: 1989: 1988: 1979: 1977: 1975: 1960: 1954: 1939: 1933: 1923:Computer Vision 1917: 1911: 1898: 1892: 1877: 1871: 1858: 1855: 1850: 1849: 1840: 1838: 1832: 1831: 1827: 1818: 1816: 1812: 1807: 1806: 1802: 1792: 1790: 1788: 1773: 1772: 1768: 1759: 1748: 1742: 1739: 1696: 1694: 1684: 1672: 1661: 1616: 1590: 1589: 1564: 1563: 1539: 1538: 1510: 1509: 1488: 1487: 1449: 1448: 1424: 1423: 1398: 1397: 1390: 1384: 1361: 1360: 1350: 1347: 1346: 1336: 1329: 1316: 1301: 1300: 1290: 1287: 1286: 1276: 1269: 1263: 1262: 1223: 1213:given by point 1190: 1177: 1169: 1168: 1140: 1127: 1114: 1106: 1105: 1084: 1083: 1073: 1070: 1069: 1059: 1052: 1039: 1021: 1020: 1010: 1007: 1006: 996: 989: 983: 982: 953: 942: 937: 919: 914: 913: 890: 880: 859: 855: 848: 847: 818: 807: 802: 784: 779: 778: 755: 745: 724: 720: 713: 712: 688: 683: 682: 661: 656: 655: 630: 622: 621: 570: 557: 544: 536: 535: 507: 494: 486: 485: 482: 441: 428: 420: 419: 387: 382: 381: 355:projection line 327: 314: 301: 293: 292: 278:principal point 231: 230: 224:principal plane 205:camera aperture 185: 181: 177: 168: 156:computer vision 103:A diagram of a 93: 82: 76: 73: 63:Please help to 62: 46: 42: 35: 28: 23: 22: 15: 12: 11: 5: 2017: 2015: 2007: 2006: 2001: 1991: 1990: 1987: 1986: 1973: 1958: 1952: 1937: 1931: 1915: 1909: 1896: 1890: 1875: 1869: 1854: 1851: 1848: 1847: 1825: 1800: 1786: 1765: 1764: 1761: 1760: 1675: 1673: 1666: 1660: 1657: 1656: 1655: 1650: 1647:Pinhole camera 1644: 1642:Ibn al-Haytham 1639: 1633: 1630:Entrance pupil 1627: 1622: 1615: 1612: 1598: 1572: 1547: 1523: 1520: 1517: 1496: 1484: 1483: 1471: 1465: 1461: 1457: 1432: 1406: 1386:Main article: 1383: 1380: 1379: 1378: 1365: 1357: 1353: 1349: 1348: 1343: 1339: 1335: 1334: 1332: 1323: 1319: 1315: 1310: 1305: 1297: 1293: 1289: 1288: 1283: 1279: 1275: 1274: 1272: 1256: 1255: 1246:instead of at 1240: 1222: 1219: 1202: 1197: 1193: 1189: 1184: 1180: 1176: 1152: 1147: 1143: 1139: 1134: 1130: 1126: 1121: 1117: 1113: 1102: 1101: 1088: 1080: 1076: 1072: 1071: 1066: 1062: 1058: 1057: 1055: 1046: 1042: 1038: 1033: 1030: 1025: 1017: 1013: 1009: 1008: 1003: 999: 995: 994: 992: 976: 975: 960: 956: 949: 945: 940: 934: 931: 926: 922: 897: 893: 887: 883: 877: 872: 866: 862: 858: 841: 840: 825: 821: 814: 810: 805: 799: 796: 791: 787: 762: 758: 752: 748: 742: 737: 731: 727: 723: 695: 691: 668: 664: 637: 633: 629: 582: 577: 573: 569: 564: 560: 556: 551: 547: 543: 519: 514: 510: 506: 501: 497: 493: 481: 478: 466: 465: 453: 448: 444: 440: 435: 431: 427: 408: 394: 390: 370: 365:and the point 351: 339: 334: 330: 326: 321: 317: 313: 308: 304: 300: 285: 270: 238: 227: 216:principal axis 183: 179: 175: 167: 164: 132:pinhole camera 119:of a point in 105:pinhole camera 95: 94: 49: 47: 40: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2016: 2005: 2002: 2000: 1997: 1996: 1994: 1976: 1970: 1966: 1965: 1959: 1955: 1953:0-7923-4199-6 1949: 1945: 1944: 1938: 1934: 1932:0-13-030796-3 1928: 1924: 1920: 1916: 1912: 1910:0-8493-8906-2 1906: 1903:. CRC Press. 1902: 1897: 1893: 1891:0-521-54051-8 1887: 1883: 1882: 1876: 1872: 1870:0-12-379777-2 1866: 1862: 1857: 1856: 1852: 1836: 1829: 1826: 1815:. cs.duke.edu 1811: 1804: 1801: 1789: 1783: 1779: 1778: 1770: 1767: 1757: 1754: 1746: 1735: 1732: 1728: 1725: 1721: 1718: 1714: 1711: 1707: 1704: –  1703: 1699: 1698:Find sources: 1692: 1688: 1682: 1681: 1676:This article 1674: 1670: 1665: 1664: 1658: 1654: 1651: 1648: 1645: 1643: 1640: 1637: 1634: 1631: 1628: 1626: 1623: 1621: 1618: 1617: 1613: 1611: 1587: 1561: 1545: 1536: 1535:camera matrix 1521: 1518: 1515: 1459: 1447: 1446: 1445: 1421: 1395: 1389: 1388:Camera matrix 1381: 1363: 1355: 1351: 1341: 1337: 1330: 1321: 1317: 1313: 1308: 1303: 1295: 1291: 1281: 1277: 1270: 1261: 1260: 1259: 1253: 1249: 1245: 1241: 1237: 1236: 1235: 1233: 1228: 1220: 1218: 1216: 1195: 1191: 1187: 1182: 1178: 1166: 1145: 1141: 1137: 1132: 1128: 1124: 1119: 1115: 1086: 1078: 1074: 1064: 1060: 1053: 1044: 1040: 1036: 1031: 1028: 1023: 1015: 1011: 1001: 997: 990: 981: 980: 979: 958: 954: 947: 943: 938: 932: 929: 924: 920: 895: 891: 885: 881: 875: 870: 864: 860: 856: 846: 845: 844: 823: 819: 812: 808: 803: 797: 794: 789: 785: 760: 756: 750: 746: 740: 735: 729: 725: 721: 711: 710: 709: 693: 689: 666: 662: 653: 635: 631: 627: 619: 615: 611: 602: 598: 596: 575: 571: 567: 562: 558: 554: 549: 545: 533: 512: 508: 504: 499: 495: 479: 477: 475: 471: 446: 442: 438: 433: 429: 417: 413: 409: 392: 388: 379: 375: 371: 368: 364: 360: 356: 352: 332: 328: 324: 319: 315: 311: 306: 302: 290: 286: 283: 279: 275: 271: 268: 264: 260: 256: 252: 236: 228: 225: 221: 220:principal ray 217: 213: 212: 207: 206: 201: 197: 196: 195: 193: 172: 165: 163: 161: 157: 151: 149: 146: 142: 137: 133: 130: 126: 122: 118: 114: 106: 101: 91: 88: 80: 77:February 2008 70: 66: 60: 59: 53: 48: 39: 38: 33: 19: 1978:. Retrieved 1963: 1942: 1922: 1900: 1880: 1860: 1853:Bibliography 1839:. Retrieved 1828: 1817:. Retrieved 1803: 1791:. Retrieved 1776: 1769: 1749: 1743:January 2008 1740: 1730: 1723: 1716: 1709: 1697: 1685:Please help 1680:verification 1677: 1485: 1391: 1257: 1251: 1247: 1243: 1231: 1224: 1214: 1164: 1103: 977: 842: 651: 607: 594: 531: 483: 473: 469: 467: 415: 411: 377: 373: 366: 362: 358: 354: 288: 282:image center 281: 277: 273: 266: 262: 259:focal length 254: 250: 223: 219: 215: 211:optical axis 209: 204: 199: 189: 152: 128: 112: 110: 83: 74: 55: 1980:30 December 1793:30 December 614:hypotenuses 480:Formulation 117:coordinates 69:introducing 1993:Categories 1974:3030343723 1841:2013-12-18 1819:2021-02-18 1787:3030343723 1713:newspapers 1659:References 1636:Exit pupil 125:projection 52:references 1546:∼ 1519:× 1460:∼ 1163:of point 1032:− 933:− 857:− 798:− 722:− 628:− 593:of point 530:of point 357:of point 1614:See also 1537:and the 287:A point 272:A point 267:f > 0 192:geometry 166:Geometry 141:3D scene 123:and its 2004:Cameras 1727:scholar 1508:is the 1396:. Let 618:catheti 616:. The 470:pinhole 257:is the 65:improve 1971:  1950:  1929:  1907:  1888:  1867:  1784:  1729:  1722:  1715:  1708:  1700:  1486:where 265:where 54:, but 1813:(PDF) 1734:JSTOR 1720:books 218:, or 148:image 143:to a 129:ideal 1982:2023 1969:ISBN 1948:ISBN 1927:ISBN 1905:ISBN 1886:ISBN 1865:ISBN 1795:2023 1782:ISBN 1706:news 681:and 650:and 468:The 353:The 190:The 158:and 111:The 1689:by 912:or 777:or 280:or 1995:: 1248:-f 476:. 263:-f 214:, 162:. 145:2D 1984:. 1956:. 1935:. 1913:. 1894:. 1873:. 1844:. 1822:. 1797:. 1756:) 1750:( 1745:) 1741:( 1731:· 1724:· 1717:· 1710:· 1683:. 1597:C 1571:C 1522:4 1516:3 1495:C 1470:x 1464:C 1456:y 1431:y 1405:x 1364:) 1356:2 1352:x 1342:1 1338:x 1331:( 1322:3 1318:x 1314:f 1309:= 1304:) 1296:2 1292:y 1282:1 1278:y 1271:( 1244:f 1232:f 1215:Q 1201:) 1196:2 1192:y 1188:, 1183:1 1179:y 1175:( 1165:P 1151:) 1146:3 1142:x 1138:, 1133:2 1129:x 1125:, 1120:1 1116:x 1112:( 1087:) 1079:2 1075:x 1065:1 1061:x 1054:( 1045:3 1041:x 1037:f 1029:= 1024:) 1016:2 1012:y 1002:1 998:y 991:( 959:3 955:x 948:2 944:x 939:f 930:= 925:2 921:y 896:3 892:x 886:2 882:x 876:= 871:f 865:2 861:y 824:3 820:x 813:1 809:x 804:f 795:= 790:1 786:y 761:3 757:x 751:1 747:x 741:= 736:f 730:1 726:y 694:3 690:x 667:1 663:x 652:f 636:1 632:y 595:P 581:) 576:3 572:x 568:, 563:2 559:x 555:, 550:1 546:x 542:( 532:Q 518:) 513:2 509:y 505:, 500:1 496:y 492:( 464:. 452:) 447:2 443:y 439:, 434:1 430:y 426:( 416:Q 412:R 393:3 389:x 378:Q 374:P 369:. 367:O 363:P 359:P 338:) 333:3 329:x 325:, 320:2 316:x 312:, 307:1 303:x 299:( 289:P 284:. 274:R 269:. 255:f 251:O 237:f 226:. 200:O 184:3 182:x 180:2 178:x 176:1 107:. 90:) 84:( 79:) 75:( 61:. 34:. 20:)

Index

Pinhole camera principal point
Epipolar geometry
references
inline citations
improve
introducing
Learn how and when to remove this message

pinhole camera
coordinates
three-dimensional space
projection
pinhole camera
geometric distortions
3D scene
2D
image
computer vision
computer graphics

geometry
camera aperture
optical axis
focal length

similar triangles
hypotenuses
catheti
perspective projection
Camera matrix

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.