Knowledge (XXG)

Plant genome assembly

Source πŸ“

506:
over an Illumina-only assembly. Another plant genome that was recently published that used long reads in combination with short reads is the improved assembly of the apple genome. In this project a hybrid approach was used, combining different data types from sequencing technologies. The sequences used came from: PacBio RS II, Illumina paired-end reads (PE) and Illumina mate- pair reads (MP). As a first step an assembly from Illumina paired-end reads was performed using a well-known de novo assembly software SOAPdevo. Then using a hybrid assembly pipeline DBG2OLC. the contigs obtained at the first step and the long reads from PacBio were combined. The assembly was then polished with the help of Illumina paired-end reads by mapping them to the contigs using BWA-MEM. By mapping the mate-pair reads on the corrected contigs they scaffold the assembly. Further BioNano optical mapping analysis with a total length of 649.7 Mb, were used in the hybrid assembly pipeline together with the scaffolds obtained from the previous step. The resulting scaffolds were anchored to a genetic map constructed from 15,417 single-nucleotide
455:, 2010, an economically important tropical fruit tree crop and the primary source of cocoa. The genome was sequenced in a consortium, "The International Cocoa Genome Sequencing consortium (ICGS) " and produced a total of 17.6 million 454 single end reads, 8.8 million 454 paired-end reads, 398.0 million Illumina paired-end reads and about 88,000 Sanger BAC reads. First by using genome assembly software, Newbler, an assembly was produced with 25,912 contigs and 4,792 scaffolds from the reads obtained from Roche/454 and Sanger raw data. This had a total length of 326.9 Mb, which represents 76% of the estimated genome size. The Illumina reads were used to complement the 25: 126:(NGS), and therefore most plant genome assemblies available that used NGS alone are highly fragmented, contain large numbers of contigs, and genome regions are not finished. Highly repetitive sequences, often larger than 10kbp, are the main challenge in plants. Most of the chromosomal sequences are produced by the activity of 391:
Sanger technology on ABI3730x1 sequencers. To assemble the reads, Arachne, 2002, a software designed to analyze reads obtained from both ends of plasmid clones, was used. In total 6.2 million paired-end tag reads were produced. The software produced 20.784 contigs that were combined into 3,830 supercontigs, having an
510:(SNPs) markers. For better understanding of the number and diversity of genes that were identified, ribonucleic acid RNA-seq, were used. The resulted genome has a dimension of 643.2 Mb getting closer to the estimated genome size than the previous published assembly and a smaller number of protein-coding- genes. 423:
Due to its relatively cheap cost in comparison to previous methods, most of the recent plant genomes were sequenced and assembled using data from NGS (next-generation- sequencing) technology. In general the NGS data are used in combination with Sanger Sequencing technology or long-reads obtained from
390:
The draft genome of grapevine is the fourth genome published for a flowering plant and the first from a fruit crop. The sequences of the genome were obtained from different types of libraries, like plasmids, fosmids and BACs. All the data were generated by paired-end sequencing of cloned insert using
352:
Sanger clone-by-clone strategy has the advantage of working in small units, which reduces the complexity and computational requirements, as well as minimized problems associated with the misassembly of highly repetitive DNA and therefore is an attractive solution in assembling plant genomes and other
270:
With BAC, the genome is first split into smaller pieces with the location recorded. The pieces of DNA are then inserted into BAC clones that are further multiplied by inserting them into bacterial cells that grow very fast. These pieces are further fragmented into overlapping smaller pieces that are
209:
database and contains resources for a reduced number of sequenced plant species (45, Oct. 2017). It mainly provides genome sequences, gene models, functional annotations and polymorphic loci. For some of the plant species, additional information is provided including population structure, individual
505:
having a genome size estimated at 989 Mb. For this, a 60Γ— coverage of the genome was generated, with 20% of the reads larger than 20 kb. Data were assembled using PacBio's hierarchical genome assembly process (HGAP), and showed that long-read assemblies revealed a 63-fold improvement in contig size
365:
sequencing technology there is no order for the fragments that are sequenced. The DNA is randomly sheared and cloned fragments are sequenced and assembled using computational methods. This technology reduced the cost and the time associated with construction of the maps and relies on computational
220:
Plant Genome DataBase Japan (PGDBj) is a website that contains information related to genomes of model and crop plants from databases. It has three main components: ortholog db, DNA marker and linkage map db, and plant resource db, where multiple plant resources accumulated by different institutes
189:), began in September 1997, when scientists from many nations agreed to an international collaboration to sequence the rice genome, forming "The International Rice Genome Sequencing Project" (IRGSP). At an estimated size between 400 and 430 Mb, approximatively four times larger in dimensions than 500:
RS 2). In general, long reads from TGS have relatively high error rates (~10% on average) and therefore repeated sequencing of the same DNA fragments is required. The price of such technology is still quite high and therefore is generally used in combination with short reads from NGS. One of the
440:
reads in combination with Sanger sequences. 72.2-fold genome coverage high quality base pairs were generated from which 3.9-fold coverage was provided from Sanger and the Illumina GA reads provided 68.3-fold coverage. From this two assemblies were produced based on the sequencing technology. The
398:
The anchorage of the supercontigs along the genome was performed first by joining supercontigs together using paired BAC end sequences. The resulting ultracontigs and the remained supercontigs were then aligned along the genetic map of the genome. Later improvements of this strategy enabled the
310:
positions and orientations. End sequences from 47,788 BAC clones were used to extend contigs from anchored BACs and to select a minimum tiling path. A total of 1,569 clones found in minimum tiling path were selected and sequenced. Direct PCR products were used to clone remaining gaps, and YACs
337:), is the last plant genome project primarily based on Sanger BAC-by-BAC strategy. The genome size of Maize, 2.3 Gb and 10 chromosomes, is significantly larger than that of rice and Arabidopsis. To assemble the genome of maize a set of 16,848 minimally overlapping BAC clones derived 196:
Between 2000 and 2008 in total 10 plant genomes were published while in 2012 alone, 13 plant genomes were published. Since then the number was constantly increasing, and now more than 400 plant genomes are available in the NCBI genome database, of which 72 were re-annotated .
496:(TGS) some of the limitations from previous methods of sequencing and assembling plant genomes have started to be addressed. This technology is characterized by the parallel sequencing of single molecules of DNA, that results in sequences up to 54 kbp length ( 513:
The use of long reads in the plant genome assemblies became more popular, for reducing the number of scaffolds and increasing the quality of the genome by improving the assembly and coverage in regions that are not clearly defined by NGS assembly.
449:(367 Mb). A genetic map was constructed to anchor the assembled genome. 72.8% of the assembled sequences were successfully anchored onto the seven chromosomes. Another plant genome that combined NGS with Sanger sequencing was the genome of 459:
assembly, by aligning the short reads on the cocoa genome assembly using the SOAP software. A similar strategy that combined NGS reads and Sanger Sequencing was used for other important plant species like the first published apple genome
353:
complex eukaryotic genomes. The main disadvantages of this method are the costs and the resources required. The cost of the first plant genome assemblies was estimated between 70 million dollars and 200 million dollars per assembly.
348:
and sequences from libraries with methyl-filtered DNA (libraries that uses the knowledge that the bases in genic sequences tends to be less heavily methylated than those in non-genic regions) and high C0 t techniques.
224:
PlantsDB is a resource for analysing and storing genetic and genomic information from various plants, and offers tools to query these data and to perform comparative analysis with the help of in-house tools.
943:
Flavell RB, Gale MD, O'dell M, Murphy G, Moore G, Lucas H (1993). "Molecular organization of genes and repeats in the large cereal genomes and implications for the isolation of genes by chromosome walking".
271:
placed into a vector and then sequenced. The small pieces are then assembled into contigs by overlapping them. Next, using the map from the first step the contigs are assembled back into the chromosomes.
142:(LTR) retrotransposons are predominant and constitute from 15% to 90% of the genome. Polyploidy is another challenge in assembling a plant genome, and it is estimated that ~80% of plants are polyploids. 274:
The first complete plant genome assembly (also the first plant genome published) that used this type of technique was Arabidopsis thaliana, in 2000. Different large-insert libraries like BACs,
176:) has convenient traits, such as a small nuclear genome (135Mbp) and a short generation time (8 weeks from seed to seed). The genome has five chromosomes reflecting approximately 4% of the 251:
In general, for sequencing and assembling large and complex genomes like plants, different strategies are used, based on the technologies available at that time when the project started.
441:
resulting contigs were compared between them, resulting in a total length of the assembled genome of 243.5 Mb. The result is about 30% smaller than the genome size estimated by
2448:
Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, et al. (June 2013). "Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data".
1371:
Spannagl M, Nussbaumer T, Bader K, Gundlach H, Mayer KF (2017). "PGSB/MIPS PlantsDB Database Framework for the Integration and Analysis of Plant Genome Data".
1556:
Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. (November 2009). "The B73 maize genome: complexity, diversity, and dynamics".
1181:
Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, et al. (April 2002). "A draft sequence of the rice genome (Oryza sativa L. ssp. japonica)".
46: 33: 1232:
Bolser D, Staines DM, Pritchard E, Kersey P (2016). "Ensembl Plants: Integrating Tools for Visualizing, Mining, and Analyzing Plant Genomics Data".
315:
sequences. The resulting sequenced regions were 115.4 Mb of the 125 Mb predicted size of the genome and a total of 25,498 of protein-coding genes.
263:
for each chromosome before the sequencing, and rely on libraries made from large-insert clones. The most common type of large-insert clone is the
1123:
Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, et al. (March 2000). "The genome sequence of Drosophila melanogaster".
679:
Deschamps S, Campbell MA (2010-04-01). "Utilization of next-generation sequencing platforms in plant genomics and genetic variant discovery".
1072:
The C. elegans Sequencing Consortium (December 1998). "Genome sequence of the nematode C. elegans: a platform for investigating biology".
1504:"Sustainable funding for biocuration: The Arabidopsis Information Resource (TAIR) as a case study of a subscription-based funding model" 232:
that integrates plant sequence data and comparative genomic methods, and performs evolutionary analysis within the green plant lineage (
532:"Gene functionalities and genome structure in Bathycoccus prasinos reflect cellular specializations at the base of the green lineage" 283: 1429: 1388: 1347: 1249: 961: 501:
first plant genome that used long-reads from TGS, Pacific Biosciences in combination with short reads from NGS was the genome of
392: 240: 264: 114:
and repetitive elements than species from other kingdoms. One of the most complex plant genome assemblies available is that of
1330:
Nakaya A, Ichihara H, Asamizu E, Shirasawa S, Nakamura Y, Tabata S, Hirakawa H (2017). "Plant Genome DataBase Japan (PGDBJ)".
2369:
Bleidorn C (2015). "Third generation sequencing: technology and its potential impact on evolutionary biodiversity research".
1607:
Feuillet C, Leach JE, Rogers J, Schnable PS, Eversole K (February 2011). "Crop genome sequencing: lessons and rationales".
2611:"DBG2OLC: Efficient Assembly of Large Genomes Using Long Erroneous Reads of the Third Generation Sequencing Technologies" 1863: 493: 425: 287: 279: 221:
are integrated. The aim is "to provide a platform, enabling comparative searches of different resources" (pgdbj.jp).
38: 295: 806:
Harrison GE, Heslop-Harrison JS (February 1995). "Centromeric repetitive DNA sequences in the genus Brassica".
275: 849:
Lanciano S, Carpentier MC, Llauro C, Jobet E, Robakowska-Hyzorek D, Lasserre E, et al. (February 2017).
2715: 437: 401: 362: 299: 169: 127: 330:
a total of 3,401 mapped clones in a minimum tiling path were selected from the physical map and assembled.
1140: 507: 165: 1273:
Gupta P, Naithani S, Tello-Ruiz MK, Chougule K, D'Eustachio P, Fabregat A, et al. (November 2016).
2181:
Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, et al. (October 2010).
2622: 2493:"High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development" 2378: 2325: 2044: 1995: 1946: 1831: 1774: 1715: 1663: 1616: 1565: 1286: 1190: 1132: 1081: 1036: 909: 473: 229: 214: 156: 139: 1982:
Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, et al. (January 2009).
1818:
Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, et al. (September 2006).
1145: 630:
Zimin A, Stevens KA, Crepeau MW, Holtz-Morris A, Koriabine M, MarΓ§ais G, et al. (March 2014).
497: 467: 383: 2667: 2591: 2532: 2473: 2404:
Lee H, Gurtowski J, Yoo S, Nattestad M, Marcus S, Goodwin S, McCombie WR, Schatz M (2016-04-13).
2253: 2160: 2070: 1855: 1589: 1214: 1097: 1002: 831: 739: 696: 1702:
Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, et al. (September 2007).
583:"The C-value enigma in plants and animals: a review of parallels and an appeal for partnership" 530:
Moreau H, Verhelst B, Couloux A, Derelle E, Rombauts S, Grimsley N, et al. (August 2012).
2648: 2583: 2524: 2465: 2351: 2294: 2245: 2204: 2152: 2111: 2062: 2013: 1964: 1915: 1847: 1800: 1743: 1681: 1632: 1581: 1533: 1484: 1435: 1425: 1416:. Methods in Molecular Biology. Vol. 1533. Humana Press, New York, NY. pp. 183–200. 1394: 1384: 1353: 1343: 1312: 1255: 1245: 1236:. Methods in Molecular Biology. Vol. 1374. Humana Press, New York, NY. pp. 115–140. 1206: 1158: 1105: 1054: 994: 957: 925: 882: 851:"Sequencing the extrachromosomal circular mobilome reveals retrotransposon activity in plants" 823: 788: 731: 661: 612: 563: 345: 151: 1704:"The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla" 1453:
Van Bel M, Silvestri F, Weitz EM, Kreft L, Botzki A, Coppens F, Vandepoele K (January 2022).
118:(22 Gbp). Due to their complexity, the plants' genome sequences can't be assembled back into 2666:
Li H (2013). "Aligning sequence reads, clone sequences and assembly contigs with BWA- MEM".
2638: 2630: 2573: 2563: 2514: 2504: 2491:
Daccord N, Celton JM, Linsmith G, Becker C, Choisne N, Schijlen E, et al. (July 2017).
2457: 2413: 2386: 2341: 2333: 2284: 2235: 2194: 2142: 2101: 2052: 2003: 1954: 1905: 1897: 1839: 1790: 1782: 1733: 1723: 1671: 1624: 1573: 1523: 1515: 1474: 1466: 1417: 1376: 1375:. Methods in Molecular Biology. Vol. 1533. New York, NY: Humana Press. pp. 33–44. 1335: 1334:. Methods in Molecular Biology. Vol. 1533. New York, NY: Humana Press. pp. 45–77. 1302: 1294: 1237: 1198: 1150: 1089: 1044: 986: 949: 917: 900:
Michael TP, VanBuren R (April 2015). "Progress, challenges and the future of crop genomes".
872: 862: 815: 778: 770: 723: 688: 651: 643: 602: 594: 553: 543: 446: 291: 1455:"PLAZA 5.0: extending the scope and power of comparative and functional genomics in plants" 340:
from combinations of physical and genetic map were selected and sequenced. The assembly on
2710: 2433:
van Deynze A (2015). "Using spinach to compare technologies for whole genome assemblies".
451: 407: 206: 131: 2031:
Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, et al. (January 2010).
180:
size. The genome was sequenced and annotated by the Arabidopsis Genome Initiative (AGI).
2626: 2382: 2329: 2129:
Argout X, Salse J, Aury JM, Guiltinan MJ, Droc G, Gouzy J, et al. (February 2011).
2048: 1999: 1950: 1835: 1778: 1763:"The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus)" 1719: 1667: 1620: 1569: 1290: 1194: 1136: 1085: 1040: 913: 102:
The genome of plants can vary in their structure and complexity from small genomes like
2643: 2610: 2578: 2551: 2346: 2313: 1795: 1762: 1528: 1503: 1479: 1454: 1307: 1274: 977:
Meyers LA, Levin DA (June 2006). "On the abundance of polyploids in flowering plants".
877: 850: 783: 759:"Repetitive DNA and next-generation sequencing: computational challenges and solutions" 758: 656: 631: 607: 582: 558: 531: 456: 442: 370: 135: 123: 111: 91: 1910: 1885: 2704: 2477: 1006: 344:
was performed in addition with external information data. The data was obtained from
233: 2552:"SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler" 2536: 2257: 1593: 1412:
Vandepoele K (2017). "A Guide to the PLAZA 3.0 Plant Comparative Genomic Database".
835: 700: 2595: 2164: 2074: 1859: 1502:
Reiser L, Berardini TZ, Li D, Muller R, Strait EM, Li Q, et al. (2016-01-01).
1218: 743: 303: 243:(TAIR) maintains a web database of the "model higher plant Arabidopsis Thaliana ". 185: 177: 2390: 1628: 1154: 1093: 1761:
Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, et al. (April 2008).
1421: 953: 867: 1380: 1339: 1241: 647: 115: 103: 1884:
Swan KA, Curtis DE, McKusick KB, Voinov AV, Mapa FA, Cancilla MR (July 2002).
1519: 1298: 921: 692: 119: 79: 1025:"Analysis of the genome sequence of the flowering plant Arabidopsis thaliana" 548: 1843: 1819: 1577: 1202: 161: 106:(15 Mbp). to very large and complex genomes that have typically much higher 90:(deoxyribonucleic acid) fragments that are obtained from different types of 83: 2652: 2587: 2568: 2528: 2469: 2355: 2298: 2249: 2208: 2156: 2115: 2066: 2017: 1968: 1935:"Genome sequencing and analysis of the model grass Brachypodium distachyon" 1919: 1851: 1804: 1747: 1685: 1636: 1585: 1537: 1488: 1470: 1439: 1398: 1357: 1316: 1259: 1210: 1162: 1058: 998: 929: 886: 827: 792: 735: 665: 616: 567: 130:(MGEs) in the plant genomes. MGEs are divided into two classes: class I or 24: 2314:"The tomato genome sequence provides insights into fleshy fruit evolution" 2271:
Xu Q, Chen LL, Ruan X, Chen D, Zhu A, Chen C, et al. (January 2013).
1109: 2550:
Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, et al. (December 2012).
1738: 598: 429: 312: 260: 2337: 2222:
Wang K, Wang Z, Li F, Ye W, Wang J, Song G, et al. (October 2012).
2088:
Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, et al. (December 2009).
2057: 2032: 2008: 1983: 1959: 1934: 1933:
The International Brachypodium Initiative; et al. (February 2010).
1820:"The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)" 1786: 1728: 1703: 259:
Clone-by-clone sequencing strategies are based on the construction of a
2519: 2461: 1101: 819: 502: 412: 2634: 1901: 1049: 1024: 990: 479: 376: 307: 107: 71: 2509: 2492: 2289: 2272: 2240: 2223: 774: 727: 2418: 2405: 2199: 2182: 2147: 2130: 2106: 2089: 1275:"Gramene Database: Navigating Plant Comparative Genomics Resources" 714:
Shendure J, Ji H (October 2008). "Next-generation DNA sequencing".
2672: 1676: 1651: 461: 341: 302:
were constructed. The physical maps were integrated together with
173: 75: 2183:"The genome of the domesticated apple (Malus Γ— domestica Borkh.)" 369:
A considerable number of important plant genomes like grapevine (
2687: 1984:"The Sorghum bicolor genome and the diversification of grasses" 286:(TACs) were combined to assemble the genome. From clones with 87: 18: 1652:"US firm's bid to sequence rice genome causes stir in Japan" 632:"Sequencing and assembly of the 22-gb loblolly pine genome" 2224:"The draft genome of a diploid cotton Gossypium raimondii" 193:, rice has the smallest of the major cereal crop genomes. 2688:"Bionano: Transforming the Way the World Sees the Genome" 387:) were sequenced and assembled with Sanger WGS strategy. 2406:"Third-generation sequencing and the future of genomics" 1886:"High-throughput gene mapping in Caenorhabditis elegans" 395:
value of 64kb. Supercontigs had a total size of 498 Mb.
160:, was finished in 2000, being the third multicellular 979:
Evolution; International Journal of Organic Evolution
333:
One of the most important crops in the world, maize (
213:
Gramene is an online web database resource for plant
2273:"The draft genome of sweet orange (Citrus sinensis)" 1023:The Arabidopsis Genome Initiative (December 2000). 2609:Ye C, Hill CM, Wu S, Ruan J, Ma ZS (August 2016). 436:), was one of the plant genomes that used the NGS 217:and pathway analysis based on Ensembl technology. 183:The initiative for sequencing the genome of rice ( 172:. Arabidopsis, unlike other plants' genomes (e.g. 2033:"Genome sequence of the palaeopolyploid soybean" 2090:"The genome of the cucumber, Cucumis sativus L" 284:transformation-competent artificial chromosomes 8: 2435:Plant & Animal Genomics XXIII Conference 757:Treangen TJ, Salzberg SL (November 2011). 2671: 2642: 2577: 2567: 2518: 2508: 2417: 2345: 2288: 2239: 2198: 2146: 2105: 2056: 2007: 1958: 1909: 1794: 1737: 1727: 1675: 1527: 1478: 1306: 1144: 1048: 948:. Dordrecht: Springer. pp. 199–213. 876: 866: 782: 655: 606: 557: 547: 210:genotypes, linkage, and phenotype data. 124:next-generation- sequencing technologies 49:of all important aspects of the article. 522: 318:To sequence and assemble the genome of 45:Please consider expanding the lead to 2312:Tomato Genome Consortium (May 2012). 2176: 2174: 1697: 1695: 1551: 1549: 1547: 1176: 1174: 1172: 1018: 1016: 228:PLAZA is another online resource for 7: 290:, by comparison of the patterns and 326:), the same strategy was used. For 122:using only short reads provided by 14: 472:), draft genome of sweet orange ( 357:Sanger whole-genome shotgun (WGS) 78:species, which is assembled into 902:Current Opinion in Plant Biology 808:Theoretical and Applied Genetics 445:of isolated nuclei stained with 311:allowed the characterization of 288:restriction fragment fingerprint 241:Arabidopsis Information Resource 150:The first complete plant genome 23: 2131:"The genome of Theobroma cacao" 1866:from the original on 2023-05-29 478:) and the domesticated tomato ( 265:bacterial artificial chromosome 37:may be too short to adequately 47:provide an accessible overview 1: 2391:10.1080/14772000.2015.1099575 1629:10.1016/j.tplants.2010.10.005 1155:10.1126/science.287.5461.2185 1094:10.1126/science.282.5396.2012 2371:Systematics and Biodiversity 1422:10.1007/978-1-4939-6658-5_10 954:10.1007/978-94-011-1510-0_16 868:10.1371/journal.pgen.1006630 1381:10.1007/978-1-4939-6658-5_2 1340:10.1007/978-1-4939-6658-5_3 1242:10.1007/978-1-4939-3167-5_6 648:10.1534/genetics.113.159715 581:Gregory TR (January 2005). 494:third-generation sequencing 426:third generation sequencing 280:yeast artificial chromosome 2732: 419:Next-generation sequencing 1299:10.1016/j.cpb.2016.12.005 922:10.1016/j.pbi.2015.02.002 693:10.1007/s11032-009-9357-9 296:polymerase chain reaction 276:P1 artificial chromosomes 205:EnsemblPlants is part of 1826:(Submitted manuscript). 1650:Saegusa A (April 1999). 1414:Plant Genomics Databases 1373:Plant Genomics Databases 1332:Plant Genomics Databases 763:Nature Reviews. Genetics 549:10.1186/gb-2012-13-8-r74 70:represents the complete 1844:10.1126/science.1128691 1609:Trends in Plant Science 1578:10.1126/science.1178534 1520:10.1093/database/baw018 1203:10.1126/science.1068275 402:Brachypodium distachyon 164:genome published after 128:mobile genetic elements 2569:10.1186/2047-217X-1-18 1459:Nucleic Acids Research 492:With the emergence of 16:Genomic plant sequence 1279:Current Plant Biology 255:Sanger clone-by-clone 140:long- terminal repeat 68:plant genome assembly 1471:10.1093/nar/gkab1024 1234:Plant Bioinformatics 716:Nature Biotechnology 481:Solanum lycopersicum 428:. The genome of the 230:comparative genomics 215:comparative genomics 157:Arabidopsis thaliana 2627:2016NatSR...631900Y 2383:2016SyBio..14....1B 2338:10.1038/nature11119 2330:2012Natur.485..635T 2058:10.1038/nature08670 2049:2010Natur.463..178S 2009:10.1038/nature07723 2000:2009Natur.457..551P 1960:10.1038/nature08747 1951:2010Natur.463..763T 1836:2006Sci...313.1596T 1830:(5793): 1596–1604. 1787:10.1038/nature06856 1779:2008Natur.452..991M 1729:10.1038/nature06148 1720:2007Natur.449..463J 1668:1999Natur.398..545S 1621:2011TPS....16...77F 1570:2009Sci...326.1112S 1564:(5956): 1112–1115. 1465:(D1): D1468–D1474. 1291:2016CPBio...7...10G 1195:2002Sci...296...92G 1137:2000Sci...287.2185. 1131:(5461): 2185–2195. 1086:1998Sci...282.2012. 1080:(5396): 2012–2018. 1041:2000Natur.408..796T 914:2015COPB...24...71M 384:Populus trichocarpa 381:), and cottonwood ( 247:Assembly strategies 2615:Scientific Reports 2462:10.1038/nmeth.2474 820:10.1007/BF00222197 681:Molecular Breeding 599:10.1093/aob/mci009 134:, and class II or 110:, higher rates of 2635:10.1038/srep31900 2324:(7400): 635–641. 2234:(10): 1098–1103. 2100:(12): 1275–1281. 2043:(7278): 178–183. 1994:(7229): 551–556. 1945:(7282): 763–768. 1902:10.1101/gr.208902 1773:(7190): 991–996. 1714:(7161): 463–467. 1035:(6814): 796–815. 946:Chromosomes Today 722:(10): 1135–1145. 469:Gossypium Raimond 64: 63: 2723: 2696: 2695: 2684: 2678: 2677: 2675: 2663: 2657: 2656: 2646: 2606: 2600: 2599: 2581: 2571: 2547: 2541: 2540: 2522: 2512: 2503:(7): 1099–1106. 2488: 2482: 2481: 2445: 2439: 2438: 2430: 2424: 2423: 2421: 2401: 2395: 2394: 2366: 2360: 2359: 2349: 2309: 2303: 2302: 2292: 2268: 2262: 2261: 2243: 2219: 2213: 2212: 2202: 2178: 2169: 2168: 2150: 2126: 2120: 2119: 2109: 2085: 2079: 2078: 2060: 2028: 2022: 2021: 2011: 1979: 1973: 1972: 1962: 1930: 1924: 1923: 1913: 1896:(7): 1100–1105. 1881: 1875: 1874: 1872: 1871: 1815: 1809: 1808: 1798: 1758: 1752: 1751: 1741: 1731: 1699: 1690: 1689: 1679: 1647: 1641: 1640: 1604: 1598: 1597: 1553: 1542: 1541: 1531: 1499: 1493: 1492: 1482: 1450: 1444: 1443: 1409: 1403: 1402: 1368: 1362: 1361: 1327: 1321: 1320: 1310: 1270: 1264: 1263: 1229: 1223: 1222: 1189:(5565): 92–100. 1178: 1167: 1166: 1148: 1120: 1114: 1113: 1069: 1063: 1062: 1052: 1050:10.1038/35048692 1020: 1011: 1010: 991:10.1554/05-629.1 985:(6): 1198–1206. 974: 968: 967: 940: 934: 933: 897: 891: 890: 880: 870: 846: 840: 839: 803: 797: 796: 786: 754: 748: 747: 711: 705: 704: 676: 670: 669: 659: 627: 621: 620: 610: 587:Annals of Botany 578: 572: 571: 561: 551: 527: 488:Third-generation 447:propidium iodide 132:retrotransposons 72:genomic sequence 59: 56: 50: 27: 19: 2731: 2730: 2726: 2725: 2724: 2722: 2721: 2720: 2701: 2700: 2699: 2692:bionanogenomics 2686: 2685: 2681: 2665: 2664: 2660: 2608: 2607: 2603: 2549: 2548: 2544: 2510:10.1038/ng.3886 2497:Nature Genetics 2490: 2489: 2485: 2447: 2446: 2442: 2432: 2431: 2427: 2403: 2402: 2398: 2368: 2367: 2363: 2311: 2310: 2306: 2290:10.1038/ng.2472 2277:Nature Genetics 2270: 2269: 2265: 2241:10.1038/ng.2371 2228:Nature Genetics 2221: 2220: 2216: 2193:(10): 833–839. 2187:Nature Genetics 2180: 2179: 2172: 2135:Nature Genetics 2128: 2127: 2123: 2094:Nature Genetics 2087: 2086: 2082: 2030: 2029: 2025: 1981: 1980: 1976: 1932: 1931: 1927: 1890:Genome Research 1883: 1882: 1878: 1869: 1867: 1817: 1816: 1812: 1760: 1759: 1755: 1701: 1700: 1693: 1649: 1648: 1644: 1606: 1605: 1601: 1555: 1554: 1545: 1501: 1500: 1496: 1452: 1451: 1447: 1432: 1411: 1410: 1406: 1391: 1370: 1369: 1365: 1350: 1329: 1328: 1324: 1272: 1271: 1267: 1252: 1231: 1230: 1226: 1180: 1179: 1170: 1146:10.1.1.549.8639 1122: 1121: 1117: 1071: 1070: 1066: 1022: 1021: 1014: 976: 975: 971: 964: 942: 941: 937: 899: 898: 894: 861:(2): e1006630. 848: 847: 843: 805: 804: 800: 775:10.1038/nrg3117 756: 755: 751: 728:10.1038/nbt1486 713: 712: 708: 678: 677: 673: 629: 628: 624: 580: 579: 575: 529: 528: 524: 520: 490: 475:Citrus sinensis 463:Malus domestica 452:Theobroma cacao 434:Cucumis sativus 421: 408:Sorghum bicolor 359: 257: 249: 203: 170:D. melanogaster 148: 136:DNA transposons 100: 60: 54: 51: 44: 32:This article's 28: 17: 12: 11: 5: 2729: 2727: 2719: 2718: 2716:Bioinformatics 2713: 2703: 2702: 2698: 2697: 2679: 2658: 2601: 2542: 2483: 2456:(6): 563–569. 2450:Nature Methods 2440: 2425: 2419:10.1101/048603 2396: 2361: 2304: 2263: 2214: 2200:10.1038/ng.654 2170: 2148:10.1038/ng.736 2141:(2): 101–108. 2121: 2107:10.1038/ng.475 2080: 2023: 1974: 1925: 1876: 1810: 1753: 1691: 1642: 1599: 1543: 1494: 1445: 1430: 1404: 1389: 1363: 1348: 1322: 1265: 1250: 1224: 1168: 1115: 1064: 1012: 969: 962: 935: 892: 841: 814:(2): 157–165. 798: 749: 706: 687:(4): 553–570. 671: 642:(3): 875–890. 622: 593:(1): 133–146. 573: 536:Genome Biology 521: 519: 516: 489: 486: 443:flow cytometry 420: 417: 399:sequencing of 358: 355: 256: 253: 248: 245: 202: 199: 147: 144: 112:heterozygosity 99: 96: 62: 61: 41:the key points 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 2728: 2717: 2714: 2712: 2709: 2708: 2706: 2693: 2689: 2683: 2680: 2674: 2669: 2662: 2659: 2654: 2650: 2645: 2640: 2636: 2632: 2628: 2624: 2620: 2616: 2612: 2605: 2602: 2597: 2593: 2589: 2585: 2580: 2575: 2570: 2565: 2561: 2557: 2553: 2546: 2543: 2538: 2534: 2530: 2526: 2521: 2516: 2511: 2506: 2502: 2498: 2494: 2487: 2484: 2479: 2475: 2471: 2467: 2463: 2459: 2455: 2451: 2444: 2441: 2436: 2429: 2426: 2420: 2415: 2411: 2407: 2400: 2397: 2392: 2388: 2384: 2380: 2376: 2372: 2365: 2362: 2357: 2353: 2348: 2343: 2339: 2335: 2331: 2327: 2323: 2319: 2315: 2308: 2305: 2300: 2296: 2291: 2286: 2282: 2278: 2274: 2267: 2264: 2259: 2255: 2251: 2247: 2242: 2237: 2233: 2229: 2225: 2218: 2215: 2210: 2206: 2201: 2196: 2192: 2188: 2184: 2177: 2175: 2171: 2166: 2162: 2158: 2154: 2149: 2144: 2140: 2136: 2132: 2125: 2122: 2117: 2113: 2108: 2103: 2099: 2095: 2091: 2084: 2081: 2076: 2072: 2068: 2064: 2059: 2054: 2050: 2046: 2042: 2038: 2034: 2027: 2024: 2019: 2015: 2010: 2005: 2001: 1997: 1993: 1989: 1985: 1978: 1975: 1970: 1966: 1961: 1956: 1952: 1948: 1944: 1940: 1936: 1929: 1926: 1921: 1917: 1912: 1907: 1903: 1899: 1895: 1891: 1887: 1880: 1877: 1865: 1861: 1857: 1853: 1849: 1845: 1841: 1837: 1833: 1829: 1825: 1821: 1814: 1811: 1806: 1802: 1797: 1792: 1788: 1784: 1780: 1776: 1772: 1768: 1764: 1757: 1754: 1749: 1745: 1740: 1739:11577/2430527 1735: 1730: 1725: 1721: 1717: 1713: 1709: 1705: 1698: 1696: 1692: 1687: 1683: 1678: 1677:10.1038/19123 1673: 1669: 1665: 1662:(6728): 545. 1661: 1657: 1653: 1646: 1643: 1638: 1634: 1630: 1626: 1622: 1618: 1614: 1610: 1603: 1600: 1595: 1591: 1587: 1583: 1579: 1575: 1571: 1567: 1563: 1559: 1552: 1550: 1548: 1544: 1539: 1535: 1530: 1525: 1521: 1517: 1513: 1509: 1505: 1498: 1495: 1490: 1486: 1481: 1476: 1472: 1468: 1464: 1460: 1456: 1449: 1446: 1441: 1437: 1433: 1431:9781493966561 1427: 1423: 1419: 1415: 1408: 1405: 1400: 1396: 1392: 1390:9781493966561 1386: 1382: 1378: 1374: 1367: 1364: 1359: 1355: 1351: 1349:9781493966561 1345: 1341: 1337: 1333: 1326: 1323: 1318: 1314: 1309: 1304: 1300: 1296: 1292: 1288: 1284: 1280: 1276: 1269: 1266: 1261: 1257: 1253: 1251:9781493931668 1247: 1243: 1239: 1235: 1228: 1225: 1220: 1216: 1212: 1208: 1204: 1200: 1196: 1192: 1188: 1184: 1177: 1175: 1173: 1169: 1164: 1160: 1156: 1152: 1147: 1142: 1138: 1134: 1130: 1126: 1119: 1116: 1111: 1107: 1103: 1099: 1095: 1091: 1087: 1083: 1079: 1075: 1068: 1065: 1060: 1056: 1051: 1046: 1042: 1038: 1034: 1030: 1026: 1019: 1017: 1013: 1008: 1004: 1000: 996: 992: 988: 984: 980: 973: 970: 965: 963:9789401046602 959: 955: 951: 947: 939: 936: 931: 927: 923: 919: 915: 911: 907: 903: 896: 893: 888: 884: 879: 874: 869: 864: 860: 856: 855:PLOS Genetics 852: 845: 842: 837: 833: 829: 825: 821: 817: 813: 809: 802: 799: 794: 790: 785: 780: 776: 772: 768: 764: 760: 753: 750: 745: 741: 737: 733: 729: 725: 721: 717: 710: 707: 702: 698: 694: 690: 686: 682: 675: 672: 667: 663: 658: 653: 649: 645: 641: 637: 633: 626: 623: 618: 614: 609: 604: 600: 596: 592: 588: 584: 577: 574: 569: 565: 560: 555: 550: 545: 541: 537: 533: 526: 523: 517: 515: 511: 509: 508:polymorphisms 504: 499: 495: 487: 485: 483: 482: 477: 476: 471: 470: 465: 464: 458: 454: 453: 448: 444: 439: 435: 431: 427: 418: 416: 414: 410: 409: 404: 403: 396: 394: 388: 386: 385: 380: 379: 378:Carica papaya 374: 373: 372:Vitis Vinifer 367: 364: 356: 354: 350: 347: 343: 338: 336: 331: 329: 325: 321: 316: 314: 309: 305: 301: 300:physical maps 297: 293: 292:hybridization 289: 285: 281: 277: 272: 268: 266: 262: 254: 252: 246: 244: 242: 237: 235: 234:Viridiplantae 231: 226: 222: 218: 216: 211: 208: 207:EnsemblGenome 200: 198: 194: 192: 188: 187: 181: 179: 175: 171: 167: 163: 159: 158: 153: 145: 143: 141: 138:. In plants, 137: 133: 129: 125: 121: 117: 116:loblolly pine 113: 109: 105: 97: 95: 93: 89: 85: 81: 77: 73: 69: 58: 48: 42: 40: 35: 30: 26: 21: 20: 2691: 2682: 2661: 2621:(1): 31900. 2618: 2614: 2604: 2559: 2555: 2545: 2500: 2496: 2486: 2453: 2449: 2443: 2434: 2428: 2409: 2399: 2374: 2370: 2364: 2321: 2317: 2307: 2283:(1): 59–66. 2280: 2276: 2266: 2231: 2227: 2217: 2190: 2186: 2138: 2134: 2124: 2097: 2093: 2083: 2040: 2036: 2026: 1991: 1987: 1977: 1942: 1938: 1928: 1893: 1889: 1879: 1868:. Retrieved 1827: 1823: 1813: 1770: 1766: 1756: 1711: 1707: 1659: 1655: 1645: 1615:(2): 77–88. 1612: 1608: 1602: 1561: 1557: 1511: 1507: 1497: 1462: 1458: 1448: 1413: 1407: 1372: 1366: 1331: 1325: 1282: 1278: 1268: 1233: 1227: 1186: 1182: 1128: 1124: 1118: 1077: 1073: 1067: 1032: 1028: 982: 978: 972: 945: 938: 905: 901: 895: 858: 854: 844: 811: 807: 801: 769:(1): 36–46. 766: 762: 752: 719: 715: 709: 684: 680: 674: 639: 635: 625: 590: 586: 576: 539: 535: 525: 512: 491: 480: 474: 468: 462: 450: 433: 422: 406: 400: 397: 389: 382: 377: 371: 368: 360: 351: 339: 334: 332: 328:Oryza sativa 327: 323: 320:Oryza sativa 319: 317: 306:to identify 304:genetic maps 273: 269: 258: 250: 238: 227: 223: 219: 212: 204: 195: 190: 186:Oryza sativa 184: 182: 178:human genome 155: 149: 101: 94:technology. 67: 65: 52: 36: 34:lead section 2556:GigaScience 2520:10449/42064 466:), cotton ( 375:), papaya ( 366:resources. 191:A. thaliana 120:chromosomes 104:green algae 80:chromosomes 2705:Categories 2412:: 048603. 1870:2023-06-19 1514:: baw018. 542:(8): R74. 518:References 298:(PCR) the 282:(YAC) and 166:C. elegans 162:eukaryotic 154:, that of 146:Assemblies 92:sequencing 84:organelles 82:and other 2673:1303.3997 2562:(1): 18. 2478:205421576 1285:: 10–15. 1141:CiteSeerX 1007:198156503 908:: 71–81. 484:) genome 201:Databases 98:Structure 86:by using 55:June 2024 39:summarize 2653:27573208 2588:23587118 2537:24690391 2529:28581499 2470:23644548 2377:(1): 1. 2356:22660326 2299:23179022 2258:38495587 2250:22922876 2209:20802477 2157:21186351 2116:19881527 2067:20075913 2018:19189423 1969:20148030 1920:12097347 1864:Archived 1852:16973872 1805:18432245 1748:17721507 1686:10217128 1637:21081278 1594:21433160 1586:19965430 1538:26989150 1508:Database 1489:34747486 1440:27987171 1399:27987163 1358:27987164 1317:28713666 1260:26519403 1211:11935018 1163:10731132 1059:11130711 999:16892970 930:25703261 887:28212378 836:20591213 828:24173886 793:22124482 736:18846087 701:29239452 666:24653210 636:Genetics 617:15596463 568:22925495 438:Illumina 430:cucumber 335:Zea mays 324:japonica 313:telomere 152:assembly 2644:5004134 2623:Bibcode 2596:2681931 2579:3626529 2410:bioRxiv 2379:Bibcode 2347:3378239 2326:Bibcode 2165:4685532 2075:4372224 2045:Bibcode 1996:Bibcode 1947:Bibcode 1860:7717980 1832:Bibcode 1824:Science 1796:2836516 1775:Bibcode 1716:Bibcode 1664:Bibcode 1617:Bibcode 1566:Bibcode 1558:Science 1529:4795935 1480:8728282 1308:5509230 1287:Bibcode 1219:2960202 1191:Bibcode 1183:Science 1133:Bibcode 1125:Science 1110:9851916 1102:2897605 1082:Bibcode 1074:Science 1037:Bibcode 910:Bibcode 878:5338827 784:3324860 744:6384349 657:3948813 608:4246714 559:3491373 503:spinach 413:soybean 361:In the 278:(PAC), 267:(BAC). 2711:Botany 2651:  2641:  2594:  2586:  2576:  2535:  2527:  2476:  2468:  2354:  2344:  2318:Nature 2297:  2256:  2248:  2207:  2163:  2155:  2114:  2073:  2065:  2037:Nature 2016:  1988:Nature 1967:  1939:Nature 1918:  1911:186621 1908:  1858:  1850:  1803:  1793:  1767:Nature 1746:  1708:Nature 1684:  1656:Nature 1635:  1592:  1584:  1536:  1526:  1487:  1477:  1438:  1428:  1397:  1387:  1356:  1346:  1315:  1305:  1258:  1248:  1217:  1209:  1161:  1143:  1108:  1100:  1057:  1029:Nature 1005:  997:  960:  928:  885:  875:  834:  826:  791:  781:  742:  734:  699:  664:  654:  615:  605:  566:  556:  498:PacBio 308:contig 108:ploidy 2668:arXiv 2592:S2CID 2533:S2CID 2474:S2CID 2254:S2CID 2161:S2CID 2071:S2CID 1856:S2CID 1590:S2CID 1215:S2CID 1098:JSTOR 1003:S2CID 832:S2CID 740:S2CID 697:S2CID 342:maize 174:Malus 76:plant 74:of a 2649:PMID 2584:PMID 2525:PMID 2466:PMID 2352:PMID 2295:PMID 2246:PMID 2205:PMID 2153:PMID 2112:PMID 2063:PMID 2014:PMID 1965:PMID 1916:PMID 1848:PMID 1801:PMID 1744:PMID 1682:PMID 1633:PMID 1582:PMID 1534:PMID 1512:2016 1485:PMID 1436:PMID 1426:ISBN 1395:PMID 1385:ISBN 1354:PMID 1344:ISBN 1313:PMID 1256:PMID 1246:ISBN 1207:PMID 1159:PMID 1106:PMID 1055:PMID 995:PMID 958:ISBN 926:PMID 883:PMID 824:PMID 789:PMID 732:PMID 662:PMID 613:PMID 564:PMID 424:the 411:and 346:cDNA 239:The 168:and 2639:PMC 2631:doi 2574:PMC 2564:doi 2515:hdl 2505:doi 2458:doi 2414:doi 2387:doi 2342:PMC 2334:doi 2322:485 2285:doi 2236:doi 2195:doi 2143:doi 2102:doi 2053:doi 2041:463 2004:doi 1992:457 1955:doi 1943:463 1906:PMC 1898:doi 1840:doi 1828:313 1791:PMC 1783:doi 1771:452 1734:hdl 1724:doi 1712:449 1672:doi 1660:398 1625:doi 1574:doi 1562:326 1524:PMC 1516:doi 1475:PMC 1467:doi 1418:doi 1377:doi 1336:doi 1303:PMC 1295:doi 1283:7–8 1238:doi 1199:doi 1187:296 1151:doi 1129:287 1090:doi 1078:282 1045:doi 1033:408 987:doi 950:doi 918:doi 873:PMC 863:doi 816:doi 779:PMC 771:doi 724:doi 689:doi 652:PMC 644:doi 640:196 603:PMC 595:doi 554:PMC 544:doi 457:454 432:, ( 393:N50 363:WGS 294:or 261:map 236:). 88:DNA 2707:: 2690:. 2647:. 2637:. 2629:. 2617:. 2613:. 2590:. 2582:. 2572:. 2558:. 2554:. 2531:. 2523:. 2513:. 2501:49 2499:. 2495:. 2472:. 2464:. 2454:10 2452:. 2408:. 2385:. 2375:14 2373:. 2350:. 2340:. 2332:. 2320:. 2316:. 2293:. 2281:45 2279:. 2275:. 2252:. 2244:. 2232:44 2230:. 2226:. 2203:. 2191:42 2189:. 2185:. 2173:^ 2159:. 2151:. 2139:43 2137:. 2133:. 2110:. 2098:41 2096:. 2092:. 2069:. 2061:. 2051:. 2039:. 2035:. 2012:. 2002:. 1990:. 1986:. 1963:. 1953:. 1941:. 1937:. 1914:. 1904:. 1894:12 1892:. 1888:. 1862:. 1854:. 1846:. 1838:. 1822:. 1799:. 1789:. 1781:. 1769:. 1765:. 1742:. 1732:. 1722:. 1710:. 1706:. 1694:^ 1680:. 1670:. 1658:. 1654:. 1631:. 1623:. 1613:16 1611:. 1588:. 1580:. 1572:. 1560:. 1546:^ 1532:. 1522:. 1510:. 1506:. 1483:. 1473:. 1463:50 1461:. 1457:. 1434:. 1424:. 1393:. 1383:. 1352:. 1342:. 1311:. 1301:. 1293:. 1281:. 1277:. 1254:. 1244:. 1213:. 1205:. 1197:. 1185:. 1171:^ 1157:. 1149:. 1139:. 1127:. 1104:. 1096:. 1088:. 1076:. 1053:. 1043:. 1031:. 1027:. 1015:^ 1001:. 993:. 983:60 981:. 956:. 924:. 916:. 906:24 904:. 881:. 871:. 859:13 857:. 853:. 830:. 822:. 812:90 810:. 787:. 777:. 767:13 765:. 761:. 738:. 730:. 720:26 718:. 695:. 685:25 683:. 660:. 650:. 638:. 634:. 611:. 601:. 591:95 589:. 585:. 562:. 552:. 540:13 538:. 534:. 415:. 405:, 66:A 2694:. 2676:. 2670:: 2655:. 2633:: 2625:: 2619:6 2598:. 2566:: 2560:1 2539:. 2517:: 2507:: 2480:. 2460:: 2437:. 2422:. 2416:: 2393:. 2389:: 2381:: 2358:. 2336:: 2328:: 2301:. 2287:: 2260:. 2238:: 2211:. 2197:: 2167:. 2145:: 2118:. 2104:: 2077:. 2055:: 2047:: 2020:. 2006:: 1998:: 1971:. 1957:: 1949:: 1922:. 1900:: 1873:. 1842:: 1834:: 1807:. 1785:: 1777:: 1750:. 1736:: 1726:: 1718:: 1688:. 1674:: 1666:: 1639:. 1627:: 1619:: 1596:. 1576:: 1568:: 1540:. 1518:: 1491:. 1469:: 1442:. 1420:: 1401:. 1379:: 1360:. 1338:: 1319:. 1297:: 1289:: 1262:. 1240:: 1221:. 1201:: 1193:: 1165:. 1153:: 1135:: 1112:. 1092:: 1084:: 1061:. 1047:: 1039:: 1009:. 989:: 966:. 952:: 932:. 920:: 912:: 889:. 865:: 838:. 818:: 795:. 773:: 746:. 726:: 703:. 691:: 668:. 646:: 619:. 597:: 570:. 546:: 460:( 322:( 57:) 53:( 43:.

Index


lead section
summarize
provide an accessible overview
genomic sequence
plant
chromosomes
organelles
DNA
sequencing
green algae
ploidy
heterozygosity
loblolly pine
chromosomes
next-generation- sequencing technologies
mobile genetic elements
retrotransposons
DNA transposons
long- terminal repeat
assembly
Arabidopsis thaliana
eukaryotic
C. elegans
D. melanogaster
Malus
human genome
Oryza sativa
EnsemblGenome
comparative genomics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑