Knowledge (XXG)

Plane-based geometric algebra

Source 📝

3548: 1235: 1738: 22: 3958:. Different authors have termed the plane-based GA part of PGA "Euclidean space" and "Antispace". This form of duality, combined with the fact that geometric objects are represented homogeneously (meaning that multiplication by scalars does not change them), is the reason that the system is known as "Projective" Geometric Algebra (even though it does not contain the full projective group, unlike Conformal Geometric Algebra, which contains the full conformal group). 3818: 4189: 3770: 3099: 160: 3692:), e.g. when they are applied to sets of objects, the relative distances between those objects does not change; nor does their handedness, which is to say that a right-handed glove will not turn into a left-handed glove. All transformations in 3D euclidean plane-based geometric algebra preserve distances, but reflections, rotoreflections, and transflections do not preserve handedness. 300: 1154: 3664: 3790:. Reflections in planes are a special case of inversions in spheres, because a plane is a sphere with infinite radius. Since plane-based geometric algebra is generated by composition of reflections, it is a special case of inversive geometry. Inversive geometry itself can be performed with the larger system known as 3961:
Alternatively, conformal geometric algebra can be used (since plane-based GA is a subalgebra of CGA), but defining the PGA regressive product within it is complicated by the fact that CGA has its own regressive product, which is a different product. Loosely because the join of three points in CGA is
303:
In Plane-based GA, grade-1 elements are planes and can be used to perform planar reflections; grade-2 elements are lines and can be used to perform "line reflections"; grade-3 elements are points and can be used to perform "point reflections". Rotations and translations are constructed out of these
4204:
In these systems, the points, planes, and lines have the same coordinates that they have in plane-based GA. But transformations like rotations and reflections will have very different effects on the geometry. In all cases below, the algebra is a double cover of the group of reflections, rotations,
3917:
There is variation across authors as to the precise definition given for dual that is used to define the regressive product in PGA. No matter which definition is given, the regressive product functions to give completely identical outputs; for this reason, precise discussion of the dual is usually
3555:
degree of freedom. The yellow cube is a reflection of the black cube; the green cube is a reflection of the yellow cube. But while the yellow cube changes as the planes change, the final green cube will be unchanged while the reflection planes have the same angle/distance and intersect in the same
1238:
Plane-based GA includes elements "at infinity". A star in the night sky is an intuitive example of a "point at infinity", in the sense that it defines some direction, but practically speaking it is impossible to reach. The milky way forms a hazy stripe of stars across the sky; it behaves, in some
4208:
All formulae from the euclidean case carry over to these other geometries – the meet still functions as a way of taking the intersection of objects; the geometric product still functions as a way of composing transformations; and in the hyperbolic case the inner product become able to measure
291:(generally) vectors in the sense that one could meaningfully take their cross product - so it is not informative to visualize them as arrows. Therefore to avoid conflict over different algebraic and visual connotations coming from the word 'vector', this article avoids use of the word. 1019: 1741:
The orange objects here are projected onto the green objects to get the dark grey objects, all using the unified projection formula (a·b)b⁻Âč. Since PGA includes points, lines, and planes, this involves projection of planes onto points, points onto planes, lines onto planes,
528:
would be the plane midway between the y- and z-plane. In general, combining two geometric objects in plane-based GA will always be as a weighted average of them – combining points will give a point between them, as will combining lines, and indeed rotations.
3931:
relates elements of plane-based geometric algebra to other elements of plane based geometric algebra (eg, other euclidean transformations); for example, the Hodge dual of a planar reflection is a point reflection. PGA was originally defined using the Hodge
210:, in which points, translations, rotation axes, and plane normals are all modelled as "vectors". However, use of vectors in advanced engineering problems often require subtle distinctions between different kinds of vector because of this, including 3106:
on the tetrahedron. In 3D plane-based GA, points 3-reflections. Algebraically this means they are grade-3 – but their geometric interpretation is very different from the usual geometric interpretation of a "trivector" as an "oriented volume
3090:. The information needed to specify that the intersection line is contained inside the transform composition of the two planes, because a reflection in a pair of planes will result in a rotation around their intersection line. 593: 3648:). In the plane-based geometric algebra notation, this rotoreflection can be thought of as a planar reflection "added to" a point reflection. The plane part of this rotoreflection is the plane that is orthogonal to the line 2994: 2906: 1159:
The geometric interpretation of the first three defining equations is that if we perform the same planar reflection twice we get back to where we started; e.g. any grade-1 element (plane) multiplied by itself results in the
3667:
A transformation in 2D that takes a blue triangle to a red triangle, simplified using "gauging". The full transformation was composed from four reflections. Two of the reflection lines, gauged so that they coincide, can be
3809:. It can be difficult to see the connection between PGA and CGA, since CGA is often "point based", although some authors take a plane-based approach to CGA which makes the notations for Plane-based GA and CGA identical. 1149:{\displaystyle {\boldsymbol {e}}_{1}{\boldsymbol {e}}_{1}=1\qquad {\boldsymbol {e}}_{2}{\boldsymbol {e}}_{2}=1\qquad {\boldsymbol {e}}_{3}{\boldsymbol {e}}_{3}=1\qquad {\boldsymbol {e}}_{0}{\boldsymbol {e}}_{0}=0} 3966:, whereas in PGA it is a plane. Another problem is that PGA "points" have a fundamentally different algebraic representation than CGA points; to compare the two algebras, PGA points must be recognized as CGA 3456: 3046:. But this may be more than is desired; if we wish to take only the intersection line of the two planes, we simply need to look at just the "grade-2 part" of this result, e.g. the part with two lower indices 3970:, where the pair has one point at infinity. To get around this problem, some authors define the projective dual described above, in CGA, as an exchange of two different PGA-isomorphic subalgebras within it. 3044: 3307:
180 degrees, do not have a single specific geometric object which is used to visualize them; nevertheless, they can always be thought of as being made up of reflections, and can always be represented as a
3088: 1395: 1229: 1524:, cannot act as axes for a "rotation". Instead, these are axes for translations, and instead of having an algebra resembling complex numbers or quaternions, their algebraic behaviour is the same as the 884: 526: 3660:. A similar procedure can be used to find the line orthogonal to a plane and passing through a point, or the intersection of a line and a plane, or the intersection line of a plane with another plane. 711:, which is a point reflection in the origin, because that is the transformation that results from a 180-degree rotation followed by a planar reflection in a plane orthogonal to the rotation's axis. 3242:
are line reflections - which in 3D are the same thing as 180-degree rotations. The identity transform is the unique object that is constructed out of zero reflections. All of these are elements of
2437: 3547: 2330: 3348: 222:. The latter of these two, in plane-based GA, map to the concepts of "rotation axis" and "point", with the distinction between them being made clear by the notation: rotation axes such as 3597:. This simple fact can be used to give a geometric interpretation for the general behaviour of the geometric product as a device that solves geometric problems by "cancelling mirrors". 3734:
dimensions. This group has two commonly-used representations that allow them to be used in algebra and computation, one being the 4×4 matrices of real numbers, and the other being the
3537: 3881:
a point to another point to obtain a line, and can join a point and a line to obtain a plane. It has the further convenience that if any two elements (points, lines, or planes) have
3207: 2220: 709: 278: 3485: 3377: 3240: 2157: 1723: 1694: 1665: 1613: 1584: 1555: 1522: 1456: 1424: 975: 917: 680: 249: 3591: 3406: 3178: 2935: 2847: 1493: 1348: 1308: 1275: 1004: 946: 625: 479: 424: 369: 102: 1321:
is an example of such a line. For an observer standing on a plane, all planes parallel to the plane they stand on meet one another at the horizon line. Algebraically, if we take
2594: 2246: 1832: 1901: 2503: 2042: 25:
Elements of 3D Plane-based GA, which includes planes, lines, and points. All elements are constructed from reflections in planes. Lines are a special case of rotations.
2795: 2697: 2546: 1972: 2069: 3301: 3269: 3142: 4609: 651: 450: 395: 340: 1636: 3903: 3636: 2814: 2756: 2736: 2716: 2658: 2638: 2393: 2370: 2350: 2286: 2266: 2184: 2113: 2093: 2016: 1996: 1945: 1925: 1872: 1852: 1800: 1780: 1182: 811: 791: 752: 154: 134: 4685: 3742:
of SE(3). Since the Dual Quaternions are closed under multiplication and addition and are made from an even number of basis elements in, they are called the
2776: 2678: 2618: 2523: 2468: 831: 772: 732: 3946:
the case that both are reflections; instead, the projective dual switches between the space that plane-based geometric algebra operates in and a different,
4099: 542: 3644:
in some sense produces a 5-reflection; however, as in the picture below, two of these reflections cancel, leaving a 3-reflection (sometimes known as a
2940: 2852: 219: 3954:. For example, planes in plane-based geometric algebra, which perform planar reflections, are mapped to points in dual space which are involved in 1314:", or alternatively "ideal points", or "points at infinity". Parallel lines such as metal rails on a railway line meet one another at such points. 71:
as basic elements, and constructs all other transformations and geometric objects out of them. Formally: it identifies planar reflections with the
4783:
Aperçu historique sur l'origine et le développement des méthodes en géométrie, particuliÚrement de celles qui se rapportent à la géométrie moderne
3995:, since rigid transformations can be modelled in this algebra. However, it is possible to model other spaces by slightly varying the algebra. 4724: 4585: 4547: 4520: 4482: 4418: 4285: 3510:, which is a 4-reflection. For this reason, when considering screw motions, it is necessary to use the grade-4 element of 3D plane-based GA, 3506:
can also always be written as compositions of 3 planar reflections and so are called 3-reflections. The upper limit of this for 3D is a
1947:; if a transformation by the exact distance or angle is required, it can be obtained with the dual quaternion exponential and logarithm. 1397:
will be a plane parallel to the ground (displaced 5 meters from it). These two parallel planes meet one another at the line-at-infinity
3918:
not included in introductory material on projective geometric algebra. There are significant conceptual and philosophical differences:
3411: 3865:
Plane-based geometric algebra is able to represent all Euclidean transformations, but in practice it is almost always combined with a
2999: 4816: 3490:
In fact, any rotation can be written as a composition of two planar reflections that pass through its axis; thus it can be called a
4192:
Plane-based GA usually handles the (3D version of) the middle case here. But we instead choose to have a basis element squaring to
3869:
operation of some kind to create the larger system known as "Projective Geometric Algebra", PGA. Duality, as in other Clifford and
3049: 1353: 1187: 3711:, which are set in the context of PGA above). If the planes were parallel, composing their reflections would give a translation. 1755: 848: 487: 164: 3905:, the norm of their regressive product is equal to the distance between them. The join of several points is also known as their 3145: 3111:
The algebra of all distance-preserving transformations (essentially, rigid transformations and reflections) in 3D is called the
4302: 3718:, e.g. a rotation around a line in space followed by a translation directed along the same line. This group is usually called 176: 168: 4352: 4515:. The Morgan Kaufmann series in computer graphics (2nd corrected printing ed.). Amsterdam: Morgan Kaufmann/Elsevier. 3936: 3703:
of reflections. A rotations can thought of as a reflection in a plane followed by a reflection in another plane which is
1281:. It behaves differently from any other plane – intuitively, it can be "approached but never reached". In 3 dimensions, 1234: 2398: 3791: 2072: 45: 2291: 5065: 4862: 3315: 4469:, Lecture Notes in Computer Science, vol. 12221, Cham: Springer International Publishing, pp. 459–471, 4179: 21: 4060:
Most important for engineering applications, since transformations are rigid; also most "intuitive" for humans
1737: 5013: 3513: 56:
in mind. It has since been applied to machine learning, rigid body dynamics, and computer science, especially
3183: 2189: 685: 254: 3689: 3564:
plane results in no change. The algebraic interpretation for this geometry is that grade-1 elements such as
3461: 3353: 3216: 2118: 1699: 1670: 1641: 1589: 1560: 1531: 1498: 1432: 1400: 951: 893: 656: 225: 196: 3600:
To give an example of the usefulness of this, suppose we wish to find a plane orthogonal to a certain line
3567: 3382: 3154: 3151:
In plane-based GA, essentially all geometric objects can be thought of as a transformation. Planes such as
2911: 2823: 1469: 1324: 1284: 1251: 980: 922: 601: 455: 400: 345: 78: 4171: 3947: 3806: 1726: 188: 3877:. This is extremely useful for engineering applications - in plane-based GA, the regressive product can 3699:
preserve handedness, which in 3D Plane-based GA implies that they can be written as a composition of an
175:
Plane-based GA subsumes a large number of algebraic constructions applied in engineering, including the
2551: 1746:
There are several useful products that can be extracted from the geometric product, similar to how the
5025: 4314: 4217: 4054: 2447: 2225: 37: 75:
elements of a Clifford Algebra, that is, elements that are written with a single subscript such as "
4122: 4118: 3928: 3924: 1805: 313: 1877: 4994: 4968: 4911: 4667: 4641: 4603: 4488: 4380: 4154: 4089: 3975:
Projective geometric algebra of non-euclidean geometries and Classical Lie Groups in 3 dimensions
3787: 3774: 3309: 2373: 40:. Generally this is with the goal of solving applied problems involving these elements and their 2473: 308:
Plane-based geometric algebra starts with planes and then constructs lines and points by taking
2021: 5041: 4986: 4903: 4812: 4763: 4720: 4659: 4591: 4581: 4553: 4543: 4516: 4478: 4414: 4372: 4330: 4281: 3874: 3495: 1904: 1278: 1161: 57: 2780: 2682: 2531: 1957: 1907:(essentially the inverse). The transformation will be by twice the angle or distance between 5033: 4978: 4937: 4895: 4804: 4753: 4712: 4651: 4470: 4406: 4364: 4322: 4273: 4210: 4044: 3870: 3801:
CGA is also usually applied to 3D space, and is able to model general spheres, circles, and
3503: 3499: 3210: 3103: 2054: 192: 33: 3817: 4188: 3277: 3245: 3118: 3112: 2470:
to any object, including points, lines, planes and indeed other rigid transformations, is
1311: 184: 3979:
To a first approximation, the physical world is euclidean, i.e. most transformations are
630: 429: 374: 319: 5029: 4318: 3769: 1618: 4434: 3888: 3861:
of Projective Geometric Algebra, a system which subsumes Plane-based Geometric Algebra.
3758: 3754: 3645: 3621: 3551:
When viewed as a composition of reflections, rotations and translations, both have one
2799: 2741: 2721: 2701: 2643: 2623: 2378: 2355: 2335: 2271: 2251: 2169: 2098: 2078: 2001: 1981: 1930: 1910: 1857: 1837: 1785: 1765: 1167: 796: 776: 737: 206:
The plane-based approach to geometry may be contrasted with the approach that uses the
139: 119: 283:
All objects considered below are still "vectors" in the technical sense that they are
48:, and their angle from one another in 3D space. Originally growing out of research on 5059: 4998: 4671: 4492: 4164: 3802: 1751: 304:
elements; line reflections in particular are the same things as 180-degree rotations.
207: 41: 4915: 4384: 4200:
instead of 0, euclidean geometry can be changed to spherical or hyperbolic geometry.
3955: 3507: 3098: 2761: 2663: 2603: 2508: 2453: 1975: 816: 757: 717: 588:{\displaystyle {\boldsymbol {e}}_{1}{\boldsymbol {e}}_{23}={\boldsymbol {e}}_{123}} 215: 211: 200: 4796: 4462: 3805:(angle-preserving) transformations, which include the transformations seen on the 4808: 4474: 3786:
Inversive geometry is the study of geometric objects and behaviours generated by
2989:{\displaystyle {\boldsymbol {e}}_{1}+{\boldsymbol {e}}_{2}+{\boldsymbol {e}}_{0}} 2901:{\displaystyle {\boldsymbol {e}}_{1}+{\boldsymbol {e}}_{2}+{\boldsymbol {e}}_{0}} 4956: 4629: 4221: 3906: 3738:. The Dual Quaternion representation (like the usual quaternions) is actually a 3379:
axis, and it can be written as a geometric product (a transform composition) of
2597: 2440: 1747: 1525: 1463: 1013:
This geometric interpretation is usually combined with the following assertion:
484:
Other planes may be obtained as weighted sums of the basis planes. for example,
159: 4982: 4883: 4655: 4539:
Geometric algebra for computer science: an object-oriented approach to geometry
4513:
Geometric algebra for computer science: an object-oriented approach to geometry
682:, which is a 180-degree rotation around the x-axis. Their geometric product is 4941: 4899: 4706: 4368: 4267: 4245: 3951: 3795: 3753:
Describing rigid transformations using planes was a major goal in the work of
3708: 2908:. Their geometric product is their "reflection composition" – a reflection in 180: 49: 5045: 4990: 4957:"Projective Geometric Algebra as a Subalgebra of Conformal Geometric algebra" 4955:
Hrdina, Jaroslav; NĂĄvrat, AleĆĄ; VaĆĄĂ­k, Petr; Dorst, Leo (February 22, 2021).
4907: 4767: 4716: 4663: 4595: 4557: 4376: 4334: 4277: 3543:
Geometric interpretation of geometric product as "cancelling out" reflections
1528:, since they square to 0. Combining the three basis lines-through-the-origin 64:
operation into a system known as "Projective Geometric Algebra", see below.
3312:
of some elements of objects in plane-based geometric algebra. For example,
104:". With some rare exceptions described below, the algebra is almost always 4837: 4575: 1239:
sense, like a "line at infinity". The sky itself is a "plane at infinity".
299: 4934:
Geometry, Kinematics, and Rigid Body Mechanics in Cayley-Klein Geometries
3148:, any element of it can be written as a series of reflections in planes. 1459: 53: 2439:. Thus it can be seen that the inner product is a generalization of the 2248:. It can be used to take angles between most objects: the angle between 4303:"A Galileian formulation of spin. I. Clifford algebras and spin groups" 3663: 1318: 251:(two lower indices) are always notated differently than points such as 4741: 2159:– this formula holds whether the objects are points, lines, or planes. 5037: 5012:
Doran, C.; Hestenes, D.; Sommen, F.; Van Acker, N. (August 1, 1993).
4758: 4537: 4398: 4326: 3747: 171:
representations of rotations in its rotors and bivectors respectively
4463:"Constrained Dynamics in Conformal and Projective Geometric Algebra" 4410: 4973: 4646: 4577:
Foundations of game engine development : Volume 1: mathematics
4187: 3816: 3719: 3662: 3097: 1233: 158: 4170:
Also known as "saddle geometry". Group can perform rotations and
3451:{\displaystyle 0.8{\boldsymbol {e}}_{1}+0.6{\boldsymbol {e}}_{2}} 1310:
can be visualized as the sky. Lying in it are the points called "
4224:
for each group is the grade 2 elements of the Clifford algebra,
3458:, both of which are planar reflections intersecting at the line 3777:, the 2D version of which is a circle inversion, depicted here. 3039:{\displaystyle 1+{\boldsymbol {e}}_{12}+{\boldsymbol {e}}_{10}} 4863:"Euclidean Geometry and Geometric Algebra | Geometric Algebra" 4511:
Dorst, Leo; Fontijne, Daniel; Manning, Stephen Joseph (2009).
116:, meaning it has three basis grade-1 elements whose square is 4803:, Cambridge University Press, pp. 84–125, May 29, 2003, 3983:; Projective Geometric Algebra is therefore usually based on 3680:
Rotations and translations are transformations that preserve
3083:{\displaystyle {\boldsymbol {e}}_{12}+{\boldsymbol {e}}_{10}} 2525:
is object to be transformed; this is the "sandwich product".
1390:{\displaystyle {\boldsymbol {e}}_{2}+5{\boldsymbol {e}}_{0}} 1224:{\displaystyle {\boldsymbol {e}}_{0}{\boldsymbol {e}}_{0}=0} 4012:
Names for handedness-preserving subgroup (even subalgebra)
3761:
since it allows the treatment to be dimension-independent.
3746:
of 3D euclidean (plane-based) geometric algebra. The word '
879:{\displaystyle {\boldsymbol {e}}_{1}{\boldsymbol {e}}_{23}} 521:{\displaystyle {\boldsymbol {e}}_{2}+{\boldsymbol {e}}_{3}} 3102:
The center of the picture is a point that is performing a
1733:
Derivation of other operations from the geometric product
3560:
A reflection in a plane followed by a reflection in the
2620:
is the logarithm of a transformation being undergone by
4686:"Representations and spinors | Mathematics for Physics" 4220:(after taking the quotient by scalars). The associated 1978:
of objects; for example, the intersection of the plane
532:
An operation that is as fundamental as addition is the
2764: 2666: 2606: 2554: 2511: 2476: 2456: 819: 760: 720: 3891: 3714:
Rotations and translations are both special cases of
3638:
is a 3-reflection, so taking their geometric product
3624: 3570: 3516: 3464: 3414: 3385: 3356: 3318: 3280: 3248: 3219: 3186: 3157: 3121: 3052: 3002: 2943: 2914: 2855: 2826: 2802: 2783: 2744: 2724: 2704: 2685: 2646: 2626: 2534: 2401: 2381: 2358: 2338: 2294: 2274: 2254: 2228: 2192: 2172: 2121: 2101: 2081: 2057: 2024: 2004: 1984: 1960: 1933: 1913: 1880: 1860: 1840: 1808: 1788: 1768: 1702: 1673: 1644: 1621: 1592: 1563: 1534: 1501: 1472: 1435: 1403: 1356: 1327: 1287: 1254: 1190: 1170: 1022: 983: 954: 925: 896: 851: 799: 779: 740: 688: 659: 633: 604: 545: 490: 458: 432: 403: 377: 348: 322: 257: 228: 142: 122: 81: 4247:
A Swift Introduction to Projective Geometric Algebra
4628:Roelfs, Martin; De Keninck, Steven (May 13, 2023). 187:representations of rotations and translations, the 3897: 3730:uclidean (distance-preserving) transformations in 3630: 3585: 3531: 3479: 3450: 3400: 3371: 3342: 3295: 3263: 3234: 3201: 3172: 3136: 3082: 3038: 2988: 2929: 2900: 2841: 2808: 2789: 2770: 2750: 2730: 2710: 2691: 2672: 2652: 2632: 2612: 2588: 2540: 2517: 2497: 2462: 2431: 2387: 2364: 2344: 2324: 2280: 2260: 2240: 2214: 2178: 2151: 2107: 2087: 2063: 2036: 2010: 1990: 1966: 1939: 1919: 1895: 1866: 1846: 1826: 1794: 1774: 1717: 1688: 1659: 1630: 1607: 1578: 1549: 1516: 1487: 1450: 1418: 1389: 1342: 1302: 1269: 1223: 1176: 1148: 998: 969: 940: 911: 878: 825: 805: 785: 766: 746: 726: 703: 674: 645: 619: 587: 520: 473: 444: 418: 389: 363: 334: 272: 243: 148: 128: 96: 4936:(Masters thesis). Technische UniversitĂ€t Berlin. 4105:Also known as "spherical geometry". Analogous to 3750:' is sometimes used to describe this subalgebra. 2432:{\displaystyle \lVert A\rVert =\lVert B\rVert =1} 2075:of objects onto other objects; the projection of 1006:. Transform application is implemented with the 203:model of classical mechanics to be constructed. 2325:{\displaystyle \arccos(\lVert A\cdot B\rVert )} 4884:"Clifford algebra of points, lines and planes" 4353:"Clifford algebra of points, lines and planes" 2816:is the unique line that is orthogonal to both. 1466:. But lines that lie in the plane-at-infinity 4746:Bulletin de la SociĂ©tĂ© MathĂ©matique de France 3343:{\displaystyle 0.8+0.6{\boldsymbol {e}}_{12}} 3303:, for example rotations by any angle that is 8: 2420: 2414: 2408: 2402: 2316: 2304: 2235: 2229: 4742:"Essai sur la gĂ©omĂ©trie Ă  $ n$ dimensions" 1874:again being points, lines or planes; here, 199:of points. Dual Quaternions then allow the 136:and a single basis element whose square is 4630:"Graded Symmetry Groups: Plane and Simple" 4608:: CS1 maint: location missing publisher ( 4180:Klein disk model of 2D hyperbolic geometry 3606:in 3D and passing through a certain point 4972: 4757: 4645: 3890: 3773:Planar reflections are a special case of 3623: 3577: 3572: 3569: 3523: 3518: 3515: 3471: 3466: 3463: 3442: 3437: 3424: 3419: 3413: 3392: 3387: 3384: 3363: 3358: 3355: 3334: 3329: 3317: 3279: 3247: 3226: 3221: 3218: 3193: 3188: 3185: 3164: 3159: 3156: 3120: 3074: 3069: 3059: 3054: 3051: 3030: 3025: 3015: 3010: 3001: 2980: 2975: 2965: 2960: 2950: 2945: 2942: 2921: 2916: 2913: 2892: 2887: 2877: 2872: 2862: 2857: 2854: 2833: 2828: 2825: 2801: 2782: 2763: 2743: 2723: 2703: 2684: 2665: 2645: 2625: 2605: 2555: 2553: 2533: 2510: 2484: 2483: 2475: 2455: 2400: 2380: 2357: 2337: 2293: 2273: 2253: 2227: 2199: 2198: 2193: 2191: 2171: 2138: 2137: 2120: 2100: 2080: 2056: 2023: 2003: 1983: 1959: 1932: 1912: 1882: 1881: 1879: 1859: 1839: 1813: 1812: 1807: 1787: 1767: 1709: 1704: 1701: 1680: 1675: 1672: 1651: 1646: 1643: 1638:, with the three basis lines at infinity 1620: 1599: 1594: 1591: 1570: 1565: 1562: 1541: 1536: 1533: 1508: 1503: 1500: 1479: 1474: 1471: 1442: 1437: 1434: 1410: 1405: 1402: 1381: 1376: 1363: 1358: 1355: 1334: 1329: 1326: 1294: 1289: 1286: 1261: 1256: 1253: 1209: 1204: 1197: 1192: 1189: 1169: 1134: 1129: 1122: 1117: 1103: 1098: 1091: 1086: 1072: 1067: 1060: 1055: 1041: 1036: 1029: 1024: 1021: 990: 985: 982: 961: 956: 953: 932: 927: 924: 903: 898: 895: 870: 865: 858: 853: 850: 818: 798: 778: 759: 739: 719: 695: 690: 687: 666: 661: 658: 632: 611: 606: 603: 579: 574: 564: 559: 552: 547: 544: 512: 507: 497: 492: 489: 465: 460: 457: 431: 410: 405: 402: 376: 355: 350: 347: 321: 264: 259: 256: 235: 230: 227: 141: 121: 88: 83: 80: 4009:Apparent "plane at infinity" squares to 3997: 3768: 3546: 3532:{\displaystyle {\boldsymbol {e}}_{0123}} 3094:Interpretation as algebra of reflections 1736: 1462:; in fact they can treated as imaginary 298: 52:, it was developed with applications to 36:to modelling planes, lines, points, and 20: 4237: 3573: 3556:line (which may be a line at infinity). 3519: 3467: 3438: 3420: 3388: 3359: 3330: 3222: 3202:{\displaystyle {\boldsymbol {e}}_{123}} 3189: 3180:are planar reflections, points such as 3160: 3070: 3055: 3026: 3011: 2996:, which results in the dual quaternion 2976: 2961: 2946: 2917: 2888: 2873: 2858: 2829: 2288:, whether they are lines or planes, is 2215:{\displaystyle {\sqrt {A{\tilde {A}}}}} 1705: 1676: 1647: 1595: 1566: 1537: 1504: 1475: 1438: 1406: 1377: 1359: 1330: 1290: 1257: 1205: 1193: 1130: 1118: 1099: 1087: 1068: 1056: 1037: 1025: 986: 957: 928: 899: 866: 854: 704:{\displaystyle {\boldsymbol {e}}_{123}} 691: 662: 607: 575: 560: 548: 508: 493: 461: 406: 351: 273:{\displaystyle {\boldsymbol {e}}_{123}} 260: 231: 84: 4601: 4461:Hadfield, Hugo; Lasenby, Joan (2020), 3942:also maps planes to points, but it is 3539:, which is the highest-grade element. 3480:{\displaystyle {\boldsymbol {e}}_{12}} 3372:{\displaystyle {\boldsymbol {e}}_{12}} 3235:{\displaystyle {\boldsymbol {e}}_{12}} 2152:{\displaystyle (A\cdot B){\tilde {B}}} 1718:{\displaystyle {\boldsymbol {e}}_{30}} 1689:{\displaystyle {\boldsymbol {e}}_{20}} 1660:{\displaystyle {\boldsymbol {e}}_{10}} 1608:{\displaystyle {\boldsymbol {e}}_{12}} 1579:{\displaystyle {\boldsymbol {e}}_{13}} 1550:{\displaystyle {\boldsymbol {e}}_{23}} 1517:{\displaystyle {\boldsymbol {e}}_{30}} 1451:{\displaystyle {\boldsymbol {e}}_{23}} 1419:{\displaystyle {\boldsymbol {e}}_{02}} 970:{\displaystyle {\boldsymbol {e}}_{23}} 912:{\displaystyle {\boldsymbol {e}}_{23}} 675:{\displaystyle {\boldsymbol {e}}_{23}} 627:, which is a planar reflection in the 244:{\displaystyle {\boldsymbol {e}}_{13}} 4961:Advances in Applied Clifford Algebras 4927: 4925: 4634:Advances in Applied Clifford Algebras 4623: 4621: 4619: 4569: 4567: 4266:Porteous, Ian R. (February 5, 1981). 3586:{\displaystyle {\boldsymbol {e}}_{1}} 3401:{\displaystyle {\boldsymbol {e}}_{1}} 3173:{\displaystyle {\boldsymbol {e}}_{1}} 2930:{\displaystyle {\boldsymbol {e}}_{1}} 2842:{\displaystyle {\boldsymbol {e}}_{1}} 2718:. It is also the case that for lines 1488:{\displaystyle {\boldsymbol {e}}_{0}} 1343:{\displaystyle {\boldsymbol {e}}_{2}} 1303:{\displaystyle {\boldsymbol {e}}_{0}} 1270:{\displaystyle {\boldsymbol {e}}_{0}} 999:{\displaystyle {\boldsymbol {e}}_{1}} 941:{\displaystyle {\boldsymbol {e}}_{1}} 620:{\displaystyle {\boldsymbol {e}}_{1}} 474:{\displaystyle {\boldsymbol {e}}_{3}} 419:{\displaystyle {\boldsymbol {e}}_{2}} 364:{\displaystyle {\boldsymbol {e}}_{1}} 193:point normal representation of planes 97:{\displaystyle {\boldsymbol {e}}_{1}} 7: 4456: 4454: 4399:"Geometric Fundamentals of Robotics" 4346: 4344: 3794:(CGA), of which Plane-based GA is a 67:Plane-based geometric algebra takes 4932:Gunn, Charles (December 19, 2011). 3913:Variants of duality and terminology 4797:"Foundations of geometric algebra" 4205:and rotoreflections in the space. 2596:. This is a generalization of the 2589:{\textstyle {\frac {1}{2}}(AB-BA)} 1725:gives the necessary elements for ( 1317:Lines at infinity also exist; the 14: 3788:inversions in circles and spheres 2640:, we have that the derivative of 4801:Geometric Algebra for Physicists 4705:Lounesto, Pertti (May 3, 2001). 4228:taking the quotient by scalars. 2450:(dual quaternion) or reflection 316:consists of the plane such that 60:. It is usually combined with a 5018:Journal of Mathematical Physics 4882:Selig, J. M. (September 2000). 4351:Selig, J. M. (September 2000). 4307:Journal of Mathematical Physics 4216:All three even subalgebras are 3726:pecial (handedness-preserving) 3350:is a slight rotation about the 2241:{\displaystyle \lVert A\rVert } 1115: 1084: 1053: 948:", it is instead the transform 813:followed by the transformation 189:plĂŒcker representation of lines 16:Application of Clifford algebra 4842:projectivegeometricalgebra.org 4838:"Projective Geometric Algebra" 4785:(in French). Gauthier-Villars. 4711:. Cambridge University Press. 4403:Monographs in Computer Science 4272:. Cambridge University Press. 3673:Rotations and translations as 3290: 3284: 3258: 3252: 3131: 3125: 2583: 2565: 2489: 2319: 2301: 2204: 2143: 2134: 2122: 1887: 1818: 1: 4708:Clifford Algebras and Spinors 4542:. Elsevier, Morgan Kaufmann. 4467:Advances in Computer Graphics 4301:Brooke, J. A. (May 1, 1978). 4119:Gnonomic world map projection 3873:, allows a definition of the 2071:, which is useful for taking 1974:, which is useful for taking 1827:{\displaystyle B{\tilde {A}}} 30:Plane-based geometric algebra 4809:10.1017/cbo9780511807497.006 4475:10.1007/978-3-030-61864-3_39 3813:Projective Geometric Algebra 2937:followed by a reflection in 1896:{\displaystyle {\tilde {A}}} 163:Plane-based GA subsumes the 5014:"Lie groups as spin groups" 4435:"Research – CliffordLayers" 3792:Conformal Geometric Algebra 3707:parallel to the first (the 3695:Rotations and translations 2498:{\textstyle TA{\tilde {T}}} 5082: 4983:10.1007/s00006-021-01118-7 4656:10.1007/s00006-023-01269-9 977:followed by the transform 754:, their geometric product 197:homogeneous representation 4942:10.14279/DEPOSITONCE-3058 4900:10.1017/s0263574799002568 4369:10.1017/S0263574799002568 3839:; this can be written as 2820:For example, recall that 2037:{\displaystyle P\wedge L} 1429:Most lines, for examples 714:For any pair of elements 312:of planes. Its canonical 285:elements of vector spaces 177:axis–angle representation 4781:Michel, Chasles (1875). 4740:Jordan, Camille (1875). 4717:10.1017/cbo9780511526022 4278:10.1017/cbo9780511623943 3146:Cartan–DieudonnĂ© theorem 2660:with respect to time is 1762:The transformation from 1754:were extracted from the 1729:) coordinates of lines. 4580:. Lincoln, California. 4117:; provides a model the 3654:and the original point 2790:{\displaystyle \times } 2692:{\displaystyle \times } 2541:{\displaystyle \times } 2528:The commutator product 1967:{\displaystyle \wedge } 1350:to be the ground, then 280:(three lower indices). 201:screw, twist and wrench 4574:Lengyel, Eric (2016). 4201: 3899: 3862: 3778: 3669: 3632: 3618:is a 2-reflection and 3587: 3557: 3533: 3481: 3452: 3402: 3373: 3344: 3297: 3265: 3236: 3203: 3174: 3138: 3108: 3084: 3040: 2990: 2931: 2902: 2843: 2810: 2791: 2772: 2752: 2732: 2712: 2693: 2674: 2654: 2634: 2614: 2590: 2542: 2519: 2499: 2464: 2433: 2389: 2366: 2346: 2326: 2282: 2262: 2242: 2216: 2180: 2153: 2109: 2089: 2065: 2064:{\displaystyle \cdot } 2038: 2012: 1992: 1968: 1941: 1921: 1897: 1868: 1848: 1828: 1796: 1776: 1743: 1719: 1690: 1661: 1632: 1609: 1580: 1551: 1518: 1489: 1458:, can act as axes for 1452: 1420: 1391: 1344: 1304: 1271: 1248:The algebraic element 1240: 1225: 1184:". The statement that 1178: 1157: 1150: 1000: 971: 942: 913: 880: 833:. Note that transform 827: 807: 793:is the transformation 787: 768: 748: 728: 705: 676: 647: 621: 596: 589: 522: 475: 446: 420: 391: 365: 336: 305: 274: 245: 172: 150: 130: 98: 26: 4191: 4178:is equivalent to the 4055:rigid transformations 4006:Transformation group 3900: 3885:(see above) equal to 3820: 3772: 3666: 3633: 3588: 3550: 3534: 3482: 3453: 3403: 3374: 3345: 3298: 3266: 3237: 3204: 3175: 3139: 3101: 3085: 3041: 2991: 2932: 2903: 2844: 2811: 2792: 2773: 2753: 2733: 2713: 2694: 2675: 2655: 2635: 2615: 2591: 2543: 2520: 2500: 2465: 2434: 2390: 2367: 2347: 2327: 2283: 2263: 2243: 2217: 2181: 2154: 2110: 2090: 2066: 2039: 2013: 1993: 1969: 1942: 1922: 1898: 1869: 1849: 1829: 1797: 1777: 1740: 1720: 1691: 1662: 1633: 1610: 1581: 1552: 1519: 1490: 1453: 1421: 1392: 1345: 1305: 1272: 1237: 1226: 1179: 1151: 1015: 1001: 972: 943: 914: 881: 828: 808: 788: 769: 749: 729: 706: 677: 648: 622: 590: 538: 523: 476: 447: 421: 392: 366: 337: 302: 275: 246: 220:contravariant vectors 162: 151: 131: 99: 38:rigid transformations 32:is an application of 24: 4269:Topological Geometry 4218:classical Lie groups 3889: 3622: 3568: 3514: 3462: 3412: 3383: 3354: 3316: 3296:{\displaystyle E(3)} 3278: 3264:{\displaystyle E(3)} 3246: 3217: 3213:, and lines such as 3184: 3155: 3137:{\displaystyle E(3)} 3119: 3050: 3000: 2941: 2912: 2853: 2824: 2800: 2781: 2762: 2742: 2722: 2702: 2683: 2664: 2644: 2624: 2604: 2552: 2532: 2509: 2474: 2454: 2448:rigid transformation 2399: 2379: 2356: 2336: 2332:. This assumes that 2292: 2272: 2252: 2226: 2190: 2170: 2119: 2099: 2079: 2055: 2022: 2002: 1982: 1958: 1931: 1911: 1878: 1858: 1838: 1806: 1786: 1766: 1700: 1671: 1642: 1619: 1590: 1561: 1532: 1499: 1470: 1433: 1401: 1354: 1325: 1285: 1252: 1244:Elements at infinity 1188: 1168: 1020: 981: 952: 923: 894: 849: 817: 797: 777: 758: 738: 718: 686: 657: 631: 602: 543: 488: 456: 430: 401: 397:, which is labelled 375: 346: 342:, which is labelled 320: 255: 226: 140: 120: 79: 5030:1993JMP....34.3642D 4536:Dorst, Leo (2010). 4439:microsoft.github.io 4319:1978JMP....19..952B 4090:Split-biquaternions 3999: 2446:Application of any 1495:, such as the line 646:{\displaystyle x=0} 445:{\displaystyle z=0} 390:{\displaystyle y=0} 335:{\displaystyle x=0} 287:; however they are 4202: 4155:Complex quaternion 3998: 3895: 3875:regressive product 3871:Grassmann algebras 3863: 3859:regressive product 3782:Inversive Geometry 3779: 3670: 3628: 3583: 3558: 3529: 3477: 3448: 3398: 3369: 3340: 3310:linear combination 3293: 3261: 3232: 3199: 3170: 3134: 3109: 3080: 3036: 2986: 2927: 2898: 2849:is a plane, as is 2839: 2806: 2787: 2768: 2748: 2728: 2708: 2689: 2670: 2650: 2630: 2610: 2586: 2538: 2515: 2495: 2460: 2429: 2385: 2362: 2342: 2322: 2278: 2258: 2238: 2212: 2176: 2149: 2105: 2085: 2061: 2034: 2008: 1988: 1964: 1937: 1917: 1893: 1864: 1844: 1824: 1792: 1772: 1756:quaternion product 1744: 1715: 1686: 1657: 1631:{\displaystyle -1} 1628: 1615:, which square to 1605: 1576: 1547: 1514: 1485: 1448: 1416: 1387: 1340: 1300: 1267: 1241: 1221: 1174: 1146: 996: 967: 938: 909: 876: 823: 803: 783: 764: 744: 724: 701: 672: 643: 617: 585: 518: 471: 442: 416: 387: 361: 332: 306: 270: 241: 179:of rotations, the 173: 146: 126: 94: 69:planar reflections 27: 5066:Geometric algebra 4726:978-0-521-00551-7 4587:978-0-9858117-4-7 4549:978-0-12-374942-0 4522:978-0-12-374942-0 4484:978-3-030-61863-6 4420:978-0-387-20874-9 4287:978-0-521-23160-2 4186: 4185: 4174:, a.k.a. boosts. 3898:{\displaystyle 1} 3775:sphere inversions 3631:{\displaystyle P} 3504:point reflections 3500:glide reflections 3274:Some elements of 3211:point reflections 2809:{\displaystyle B} 2751:{\displaystyle B} 2731:{\displaystyle A} 2711:{\displaystyle B} 2653:{\displaystyle B} 2633:{\displaystyle B} 2563: 2492: 2388:{\displaystyle 1} 2365:{\displaystyle B} 2345:{\displaystyle A} 2281:{\displaystyle B} 2261:{\displaystyle A} 2210: 2207: 2179:{\displaystyle A} 2146: 2108:{\displaystyle B} 2088:{\displaystyle A} 2011:{\displaystyle L} 1991:{\displaystyle P} 1940:{\displaystyle B} 1920:{\displaystyle A} 1890: 1867:{\displaystyle B} 1847:{\displaystyle A} 1821: 1795:{\displaystyle B} 1775:{\displaystyle A} 1758:. These include: 1279:plane at infinity 1177:{\displaystyle 1} 1162:identity function 806:{\displaystyle B} 786:{\displaystyle B} 747:{\displaystyle B} 534:geometric product 149:{\displaystyle 0} 129:{\displaystyle 1} 58:computer graphics 5073: 5050: 5049: 5038:10.1063/1.530050 5024:(8): 3642–3669. 5009: 5003: 5002: 4976: 4952: 4946: 4945: 4929: 4920: 4919: 4879: 4873: 4872: 4870: 4869: 4861:Doran |, Chris. 4858: 4852: 4851: 4849: 4848: 4834: 4828: 4827: 4826: 4825: 4793: 4787: 4786: 4778: 4772: 4771: 4761: 4759:10.24033/bsmf.90 4737: 4731: 4730: 4702: 4696: 4695: 4693: 4692: 4682: 4676: 4675: 4649: 4625: 4614: 4613: 4607: 4599: 4571: 4562: 4561: 4533: 4527: 4526: 4508: 4502: 4501: 4500: 4499: 4458: 4449: 4448: 4446: 4445: 4431: 4425: 4424: 4395: 4389: 4388: 4348: 4339: 4338: 4327:10.1063/1.523798 4298: 4292: 4291: 4263: 4257: 4256: 4255: 4254: 4242: 4211:hyperbolic angle 4199: 4195: 4177: 4172:spacetime boosts 4163:double cover of 4160: 4147: 4135: 4123:PoincarĂ© duality 4116: 4098:double cover of 4095: 4082: 4070: 4053:double cover of 4050: 4045:Dual quaternions 4037: 4025: 4003:Geometric space 4000: 3994: 3904: 3902: 3901: 3896: 3856: 3852: 3838: 3833:define the line 3832: 3826: 3736:Dual Quaternions 3659: 3653: 3643: 3637: 3635: 3634: 3629: 3617: 3611: 3605: 3596: 3592: 3590: 3589: 3584: 3582: 3581: 3576: 3538: 3536: 3535: 3530: 3528: 3527: 3522: 3486: 3484: 3483: 3478: 3476: 3475: 3470: 3457: 3455: 3454: 3449: 3447: 3446: 3441: 3429: 3428: 3423: 3407: 3405: 3404: 3399: 3397: 3396: 3391: 3378: 3376: 3375: 3370: 3368: 3367: 3362: 3349: 3347: 3346: 3341: 3339: 3338: 3333: 3302: 3300: 3299: 3294: 3270: 3268: 3267: 3262: 3241: 3239: 3238: 3233: 3231: 3230: 3225: 3208: 3206: 3205: 3200: 3198: 3197: 3192: 3179: 3177: 3176: 3171: 3169: 3168: 3163: 3143: 3141: 3140: 3135: 3104:point reflection 3089: 3087: 3086: 3081: 3079: 3078: 3073: 3064: 3063: 3058: 3045: 3043: 3042: 3037: 3035: 3034: 3029: 3020: 3019: 3014: 2995: 2993: 2992: 2987: 2985: 2984: 2979: 2970: 2969: 2964: 2955: 2954: 2949: 2936: 2934: 2933: 2928: 2926: 2925: 2920: 2907: 2905: 2904: 2899: 2897: 2896: 2891: 2882: 2881: 2876: 2867: 2866: 2861: 2848: 2846: 2845: 2840: 2838: 2837: 2832: 2815: 2813: 2812: 2807: 2796: 2794: 2793: 2788: 2777: 2775: 2774: 2769: 2757: 2755: 2754: 2749: 2737: 2735: 2734: 2729: 2717: 2715: 2714: 2709: 2698: 2696: 2695: 2690: 2679: 2677: 2676: 2671: 2659: 2657: 2656: 2651: 2639: 2637: 2636: 2631: 2619: 2617: 2616: 2611: 2595: 2593: 2592: 2587: 2564: 2556: 2547: 2545: 2544: 2539: 2524: 2522: 2521: 2516: 2504: 2502: 2501: 2496: 2494: 2493: 2485: 2469: 2467: 2466: 2461: 2438: 2436: 2435: 2430: 2394: 2392: 2391: 2386: 2371: 2369: 2368: 2363: 2351: 2349: 2348: 2343: 2331: 2329: 2328: 2323: 2287: 2285: 2284: 2279: 2267: 2265: 2264: 2259: 2247: 2245: 2244: 2239: 2221: 2219: 2218: 2213: 2211: 2209: 2208: 2200: 2194: 2185: 2183: 2182: 2177: 2158: 2156: 2155: 2150: 2148: 2147: 2139: 2114: 2112: 2111: 2106: 2094: 2092: 2091: 2086: 2070: 2068: 2067: 2062: 2043: 2041: 2040: 2035: 2017: 2015: 2014: 2009: 1997: 1995: 1994: 1989: 1973: 1971: 1970: 1965: 1946: 1944: 1943: 1938: 1926: 1924: 1923: 1918: 1902: 1900: 1899: 1894: 1892: 1891: 1883: 1873: 1871: 1870: 1865: 1853: 1851: 1850: 1845: 1833: 1831: 1830: 1825: 1823: 1822: 1814: 1801: 1799: 1798: 1793: 1781: 1779: 1778: 1773: 1724: 1722: 1721: 1716: 1714: 1713: 1708: 1695: 1693: 1692: 1687: 1685: 1684: 1679: 1666: 1664: 1663: 1658: 1656: 1655: 1650: 1637: 1635: 1634: 1629: 1614: 1612: 1611: 1606: 1604: 1603: 1598: 1585: 1583: 1582: 1577: 1575: 1574: 1569: 1556: 1554: 1553: 1548: 1546: 1545: 1540: 1523: 1521: 1520: 1515: 1513: 1512: 1507: 1494: 1492: 1491: 1486: 1484: 1483: 1478: 1457: 1455: 1454: 1449: 1447: 1446: 1441: 1425: 1423: 1422: 1417: 1415: 1414: 1409: 1396: 1394: 1393: 1388: 1386: 1385: 1380: 1368: 1367: 1362: 1349: 1347: 1346: 1341: 1339: 1338: 1333: 1312:vanishing points 1309: 1307: 1306: 1301: 1299: 1298: 1293: 1276: 1274: 1273: 1268: 1266: 1265: 1260: 1230: 1228: 1227: 1222: 1214: 1213: 1208: 1202: 1201: 1196: 1183: 1181: 1180: 1175: 1155: 1153: 1152: 1147: 1139: 1138: 1133: 1127: 1126: 1121: 1108: 1107: 1102: 1096: 1095: 1090: 1077: 1076: 1071: 1065: 1064: 1059: 1046: 1045: 1040: 1034: 1033: 1028: 1008:sandwich product 1005: 1003: 1002: 997: 995: 994: 989: 976: 974: 973: 968: 966: 965: 960: 947: 945: 944: 939: 937: 936: 931: 918: 916: 915: 910: 908: 907: 902: 885: 883: 882: 877: 875: 874: 869: 863: 862: 857: 832: 830: 829: 824: 812: 810: 809: 804: 792: 790: 789: 784: 773: 771: 770: 765: 753: 751: 750: 745: 733: 731: 730: 725: 710: 708: 707: 702: 700: 699: 694: 681: 679: 678: 673: 671: 670: 665: 652: 650: 649: 644: 626: 624: 623: 618: 616: 615: 610: 594: 592: 591: 586: 584: 583: 578: 569: 568: 563: 557: 556: 551: 527: 525: 524: 519: 517: 516: 511: 502: 501: 496: 480: 478: 477: 472: 470: 469: 464: 451: 449: 448: 443: 425: 423: 422: 417: 415: 414: 409: 396: 394: 393: 388: 370: 368: 367: 362: 360: 359: 354: 341: 339: 338: 333: 279: 277: 276: 271: 269: 268: 263: 250: 248: 247: 242: 240: 239: 234: 155: 153: 152: 147: 135: 133: 132: 127: 115: 103: 101: 100: 95: 93: 92: 87: 34:Clifford algebra 5081: 5080: 5076: 5075: 5074: 5072: 5071: 5070: 5056: 5055: 5054: 5053: 5011: 5010: 5006: 4954: 4953: 4949: 4931: 4930: 4923: 4881: 4880: 4876: 4867: 4865: 4860: 4859: 4855: 4846: 4844: 4836: 4835: 4831: 4823: 4821: 4819: 4795: 4794: 4790: 4780: 4779: 4775: 4739: 4738: 4734: 4727: 4704: 4703: 4699: 4690: 4688: 4684: 4683: 4679: 4627: 4626: 4617: 4600: 4588: 4573: 4572: 4565: 4550: 4535: 4534: 4530: 4523: 4510: 4509: 4505: 4497: 4495: 4485: 4460: 4459: 4452: 4443: 4441: 4433: 4432: 4428: 4421: 4411:10.1007/b138859 4397: 4396: 4392: 4350: 4349: 4342: 4300: 4299: 4295: 4288: 4265: 4264: 4260: 4252: 4250: 4244: 4243: 4239: 4234: 4197: 4193: 4175: 4158: 4141: 4137: 4133: 4110: 4106: 4093: 4076: 4072: 4068: 4048: 4031: 4027: 4023: 3988: 3984: 3977: 3915: 3887: 3886: 3854: 3840: 3834: 3828: 3822: 3815: 3784: 3767: 3765:Generalizations 3744:even subalgebra 3722:, the group of 3678: 3675:even subalgebra 3655: 3649: 3639: 3620: 3619: 3613: 3607: 3601: 3594: 3571: 3566: 3565: 3545: 3517: 3512: 3511: 3496:Rotoreflections 3465: 3460: 3459: 3436: 3418: 3410: 3409: 3386: 3381: 3380: 3357: 3352: 3351: 3328: 3314: 3313: 3276: 3275: 3244: 3243: 3220: 3215: 3214: 3187: 3182: 3181: 3158: 3153: 3152: 3117: 3116: 3113:Euclidean Group 3096: 3068: 3053: 3048: 3047: 3024: 3009: 2998: 2997: 2974: 2959: 2944: 2939: 2938: 2915: 2910: 2909: 2886: 2871: 2856: 2851: 2850: 2827: 2822: 2821: 2798: 2797: 2779: 2778: 2760: 2759: 2740: 2739: 2720: 2719: 2700: 2699: 2681: 2680: 2662: 2661: 2642: 2641: 2622: 2621: 2602: 2601: 2550: 2549: 2530: 2529: 2507: 2506: 2472: 2471: 2452: 2451: 2397: 2396: 2377: 2376: 2354: 2353: 2334: 2333: 2290: 2289: 2270: 2269: 2250: 2249: 2224: 2223: 2222:and is denoted 2188: 2187: 2168: 2167: 2117: 2116: 2097: 2096: 2077: 2076: 2053: 2052: 2020: 2019: 2000: 1999: 1980: 1979: 1956: 1955: 1929: 1928: 1909: 1908: 1876: 1875: 1856: 1855: 1836: 1835: 1804: 1803: 1784: 1783: 1764: 1763: 1735: 1703: 1698: 1697: 1674: 1669: 1668: 1645: 1640: 1639: 1617: 1616: 1593: 1588: 1587: 1564: 1559: 1558: 1535: 1530: 1529: 1502: 1497: 1496: 1473: 1468: 1467: 1436: 1431: 1430: 1404: 1399: 1398: 1375: 1357: 1352: 1351: 1328: 1323: 1322: 1288: 1283: 1282: 1277:represents the 1255: 1250: 1249: 1246: 1231:is more subtle. 1203: 1191: 1186: 1185: 1166: 1165: 1128: 1116: 1097: 1085: 1066: 1054: 1035: 1023: 1018: 1017: 984: 979: 978: 955: 950: 949: 926: 921: 920: 919:transformed by 897: 892: 891: 864: 852: 847: 846: 815: 814: 795: 794: 775: 774: 756: 755: 736: 735: 716: 715: 689: 684: 683: 660: 655: 654: 629: 628: 605: 600: 599: 573: 558: 546: 541: 540: 536:. For example: 506: 491: 486: 485: 459: 454: 453: 428: 427: 404: 399: 398: 373: 372: 349: 344: 343: 318: 317: 297: 258: 253: 252: 229: 224: 223: 185:dual quaternion 138: 137: 118: 117: 109: 105: 82: 77: 76: 17: 12: 11: 5: 5079: 5077: 5069: 5068: 5058: 5057: 5052: 5051: 5004: 4947: 4921: 4894:(5): 545–556. 4874: 4853: 4829: 4817: 4788: 4773: 4732: 4725: 4697: 4677: 4615: 4586: 4563: 4548: 4528: 4521: 4503: 4483: 4450: 4426: 4419: 4390: 4363:(5): 545–556. 4340: 4313:(5): 952–959. 4293: 4286: 4258: 4236: 4235: 4233: 4230: 4184: 4183: 4168: 4152: 4149: 4139: 4131: 4127: 4126: 4108: 4103: 4087: 4084: 4074: 4066: 4062: 4061: 4058: 4042: 4039: 4029: 4021: 4017: 4016: 4013: 4010: 4007: 4004: 3986: 3976: 3973: 3972: 3971: 3959: 3933: 3914: 3911: 3894: 3814: 3811: 3783: 3780: 3766: 3763: 3759:Michel Chasles 3755:Camille Jordan 3677: 3671: 3646:rotoreflection 3627: 3580: 3575: 3544: 3541: 3526: 3521: 3474: 3469: 3445: 3440: 3435: 3432: 3427: 3422: 3417: 3395: 3390: 3366: 3361: 3337: 3332: 3327: 3324: 3321: 3292: 3289: 3286: 3283: 3260: 3257: 3254: 3251: 3229: 3224: 3196: 3191: 3167: 3162: 3133: 3130: 3127: 3124: 3095: 3092: 3077: 3072: 3067: 3062: 3057: 3033: 3028: 3023: 3018: 3013: 3008: 3005: 2983: 2978: 2973: 2968: 2963: 2958: 2953: 2948: 2924: 2919: 2895: 2890: 2885: 2880: 2875: 2870: 2865: 2860: 2836: 2831: 2818: 2817: 2805: 2786: 2771:{\textstyle A} 2767: 2747: 2727: 2707: 2688: 2673:{\textstyle A} 2669: 2649: 2629: 2613:{\textstyle A} 2609: 2585: 2582: 2579: 2576: 2573: 2570: 2567: 2562: 2559: 2537: 2526: 2518:{\textstyle A} 2514: 2491: 2488: 2482: 2479: 2463:{\textstyle T} 2459: 2444: 2428: 2425: 2422: 2419: 2416: 2413: 2410: 2407: 2404: 2384: 2361: 2341: 2321: 2318: 2315: 2312: 2309: 2306: 2303: 2300: 2297: 2277: 2257: 2237: 2234: 2231: 2206: 2203: 2197: 2175: 2160: 2145: 2142: 2136: 2133: 2130: 2127: 2124: 2104: 2084: 2060: 2045: 2033: 2030: 2027: 2007: 1998:with the line 1987: 1963: 1950:The meet (or " 1948: 1936: 1916: 1889: 1886: 1863: 1843: 1820: 1817: 1811: 1791: 1771: 1734: 1731: 1712: 1707: 1683: 1678: 1654: 1649: 1627: 1624: 1602: 1597: 1573: 1568: 1544: 1539: 1511: 1506: 1482: 1477: 1445: 1440: 1413: 1408: 1384: 1379: 1374: 1371: 1366: 1361: 1337: 1332: 1297: 1292: 1264: 1259: 1245: 1242: 1220: 1217: 1212: 1207: 1200: 1195: 1173: 1145: 1142: 1137: 1132: 1125: 1120: 1114: 1111: 1106: 1101: 1094: 1089: 1083: 1080: 1075: 1070: 1063: 1058: 1052: 1049: 1044: 1039: 1032: 1027: 993: 988: 964: 959: 935: 930: 906: 901: 873: 868: 861: 856: 845:; for example 826:{\textstyle A} 822: 802: 782: 767:{\textstyle A} 763: 743: 727:{\textstyle A} 723: 698: 693: 669: 664: 642: 639: 636: 614: 609: 582: 577: 572: 567: 562: 555: 550: 515: 510: 505: 500: 495: 468: 463: 441: 438: 435: 413: 408: 386: 383: 380: 358: 353: 331: 328: 325: 296: 293: 267: 262: 238: 233: 145: 125: 107: 91: 86: 15: 13: 10: 9: 6: 4: 3: 2: 5078: 5067: 5064: 5063: 5061: 5047: 5043: 5039: 5035: 5031: 5027: 5023: 5019: 5015: 5008: 5005: 5000: 4996: 4992: 4988: 4984: 4980: 4975: 4970: 4966: 4962: 4958: 4951: 4948: 4943: 4939: 4935: 4928: 4926: 4922: 4917: 4913: 4909: 4905: 4901: 4897: 4893: 4889: 4885: 4878: 4875: 4864: 4857: 4854: 4843: 4839: 4833: 4830: 4820: 4818:9780521480222 4814: 4810: 4806: 4802: 4798: 4792: 4789: 4784: 4777: 4774: 4769: 4765: 4760: 4755: 4751: 4747: 4743: 4736: 4733: 4728: 4722: 4718: 4714: 4710: 4709: 4701: 4698: 4687: 4681: 4678: 4673: 4669: 4665: 4661: 4657: 4653: 4648: 4643: 4639: 4635: 4631: 4624: 4622: 4620: 4616: 4611: 4605: 4597: 4593: 4589: 4583: 4579: 4578: 4570: 4568: 4564: 4559: 4555: 4551: 4545: 4541: 4540: 4532: 4529: 4524: 4518: 4514: 4507: 4504: 4494: 4490: 4486: 4480: 4476: 4472: 4468: 4464: 4457: 4455: 4451: 4440: 4436: 4430: 4427: 4422: 4416: 4412: 4408: 4404: 4400: 4394: 4391: 4386: 4382: 4378: 4374: 4370: 4366: 4362: 4358: 4354: 4347: 4345: 4341: 4336: 4332: 4328: 4324: 4320: 4316: 4312: 4308: 4304: 4297: 4294: 4289: 4283: 4279: 4275: 4271: 4270: 4262: 4259: 4249: 4248: 4241: 4238: 4231: 4229: 4227: 4223: 4219: 4214: 4212: 4206: 4190: 4181: 4173: 4169: 4167: 4166: 4165:Lorentz group 4159:Spin(3, 1, 0) 4156: 4153: 4150: 4148: 4145: 4132: 4129: 4128: 4124: 4120: 4114: 4104: 4102: 4101: 4094:Spin(4, 0, 0) 4091: 4088: 4085: 4083: 4080: 4067: 4064: 4063: 4059: 4057: 4056: 4049:Spin(3, 0, 1) 4046: 4043: 4040: 4038: 4035: 4022: 4019: 4018: 4014: 4011: 4008: 4005: 4002: 4001: 3996: 3992: 3982: 3974: 3969: 3965: 3960: 3957: 3956:collineations 3953: 3949: 3948:non-euclidean 3945: 3941: 3939: 3934: 3930: 3927: 3926: 3921: 3920: 3919: 3912: 3910: 3908: 3892: 3884: 3880: 3876: 3872: 3868: 3860: 3851: 3847: 3843: 3837: 3831: 3825: 3819: 3812: 3810: 3808: 3807:Poincare disk 3804: 3799: 3797: 3793: 3789: 3781: 3776: 3771: 3764: 3762: 3760: 3756: 3751: 3749: 3745: 3741: 3737: 3733: 3729: 3725: 3721: 3717: 3716:screw motions 3712: 3710: 3706: 3702: 3698: 3693: 3691: 3687: 3683: 3676: 3672: 3665: 3661: 3658: 3652: 3647: 3642: 3625: 3616: 3610: 3604: 3598: 3578: 3563: 3554: 3549: 3542: 3540: 3524: 3509: 3505: 3501: 3497: 3493: 3488: 3472: 3443: 3433: 3430: 3425: 3415: 3393: 3364: 3335: 3325: 3322: 3319: 3311: 3306: 3287: 3281: 3272: 3255: 3249: 3227: 3212: 3194: 3165: 3149: 3147: 3128: 3122: 3114: 3105: 3100: 3093: 3091: 3075: 3065: 3060: 3031: 3021: 3016: 3006: 3003: 2981: 2971: 2966: 2956: 2951: 2922: 2893: 2883: 2878: 2868: 2863: 2834: 2803: 2784: 2765: 2758:we have that 2745: 2725: 2705: 2686: 2667: 2647: 2627: 2607: 2599: 2580: 2577: 2574: 2571: 2568: 2560: 2557: 2548:, defined as 2535: 2527: 2512: 2486: 2480: 2477: 2457: 2449: 2445: 2442: 2426: 2423: 2417: 2411: 2405: 2382: 2375: 2359: 2339: 2313: 2310: 2307: 2298: 2295: 2275: 2255: 2232: 2201: 2195: 2173: 2165: 2161: 2140: 2131: 2128: 2125: 2102: 2082: 2074: 2058: 2050: 2046: 2031: 2028: 2025: 2018:is the point 2005: 1985: 1977: 1976:intersections 1961: 1953: 1949: 1934: 1914: 1906: 1884: 1861: 1841: 1815: 1809: 1789: 1769: 1761: 1760: 1759: 1757: 1753: 1752:cross product 1749: 1739: 1732: 1730: 1728: 1710: 1681: 1652: 1625: 1622: 1600: 1571: 1542: 1527: 1509: 1480: 1465: 1461: 1443: 1427: 1411: 1382: 1372: 1369: 1364: 1335: 1320: 1315: 1313: 1295: 1280: 1262: 1243: 1236: 1232: 1218: 1215: 1210: 1198: 1171: 1163: 1156: 1143: 1140: 1135: 1123: 1112: 1109: 1104: 1092: 1081: 1078: 1073: 1061: 1050: 1047: 1042: 1030: 1014: 1011: 1010:, see below. 1009: 991: 962: 933: 904: 889: 871: 859: 844: 840: 836: 820: 800: 780: 761: 741: 721: 712: 696: 667: 640: 637: 634: 612: 598:Here we take 595: 580: 570: 565: 553: 537: 535: 530: 513: 503: 498: 482: 466: 439: 436: 433: 411: 384: 381: 378: 356: 329: 326: 323: 315: 311: 310:intersections 301: 294: 292: 290: 286: 281: 265: 236: 221: 217: 216:pseudovectors 213: 212:Gibbs vectors 209: 208:cross product 204: 202: 198: 194: 190: 186: 182: 178: 170: 166: 161: 157: 143: 123: 113: 89: 74: 70: 65: 63: 59: 55: 51: 47: 43: 42:intersections 39: 35: 31: 23: 19: 5021: 5017: 5007: 4964: 4960: 4950: 4933: 4891: 4887: 4877: 4866:. Retrieved 4856: 4845:. Retrieved 4841: 4832: 4822:, retrieved 4800: 4791: 4782: 4776: 4749: 4745: 4735: 4707: 4700: 4689:. Retrieved 4680: 4637: 4633: 4576: 4538: 4531: 4512: 4506: 4496:, retrieved 4466: 4442:. Retrieved 4438: 4429: 4402: 4393: 4360: 4356: 4310: 4306: 4296: 4268: 4261: 4251:, retrieved 4246: 4240: 4225: 4215: 4207: 4203: 4162: 4143: 4136: 4134:Pin(3, 1, 0) 4112: 4100:4D rotations 4097: 4078: 4071: 4069:Pin(4, 0, 0) 4052: 4033: 4026: 4024:Pin(3, 0, 1) 3990: 3980: 3978: 3967: 3963: 3943: 3937: 3923: 3916: 3882: 3878: 3866: 3864: 3858: 3849: 3845: 3841: 3835: 3829: 3823: 3800: 3785: 3752: 3743: 3740:double cover 3739: 3735: 3731: 3727: 3723: 3715: 3713: 3704: 3700: 3696: 3694: 3685: 3681: 3679: 3674: 3668:"cancelled". 3656: 3650: 3640: 3614: 3608: 3602: 3599: 3561: 3559: 3552: 3508:screw motion 3492:2-reflection 3491: 3489: 3304: 3273: 3150: 3110: 2819: 2163: 2048: 1951: 1745: 1526:dual numbers 1428: 1319:horizon line 1316: 1247: 1158: 1016: 1012: 1007: 887: 842: 838: 834: 713: 597: 539: 533: 531: 483: 309: 307: 295:Construction 288: 284: 282: 205: 174: 111: 72: 68: 66: 61: 29: 28: 18: 4752:: 103–174. 4222:Lie algebra 4130:Hyperbolic 4121:. Includes 3968:point pairs 3950:space, see 3907:affine hull 3821:The points 3709:quaternions 3701:even number 2598:Lie Bracket 2441:dot product 2073:projections 1748:dot product 1464:quaternions 843:application 835:composition 653:plane, and 50:spin groups 46:projections 4974:2002.05993 4868:2023-09-08 4847:2023-09-08 4824:2023-09-23 4691:2023-09-08 4647:2107.03771 4498:2023-09-09 4444:2023-08-10 4253:2023-09-09 4232:References 4020:Euclidean 3952:dual space 3938:Projective 3857:being the 3796:subalgebra 3686:handedness 3593:square to 2372:both have 1954:product") 841:transform 426:, and the 195:, and the 181:quaternion 169:axis-angle 165:quaternion 5046:0022-2488 4999:211126515 4991:0188-7009 4908:0263-5747 4768:0037-9484 4672:235765240 4664:0188-7009 4604:cite book 4596:972909098 4558:846456514 4493:224820480 4377:0263-5747 4335:0022-2488 4065:Elliptic 3803:conformal 3690:chirality 3682:distances 3144:. By the 3107:element". 2785:× 2687:× 2575:− 2536:× 2490:~ 2421:‖ 2415:‖ 2409:‖ 2403:‖ 2317:‖ 2311:⋅ 2305:‖ 2299:⁡ 2236:‖ 2230:‖ 2205:~ 2144:~ 2129:⋅ 2059:⋅ 2029:∧ 1962:∧ 1888:~ 1819:~ 1623:− 1460:rotations 5060:Category 4916:28929170 4888:Robotica 4405:. 2005. 4385:28929170 4357:Robotica 2505:, where 2051:product 54:robotics 5026:Bibcode 4315:Bibcode 4176:(2,1,0) 3853:, with 1905:reverse 1903:is the 1834:, with 1782:toward 1727:PlĂŒcker 452:plane, 73:grade-1 62:duality 5044:  4997:  4989:  4914:  4906:  4815:  4766:  4723:  4670:  4662:  4594:  4584:  4556:  4546:  4519:  4491:  4481:  4417:  4383:  4375:  4333:  4284:  4015:Notes 3964:circle 3757:. and 3748:spinor 3502:, and 2296:arccos 371:, the 191:, the 4995:S2CID 4969:arXiv 4967:(2). 4912:S2CID 4668:S2CID 4642:arXiv 4640:(3). 4489:S2CID 4381:S2CID 4140:3,1,0 4109:3,0,0 4075:4,0,0 4030:3,0,1 3987:3,0,1 3981:rigid 3932:dual. 3925:Hodge 3720:SE(3) 3553:gauge 2600:: if 2395:, eg 2095:onto 2049:inner 1952:wedge 314:basis 108:3,0,1 5042:ISSN 4987:ISSN 4904:ISSN 4813:ISBN 4764:ISSN 4721:ISBN 4660:ISSN 4610:link 4592:OCLC 4582:ISBN 4554:OCLC 4544:ISBN 4517:ISBN 4479:ISBN 4415:ISBN 4373:ISSN 4331:ISSN 4282:ISBN 3940:dual 3935:The 3929:dual 3922:The 3883:norm 3879:join 3867:dual 3827:and 3684:and 3562:same 3525:0123 3408:and 3209:are 2738:and 2374:norm 2352:and 2268:and 2164:norm 2162:The 2047:The 1927:and 1854:and 1750:and 1742:etc. 734:and 218:and 183:and 167:and 5034:doi 4979:doi 4938:doi 4896:doi 4805:doi 4754:doi 4713:doi 4652:doi 4471:doi 4407:doi 4365:doi 4323:doi 4274:doi 4226:not 4196:or 4151:−1 3944:not 3705:not 3434:0.6 3416:0.8 3326:0.6 3320:0.8 3305:not 3195:123 2186:is 2166:of 2115:is 1802:is 1164:, " 888:not 886:is 839:not 837:is 697:123 581:123 289:not 266:123 5062:: 5040:. 5032:. 5022:34 5020:. 5016:. 4993:. 4985:. 4977:. 4965:31 4963:. 4959:. 4924:^ 4910:. 4902:. 4892:18 4890:. 4886:. 4840:. 4811:, 4799:, 4762:. 4748:. 4744:. 4719:. 4666:. 4658:. 4650:. 4638:33 4636:. 4632:. 4618:^ 4606:}} 4602:{{ 4590:. 4566:^ 4552:. 4487:, 4477:, 4465:, 4453:^ 4437:. 4413:. 4401:. 4379:. 4371:. 4361:18 4359:. 4355:. 4343:^ 4329:. 4321:. 4311:19 4309:. 4305:. 4280:. 4213:. 4198:−1 4182:. 4161:; 4157:; 4138:Cl 4125:. 4107:Cl 4096:; 4092:; 4086:1 4073:Cl 4051:; 4047:; 4041:0 4028:Cl 3985:Cl 3962:a 3909:. 3848:= 3844:√ 3798:. 3697:do 3641:PL 3612:. 3498:, 3494:. 3487:. 3473:12 3365:12 3336:12 3271:. 3228:12 3115:, 3076:10 3061:12 3032:10 3017:12 1711:30 1696:, 1682:20 1667:, 1653:10 1601:12 1586:, 1572:13 1557:, 1543:23 1510:30 1444:23 1426:. 1412:02 963:23 905:23 872:23 668:23 566:23 481:. 237:13 214:, 156:. 106:Cl 44:, 5048:. 5036:: 5028:: 5001:. 4981:: 4971:: 4944:. 4940:: 4918:. 4898:: 4871:. 4850:. 4807:: 4770:. 4756:: 4750:2 4729:. 4715:: 4694:. 4674:. 4654:: 4644:: 4612:) 4598:. 4560:. 4525:. 4473:: 4447:. 4423:. 4409:: 4387:. 4367:: 4337:. 4325:: 4317:: 4290:. 4276:: 4194:1 4146:) 4144:R 4142:( 4115:) 4113:R 4111:( 4081:) 4079:R 4077:( 4036:) 4034:R 4032:( 3993:) 3991:R 3989:( 3893:1 3855:√ 3850:g 3846:Q 3842:P 3836:g 3830:Q 3824:P 3732:3 3728:E 3724:S 3688:( 3657:P 3651:L 3626:P 3615:L 3609:P 3603:L 3595:1 3579:1 3574:e 3520:e 3468:e 3444:2 3439:e 3431:+ 3426:1 3421:e 3394:1 3389:e 3360:e 3331:e 3323:+ 3291:) 3288:3 3285:( 3282:E 3259:) 3256:3 3253:( 3250:E 3223:e 3190:e 3166:1 3161:e 3132:) 3129:3 3126:( 3123:E 3071:e 3066:+ 3056:e 3027:e 3022:+ 3012:e 3007:+ 3004:1 2982:0 2977:e 2972:+ 2967:2 2962:e 2957:+ 2952:1 2947:e 2923:1 2918:e 2894:0 2889:e 2884:+ 2879:2 2874:e 2869:+ 2864:1 2859:e 2835:1 2830:e 2804:B 2766:A 2746:B 2726:A 2706:B 2668:A 2648:B 2628:B 2608:A 2584:) 2581:A 2578:B 2572:B 2569:A 2566:( 2561:2 2558:1 2513:A 2487:T 2481:A 2478:T 2458:T 2443:. 2427:1 2424:= 2418:B 2412:= 2406:A 2383:1 2360:B 2340:A 2320:) 2314:B 2308:A 2302:( 2276:B 2256:A 2233:A 2202:A 2196:A 2174:A 2141:B 2135:) 2132:B 2126:A 2123:( 2103:B 2083:A 2044:. 2032:L 2026:P 2006:L 1986:P 1935:B 1915:A 1885:A 1862:B 1842:A 1816:A 1810:B 1790:B 1770:A 1706:e 1677:e 1648:e 1626:1 1596:e 1567:e 1538:e 1505:e 1481:0 1476:e 1439:e 1407:e 1383:0 1378:e 1373:5 1370:+ 1365:2 1360:e 1336:2 1331:e 1296:0 1291:e 1263:0 1258:e 1219:0 1216:= 1211:0 1206:e 1199:0 1194:e 1172:1 1144:0 1141:= 1136:0 1131:e 1124:0 1119:e 1113:1 1110:= 1105:3 1100:e 1093:3 1088:e 1082:1 1079:= 1074:2 1069:e 1062:2 1057:e 1051:1 1048:= 1043:1 1038:e 1031:1 1026:e 992:1 987:e 958:e 934:1 929:e 900:e 890:" 867:e 860:1 855:e 821:A 801:B 781:B 762:A 742:B 722:A 692:e 663:e 641:0 638:= 635:x 613:1 608:e 576:e 571:= 561:e 554:1 549:e 514:3 509:e 504:+ 499:2 494:e 467:3 462:e 440:0 437:= 434:z 412:2 407:e 385:0 382:= 379:y 357:1 352:e 330:0 327:= 324:x 261:e 232:e 144:0 124:1 114:) 112:R 110:( 90:1 85:e

Index


Clifford algebra
rigid transformations
intersections
projections
spin groups
robotics
computer graphics

quaternion
axis-angle
axis–angle representation
quaternion
dual quaternion
plĂŒcker representation of lines
point normal representation of planes
homogeneous representation
screw, twist and wrench
cross product
Gibbs vectors
pseudovectors
contravariant vectors

basis
identity function

plane at infinity
vanishing points
horizon line
rotations

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑