Knowledge (XXG)

Plane of rotation

Source 📝

1098: 1792: 934: 3170: 1596: 560:; it instead means that the planes have no nonzero vectors in common, and that every vector in one plane is orthogonal to every vector in the other plane. This can only happen in four or more dimensions. In two dimensions there is only one plane, while in three dimensions all planes have at least one nonzero vector in common, along their 1637:. Most importantly the planes of rotation are not uniquely identified. There are instead an infinite number of pairs of orthogonal planes that can be treated as planes of rotation. For example any point can be taken, and the plane it rotates in together with the plane orthogonal to it can be used as two planes of rotation. 1359: 1152:
perpendicular to, and so is defined by and defines, an axis of rotation, so any description of a rotation in terms of a plane of rotation can be described in terms of an axis of rotation, and vice versa. But unlike the axis of rotation the plane generalises into other, in particular higher, dimensions.
1711:
A general rotation is not simple, and has the maximum number of planes of rotation as given above. In the general case the angles of rotations in these planes are distinct and the planes are uniquely defined. If any of the angles are the same then the planes are not unique, as in four dimensions with
1782:
The examples given above were chosen to be clear and simple examples of rotations, with planes generally parallel to the coordinate axes in three and four dimensions. But this is not generally the case: planes are not usually parallel to the axes, and the matrices cannot simply be written down. In
1377:
there are two planes of rotation, no fixed planes, and the only fixed point is the origin. The rotation can be said to take place in both planes of rotation, as points in them are rotated within the planes. These planes are orthogonal, that is they have no vectors in common so every vector in one
953:
there are an infinite number of planes of rotation, only one of which is involved in any given rotation. That is, for a general rotation there is precisely one plane which is associated with it or which the rotation takes place in. The only exception is the trivial rotation, corresponding to the
2835:
of the complex roots are the magnitudes of the bivectors associated with the planes of rotations. The form of the characteristic equation is related to the planes, making it possible to relate its algebraic properties like repeated roots to the bivectors, where repeated bivector magnitudes have
1151:
In any three dimensional rotation the plane of rotation is uniquely defined. Together with the angle of rotation it fully describes the rotation. Or in a continuously rotating object the rotational properties such as the rate of rotation can be described in terms of the plane of rotation. It is
2762:
Given a rotor the bivector associated with it can be recovered by taking the logarithm of the rotor, which can then be split into simple bivectors to determine the planes of rotation, although in practice for all but the simplest of cases this may be impractical. But given the simple bivectors
2355:
Every rotation plane in a rotation has a simple bivector associated with it. This is parallel to the plane and has magnitude equal to the angle of rotation in the plane. These bivectors are summed to produce a single, generally non-simple, bivector for the whole rotation. This can generate a
717:, so any pair of orthogonal planes generates the rotation. But for a general rotation it is at least theoretically possible to identify a unique set of orthogonal planes, in each of which points are rotated through an angle, so the set of planes and angles fully characterise the rotation. 1427: 1183:. In a simple rotation there is a fixed plane, and rotation can be said to take place about this plane, so points as they rotate do not change their distance from this plane. The plane of rotation is orthogonal to this plane, and the rotation can be said to take place in this plane. 1830:-dimensional subspace. To generate simple rotations only reflections that fix the origin are needed, so the vector does not have a position, just direction. It does also not matter which way it is facing: it can be replaced with its negative without changing the result. Similarly 1092: 2037: 708: 1364:
In two and three dimensions all rotations are simple, in that they have only one plane of rotation. Only in four and more dimensions are there rotations that are not simple rotations. In particular in four dimensions there are also double and isoclinic rotations.
1815:-dimensional subspace to reflect in, so a two-dimensional reflection is in a line, a three-dimensional reflection is in a plane, and so on. But this becomes increasingly difficult to apply in higher dimensions, so it is better to use vectors instead, as follows. 428:
to itself by the rotation. The plane is not fixed, but all vectors in the plane are mapped to other vectors in the same plane by the rotation. This transformation of the plane to itself is always a rotation about the origin, through an angle which is the
2529: 923: 2305:
Conversely all simple rotations can be generated this way, with two reflections, by two unit vectors in the plane of rotation separated by half the desired angle of rotation. These can be composed to produce more general rotations, using up to
1220: 1607: 61:, as in two dimensions there is only one plane (so, identifying the plane of rotation is trivial and rarely done), while in three dimensions the axis of rotation serves the same purpose and is the more established approach. 2673:
This is a simple bivector, associated with the simple rotation described. More general rotations in four or more dimensions are associated with sums of simple bivectors, one for each plane of rotation, calculated as above.
1170:
has only one fixed point, the origin. Therefore an axis of rotation cannot be used in four dimensions. But planes of rotation can be used, and each non-trivial rotation in four dimensions has one or two planes of rotation.
2155: 1405:, so in a sense they together determine the amount of rotation. For a general double rotation the planes of rotation and angles are unique, and given a general rotation they can be calculated. For example a rotation of 1591:{\displaystyle {\begin{pmatrix}\cos \alpha &-\sin \alpha &0&0\\\sin \alpha &\cos \alpha &0&0\\0&0&\cos \beta &-\sin \beta \\0&0&\sin \beta &\cos \beta \end{pmatrix}}.} 381: 957:
In any rotation in three dimensions there is always a fixed axis, the axis of rotation. The rotation can be described by giving this axis, with the angle through which the rotation turns about it; this is the
1783:
all dimensions the rotations are fully described by the planes of rotation and their associated angles, so it is useful to be able to determine them, or at least find ways to describe them mathematically.
987: 827: 2430: 2212: 581: 2822: 1688: 1378:
plane is at right angles to every vector in the other plane. The two rotation planes span four-dimensional space, so every point in the space can be specified by two points, one on each of the planes.
480: 2242:, which must be distinct otherwise the reflections are the same and no rotation takes place. As either vector can be replaced by its negative the angle between them can always be acute, or at most 188: 1897: 316: 2668: 2348:, which generalise the idea of vectors into two dimensions. As vectors are to lines, so are bivectors to planes. So every plane (in any dimension) can be associated with a bivector, and every 2590: 1935: 2441: 966:
of the plane. The rotation then rotates this plane through the same angle as it rotates around the axis, that is everything in the plane rotates by the same angle about the origin.
845: 1693:
so the complexity quickly increases with more than four dimensions and categorising rotations as above becomes too complex to be practical, but some observations can be made.
1354:{\displaystyle {\begin{pmatrix}1&0&0&0\\0&1&0&0\\0&0&\cos \theta &-\sin \theta \\0&0&\sin \theta &\cos \theta \end{pmatrix}}} 977:-plane, so everything in that plane it kept in the plane by the rotation. This could be described by a matrix like the following, with the rotation being through an angle 321:
This is true in all dimensions, and can be taken as the definition on the plane. In particular, from the properties of the exterior product it is satisfied by both
1633:, and it differs from a general double rotation in a number of ways. For example in an isoclinic rotation, all non-zero points rotate through the same angle, 1381:
A double rotation has two angles of rotation, one for each plane of rotation. The rotation is specified by giving the two planes and two non-zero angles,
3101: 2865: 1161: 1770:
planes and angles of rotation, the same as the even dimension one lower. These do not span the space, but leave a line which does not rotate – like the
2081: 1742:
planes of rotation span the space, so a general rotation rotates all points except the origin which is the only fixed point. In odd dimensions (
3398: 3045: 339: 136:
of the space. It is completely specified by any two non-zero and non-parallel vectors that lie in the plane, that is by any two vectors
1087:{\displaystyle {\begin{pmatrix}\cos \theta &-\sin \theta &0\\\sin \theta &\cos \theta &0\\0&0&1\end{pmatrix}}.} 3204: 703:{\displaystyle {\begin{pmatrix}-1&0&0&0\\0&-1&0&0\\0&0&-1&0\\0&0&0&-1\end{pmatrix}},} 3154: 3070: 3020: 2783:
has either one (in odd dimensions) or zero (in even dimensions) real roots. The other roots are in complex conjugate pairs, exactly
767: 2383: 2789: 1655: 3408: 450: 3094: 2367:
Bivectors are related to rotors through the exponential map (which applied to bivectors generates rotors and rotations using
154: 1696:
Simple rotations can be identified in all dimensions, as rotations with just one plane of rotation. A simple rotation in
3403: 2166: 1771: 713:
describes a rotation in four dimensions in which every plane through the origin is a plane of rotation through an angle
285: 81: 2625: 3189: 2832: 2032:{\displaystyle \mathbf {x} ''=-\mathbf {nx} '\mathbf {n} =-\mathbf {n} (-\mathbf {mxm} )\mathbf {n} =\mathbf {nmxmn} } 730: 2552: 1857: 3413: 3393: 3037: 2056:. It can be checked using geometric algebra that this is a rotation, and that it rotates all vectors as expected. 3087: 1774:
in three dimensions, except rotations do not take place about this line but in multiple planes orthogonal to it.
92:
they are related to other algebraic and geometric properties, which can then be generalised to other dimensions.
3124: 2524:{\displaystyle {R_{\mathbf {B} }}^{2}=e^{\frac {\mathbf {B} }{2}}e^{\frac {\mathbf {B} }{2}}=e^{\mathbf {B} },} 1800: 3332: 3327: 3307: 950: 918:{\displaystyle {\begin{pmatrix}\cos \theta &-\sin \theta \\\sin \theta &\cos \theta \end{pmatrix}}.} 962:
representation of a rotation. The plane of rotation is the plane orthogonal to this axis, so the axis is a
3317: 3312: 3292: 2368: 1167: 556:
to each other, with only the origin in common. This is a stronger condition than to say the planes are at
421: 35: 28: 3322: 3302: 3297: 726: 567:
In more than three dimensions planes of rotation are not always unique. For example the negative of the
2046:
dimensions, through twice the angle between the subspaces, which is also the angle between the vectors
2759:
which are parallel to the two planes of rotation and have magnitudes equal to the angles of rotation.
2435:
This is a simple rotation if the bivector is simple, a more general rotation otherwise. When squared,
3062: 2860: 2361: 742: 572: 254:
is the angle between the vectors; hence the requirement that the vectors be nonzero and nonparallel.
118: 3199: 3194: 2357: 2066: 1133: 1129: 1113: 126: 64:
Mathematically such planes can be described in a number of ways. They can be described in terms of
3373: 3214: 3169: 2763:
geometric algebra is a useful tool for studying planes of rotation using algebra like the above.
1190:-plane: points in that plane and only in that plane are unchanged. The plane of rotation is the 758: 42:, where they can be used to break down the rotations into simpler parts. This can be done using 3209: 3066: 3041: 3016: 2677:
Examples include the two rotations in four dimensions given above. The simple rotation in the
2337: 1903: 1145: 489:
is the dimension. The maximum number of planes up to eight dimensions is shown in this table:
430: 202: 77: 69: 43: 39: 745:
fixed. It is specified completely by the signed angle of rotation, in the range for example −
3139: 2780: 2540:
is simple then this is the same rotation as is generated by two reflections, as the product
2345: 2341: 1106: 561: 437: 198: 113: 65: 1389:(if either angle is zero the rotation is simple). Points in the first plane rotate through 3184: 3129: 2850: 2845: 2352:
is associated with a plane. This makes them a good fit for describing planes of rotation.
836: 734: 568: 441: 133: 85: 58: 2595:
from which it follows that the bivector associated with the plane of rotation containing
2325:
is odd, by choosing pairs of reflections given by two vectors in each plane of rotation.
3266: 3251: 3002: 963: 408:
ranges over the whole plane, so this can be taken as another definition of the plane.
3387: 3256: 738: 206: 54: 2546:
gives a rotation through twice the angle between the vectors. These can be equated,
741:. Any rotation therefore is of the whole plane, i.e. of the space, keeping only the 3276: 3241: 3134: 1097: 3056: 3031: 3006: 3361: 3144: 2855: 2281: 1831: 557: 122: 2831:
of the matrix, which can be calculated using algebraic techniques. In addition
1618:
A special case of the double rotation is when the angles are equal, that is if
34:
The main use for planes of rotation is in describing more complex rotations in
3356: 3236: 2828: 2772: 2150:{\displaystyle (\mathbf {mn} )(\mathbf {nm} )=\mathbf {mnnm} =\mathbf {mm} =1} 1121: 1117: 1102: 969:
One example is shown in the diagram, where the rotation takes place about the
959: 553: 425: 106: 3337: 3246: 3159: 3110: 1611: 1137: 89: 1791: 933: 3261: 3224: 3149: 2349: 2333: 1141: 729:
there is only one plane of rotation, the plane of the space itself. In a
73: 47: 20: 3271: 1125: 1606: 16:
Geometric object used to describe rotation in any number of dimensions
3058:
Applications of geometric algebra in computer science and engineering
3012: 1845:-dimensional space is given by the unit vector perpendicular to it, 273:, then the condition that a point lies on the plane associated with 1700:
dimensions takes place about (that is at a fixed distance from) an
376:{\displaystyle \mathbf {c} =\lambda \mathbf {a} +\mu \mathbf {b} ,} 3228: 1795:
Two different reflections in two dimensions generating a rotation.
1790: 1630: 1605: 1374: 1180: 1096: 932: 937:
A three-dimensional rotation, with an axis of rotation along the
552:
When a rotation has multiple planes of rotation they are always
3083: 1136:
Hemispheres. Other examples include mechanical devices like a
822:{\displaystyle e^{i\theta }=\cos {\theta }+i\sin {\theta },\,} 2425:{\displaystyle R_{\mathbf {B} }=e^{\frac {\mathbf {B} }{2}}.} 1645:
As already noted the maximum number of planes of rotation in
3079: 2827:
such pairs. These correspond to the planes of rotation, the
2771:
The planes of rotations for a particular rotation using the
2268:
or a half-turn. The sense of the rotation is to rotate from
1708:-dimensional subspace orthogonal to the plane of rotation. 2817:{\displaystyle \left\lfloor {\frac {n}{2}}\right\rfloor ,} 2534:
it gives a rotor that rotates through twice the angle. If
1683:{\displaystyle \left\lfloor {\frac {n}{2}}\right\rfloor ,} 1194:-plane, points in this plane are rotated through an angle 1822:
dimensions is specified by a vector perpendicular to the
475:{\displaystyle \left\lfloor {\frac {n}{2}}\right\rfloor } 832:
while the rotation in a Cartesian plane is given by the
1101:
The Earth showing its axis and plane of rotation, both
219:
is the bivector associated with the plane specified by
1436: 1229: 996: 854: 590: 183:{\displaystyle \mathbf {a} \wedge \mathbf {b} \neq 0,} 2792: 2628: 2555: 2444: 2386: 2169: 2084: 1938: 1860: 1658: 1430: 1223: 990: 848: 770: 584: 453: 342: 288: 157: 27:
is an abstract object used to describe or visualize
3349: 3285: 3223: 3177: 3117: 1397:. All other points rotate through an angle between 1124:and the plane of rotation is the plane through the 954:identity matrix, in which no rotation takes place. 493: 2816: 2662: 2584: 2523: 2424: 2207:{\displaystyle \mathbf {x} ''=R\mathbf {x} R^{-1}} 2206: 2149: 2031: 1891: 1682: 1590: 1393:, while points in the second plane rotate through 1353: 1086: 917: 821: 702: 474: 375: 311:{\displaystyle \mathbf {x} \wedge \mathbf {B} =0.} 310: 182: 2663:{\displaystyle \mathbf {B} =\log(\mathbf {mn} ).} 3055:Dorst, Leo; Doran, Chris; Lasenby, Joan (2002). 1902:where the product is the geometric product from 1179:A rotation with only one plane of rotation is a 444:) has at least one plane of rotation, and up to 2585:{\displaystyle \mathbf {mn} =e^{\mathbf {B} },} 1923:-dimensional space, described by a unit vector 1892:{\displaystyle \mathbf {x} '=-\mathbf {mxm} \,} 1116:. The axis of rotation is the line joining the 46:, with the planes of rotations associated with 2886: 2884: 2882: 2880: 2230:The plane of rotation is the plane containing 1799:Every simple rotation can be generated by two 757:the rotation in the complex plane is given by 3095: 1148:in mass usually along the plane of rotation. 8: 2697:, a simple bivector. The double rotation by 1186:For example the following matrix fixes the 1105:relative to the plane and perpendicular of 209:can be used). More precisely, the quantity 3102: 3088: 3080: 2866:Rotations in 4-dimensional Euclidean space 1834:can be used to simplify the calculations. 1162:Rotations in 4-dimensional Euclidean space 2797: 2791: 2646: 2629: 2627: 2572: 2571: 2556: 2554: 2511: 2510: 2492: 2490: 2475: 2473: 2460: 2452: 2451: 2446: 2443: 2408: 2406: 2392: 2391: 2385: 2364:, which can be used to rotate an object. 2290:is the inverse rotation, with sense from 2195: 2186: 2171: 2168: 2133: 2116: 2102: 2088: 2083: 2012: 2004: 1990: 1979: 1968: 1956: 1940: 1937: 1888: 1877: 1862: 1859: 1663: 1657: 1431: 1429: 1224: 1222: 991: 989: 849: 847: 818: 810: 793: 775: 769: 585: 583: 458: 452: 365: 354: 343: 341: 297: 289: 287: 166: 158: 156: 2989:Dorst, Doran, Lasenby (2002) pp. 145–154 53:Planes of rotation are not used much in 3008:New Foundations for Classical Mechanics 2876: 2980:Dorst, Doran, Lasenby (2002) pp. 79–89 2836:particular geometric interpretations. 1202:-plane, that is it rotates around the 1198:. A general point rotates only in the 2775:. Given a general rotation matrix in 2264:the angle between the vectors, up to 941:-axis and a plane of rotation in the 7: 2371:). In particular given any bivector 973:-axis. The plane of rotation is the 1929:perpendicular to it, the result is 1915:is reflected in another, distinct, 333:, and so by any vector of the form 2735:, the sum of two simple bivectors 1803:. Reflections can be specified in 981:(about the axis or in the plane): 14: 3168: 2650: 2647: 2630: 2573: 2560: 2557: 2512: 2493: 2476: 2453: 2409: 2393: 2377:the rotor associated with it is 2187: 2172: 2137: 2134: 2126: 2123: 2120: 2117: 2106: 2103: 2092: 2089: 2025: 2022: 2019: 2016: 2013: 2005: 1997: 1994: 1991: 1980: 1969: 1960: 1957: 1941: 1884: 1881: 1878: 1863: 366: 355: 344: 298: 290: 167: 159: 2280:: the geometric product is not 2160:So the rotation can be written 2654: 2643: 2110: 2099: 2096: 2085: 2001: 1984: 1421:-plane is given by the matrix 733:it is the Cartesian plane, in 436:Every rotation except for the 72:. They can be associated with 1: 3033:Clifford algebras and spinors 2310:reflections if the dimension 2042:This is a simple rotation in 402:range over all real numbers, 197:is the exterior product from 3399:Rotation in three dimensions 1206:-plane by changing only its 82:eigenvalues and eigenvectors 2890:Lounesto (2001) pp. 222–223 2767:Eigenvalues and eigenplanes 1614:with an isoclinic rotation. 731:Cartesian coordinate system 121:, that is they contain the 3430: 3038:Cambridge University Press 2971:Hestenes (1999) p. 278–280 2944:Hestenes (1999) pp 280–284 2260:. The rotation is through 1159: 485:planes of rotation, where 440:rotation (with matrix the 104: 80:. They are related to the 3370: 3166: 3030:Lounesto, Pertti (2001). 2953:Lounesto (2001) pp. 83–89 205:(in three dimensions the 2962:Lounesto (2001) p. 57–58 2935:Lounesto (2001) pp.27–28 1807:dimensions by giving an 571:in four dimensions (the 2781:characteristic equation 1837:So the reflection in a 1778:Mathematical properties 1712:an isoclinic rotation. 1112:Another example is the 951:three-dimensional space 117:are planes through the 3409:Orientation (geometry) 2917:Lounesto (2001) p. 222 2818: 2664: 2586: 2525: 2426: 2208: 2151: 2033: 1893: 1796: 1684: 1615: 1592: 1355: 1168:four-dimensional space 1166:A general rotation in 1109: 1088: 946: 919: 823: 704: 476: 377: 312: 184: 111:For this article, all 36:four-dimensional space 2908:Hestenes (1999) p. 48 2899:Lounesto (2001) p. 38 2819: 2713:-planes has bivector 2665: 2587: 2526: 2427: 2209: 2152: 2034: 1894: 1794: 1685: 1609: 1593: 1356: 1100: 1089: 936: 920: 824: 753:. So if the angle is 727:two-dimensional space 705: 477: 378: 313: 185: 132:is a two-dimensional 3286:Dimensions by number 2926:Lounesto (2001) p.87 2861:Rotation group SO(3) 2790: 2626: 2553: 2442: 2384: 2336:are quantities from 2167: 2082: 1936: 1858: 1715:In even dimensions ( 1656: 1629:. This is called an 1428: 1221: 988: 846: 768: 582: 562:line of intersection 451: 340: 286: 231:, and has magnitude 155: 88:. And in particular 3404:Rotational symmetry 2681:-plane by an angle 2369:De Moivre's formula 1602:Isoclinic rotations 424:is a plane that is 3215:Degrees of freedom 3118:Dimensional spaces 2814: 2660: 2582: 2521: 2422: 2204: 2147: 2075:is its inverse as 2029: 1889: 1797: 1722:) there are up to 1680: 1631:isoclinic rotation 1616: 1610:A projection of a 1588: 1579: 1351: 1345: 1110: 1084: 1075: 947: 915: 906: 819: 700: 691: 472: 373: 308: 180: 130:-dimensional space 125:. Such a plane in 70:angles of rotation 3414:Planes (geometry) 3394:Geometric algebra 3381: 3380: 3190:Lebesgue covering 3155:Algebraic variety 3047:978-0-521-00551-7 2805: 2500: 2483: 2416: 2338:geometric algebra 1904:geometric algebra 1671: 1641:Higher dimensions 1146:rotational energy 573:central inversion 548: 547: 523:Number of planes 466: 431:angle of rotation 420:for a particular 418:plane of rotation 412:Plane of rotation 394:real numbers. As 203:geometric algebra 78:geometric algebra 44:geometric algebra 40:higher dimensions 25:plane of rotation 3421: 3178:Other dimensions 3172: 3140:Projective space 3104: 3097: 3090: 3081: 3076: 3051: 3026: 3011:(2nd ed.). 2990: 2987: 2981: 2978: 2972: 2969: 2963: 2960: 2954: 2951: 2945: 2942: 2936: 2933: 2927: 2924: 2918: 2915: 2909: 2906: 2900: 2897: 2891: 2888: 2823: 2821: 2820: 2815: 2810: 2806: 2798: 2778: 2758: 2746: 2734: 2712: 2708: 2704: 2700: 2696: 2684: 2680: 2669: 2667: 2666: 2661: 2653: 2633: 2618: 2612: 2606: 2600: 2591: 2589: 2588: 2583: 2578: 2577: 2576: 2563: 2545: 2539: 2530: 2528: 2527: 2522: 2517: 2516: 2515: 2502: 2501: 2496: 2491: 2485: 2484: 2479: 2474: 2465: 2464: 2459: 2458: 2457: 2456: 2431: 2429: 2428: 2423: 2418: 2417: 2412: 2407: 2398: 2397: 2396: 2376: 2346:exterior algebra 2342:clifford algebra 2324: 2320: 2313: 2309: 2301: 2295: 2289: 2279: 2273: 2267: 2259: 2257: 2256: 2253: 2250: 2249: 2241: 2235: 2226: 2213: 2211: 2210: 2205: 2203: 2202: 2190: 2179: 2175: 2156: 2154: 2153: 2148: 2140: 2129: 2109: 2095: 2074: 2064: 2055: 2045: 2038: 2036: 2035: 2030: 2028: 2008: 2000: 1983: 1972: 1967: 1963: 1948: 1944: 1928: 1922: 1914: 1898: 1896: 1895: 1890: 1887: 1870: 1866: 1850: 1844: 1829: 1821: 1818:A reflection in 1814: 1806: 1772:axis of rotation 1769: 1768: 1766: 1765: 1762: 1759: 1748: 1741: 1740: 1738: 1737: 1734: 1731: 1721: 1707: 1699: 1689: 1687: 1686: 1681: 1676: 1672: 1664: 1648: 1636: 1628: 1597: 1595: 1594: 1589: 1584: 1583: 1420: 1416: 1412: 1408: 1404: 1400: 1396: 1392: 1388: 1384: 1369:Double rotations 1360: 1358: 1357: 1352: 1350: 1349: 1213: 1209: 1205: 1201: 1197: 1193: 1189: 1175:Simple rotations 1114:Earth's rotation 1093: 1091: 1090: 1085: 1080: 1079: 980: 976: 972: 944: 940: 929:Three dimensions 924: 922: 921: 916: 911: 910: 835: 828: 826: 825: 820: 814: 797: 783: 782: 756: 752: 748: 716: 709: 707: 706: 701: 696: 695: 494: 488: 481: 479: 478: 473: 471: 467: 459: 407: 401: 397: 393: 389: 382: 380: 379: 374: 369: 358: 347: 332: 326: 317: 315: 314: 309: 301: 293: 278: 272: 266: 257:If the bivector 253: 249: 244: 238: 230: 224: 218: 199:exterior algebra 196: 189: 187: 186: 181: 170: 162: 147: 141: 129: 59:three dimensions 50:in the algebra. 48:simple bivectors 3429: 3428: 3424: 3423: 3422: 3420: 3419: 3418: 3384: 3383: 3382: 3377: 3366: 3345: 3281: 3219: 3173: 3164: 3130:Euclidean space 3113: 3108: 3073: 3054: 3048: 3029: 3023: 3003:Hestenes, David 3001: 2998: 2993: 2988: 2984: 2979: 2975: 2970: 2966: 2961: 2957: 2952: 2948: 2943: 2939: 2934: 2930: 2925: 2921: 2916: 2912: 2907: 2903: 2898: 2894: 2889: 2878: 2874: 2851:Givens rotation 2846:Charts on SO(3) 2842: 2793: 2788: 2787: 2779:dimensions its 2776: 2769: 2754: 2748: 2742: 2736: 2730: 2720: 2714: 2710: 2706: 2702: 2698: 2692: 2686: 2682: 2678: 2624: 2623: 2614: 2608: 2602: 2596: 2567: 2551: 2550: 2541: 2535: 2506: 2486: 2469: 2447: 2445: 2440: 2439: 2402: 2387: 2382: 2381: 2372: 2362:exponential map 2350:simple bivector 2331: 2322: 2315: 2311: 2307: 2297: 2291: 2285: 2284:so the product 2275: 2269: 2265: 2254: 2251: 2247: 2246: 2245: 2243: 2237: 2231: 2218: 2191: 2170: 2165: 2164: 2080: 2079: 2070: 2060: 2051: 2043: 1955: 1939: 1934: 1933: 1924: 1916: 1910: 1861: 1856: 1855: 1846: 1838: 1823: 1819: 1808: 1804: 1789: 1780: 1763: 1760: 1754: 1753: 1751: 1750: 1743: 1735: 1732: 1727: 1726: 1724: 1723: 1716: 1701: 1697: 1659: 1654: 1653: 1646: 1643: 1634: 1619: 1604: 1578: 1577: 1566: 1555: 1550: 1544: 1543: 1529: 1518: 1513: 1507: 1506: 1501: 1496: 1485: 1473: 1472: 1467: 1462: 1448: 1432: 1426: 1425: 1418: 1414: 1410: 1406: 1402: 1398: 1394: 1390: 1386: 1382: 1375:double rotation 1371: 1344: 1343: 1332: 1321: 1316: 1310: 1309: 1295: 1284: 1279: 1273: 1272: 1267: 1262: 1257: 1251: 1250: 1245: 1240: 1235: 1225: 1219: 1218: 1211: 1207: 1203: 1199: 1195: 1191: 1187: 1181:simple rotation 1177: 1164: 1158: 1156:Four dimensions 1074: 1073: 1068: 1063: 1057: 1056: 1051: 1040: 1028: 1027: 1022: 1008: 992: 986: 985: 978: 974: 970: 942: 938: 931: 905: 904: 893: 881: 880: 866: 850: 844: 843: 837:rotation matrix 833: 771: 766: 765: 759:Euler's formula 754: 750: 746: 735:complex numbers 723: 714: 690: 689: 681: 676: 671: 665: 664: 659: 651: 646: 640: 639: 634: 629: 621: 615: 614: 609: 604: 599: 586: 580: 579: 569:identity matrix 486: 454: 449: 448: 442:identity matrix 433:for the plane. 414: 403: 399: 395: 391: 387: 338: 337: 328: 322: 284: 283: 274: 268: 258: 251: 240: 234: 232: 226: 220: 210: 194: 153: 152: 143: 137: 134:linear subspace 127: 109: 103: 98: 86:rotation matrix 17: 12: 11: 5: 3427: 3425: 3417: 3416: 3411: 3406: 3401: 3396: 3386: 3385: 3379: 3378: 3371: 3368: 3367: 3365: 3364: 3359: 3353: 3351: 3347: 3346: 3344: 3343: 3335: 3330: 3325: 3320: 3315: 3310: 3305: 3300: 3295: 3289: 3287: 3283: 3282: 3280: 3279: 3274: 3269: 3267:Cross-polytope 3264: 3259: 3254: 3252:Hyperrectangle 3249: 3244: 3239: 3233: 3231: 3221: 3220: 3218: 3217: 3212: 3207: 3202: 3197: 3192: 3187: 3181: 3179: 3175: 3174: 3167: 3165: 3163: 3162: 3157: 3152: 3147: 3142: 3137: 3132: 3127: 3121: 3119: 3115: 3114: 3109: 3107: 3106: 3099: 3092: 3084: 3078: 3077: 3071: 3052: 3046: 3027: 3021: 2997: 2994: 2992: 2991: 2982: 2973: 2964: 2955: 2946: 2937: 2928: 2919: 2910: 2901: 2892: 2875: 2873: 2870: 2869: 2868: 2863: 2858: 2853: 2848: 2841: 2838: 2825: 2824: 2813: 2809: 2804: 2801: 2796: 2768: 2765: 2752: 2740: 2728: 2718: 2690: 2671: 2670: 2659: 2656: 2652: 2649: 2645: 2642: 2639: 2636: 2632: 2593: 2592: 2581: 2575: 2570: 2566: 2562: 2559: 2532: 2531: 2520: 2514: 2509: 2505: 2499: 2495: 2489: 2482: 2478: 2472: 2468: 2463: 2455: 2450: 2433: 2432: 2421: 2415: 2411: 2405: 2401: 2395: 2390: 2330: 2327: 2227:is the rotor. 2215: 2214: 2201: 2198: 2194: 2189: 2185: 2182: 2178: 2174: 2158: 2157: 2146: 2143: 2139: 2136: 2132: 2128: 2125: 2122: 2119: 2115: 2112: 2108: 2105: 2101: 2098: 2094: 2091: 2087: 2040: 2039: 2027: 2024: 2021: 2018: 2015: 2011: 2007: 2003: 1999: 1996: 1993: 1989: 1986: 1982: 1978: 1975: 1971: 1966: 1962: 1959: 1954: 1951: 1947: 1943: 1900: 1899: 1886: 1883: 1880: 1876: 1873: 1869: 1865: 1788: 1785: 1779: 1776: 1747:= 3, 5, 7, ... 1691: 1690: 1679: 1675: 1670: 1667: 1662: 1649:dimensions is 1642: 1639: 1603: 1600: 1599: 1598: 1587: 1582: 1576: 1573: 1570: 1567: 1565: 1562: 1559: 1556: 1554: 1551: 1549: 1546: 1545: 1542: 1539: 1536: 1533: 1530: 1528: 1525: 1522: 1519: 1517: 1514: 1512: 1509: 1508: 1505: 1502: 1500: 1497: 1495: 1492: 1489: 1486: 1484: 1481: 1478: 1475: 1474: 1471: 1468: 1466: 1463: 1461: 1458: 1455: 1452: 1449: 1447: 1444: 1441: 1438: 1437: 1435: 1370: 1367: 1362: 1361: 1348: 1342: 1339: 1336: 1333: 1331: 1328: 1325: 1322: 1320: 1317: 1315: 1312: 1311: 1308: 1305: 1302: 1299: 1296: 1294: 1291: 1288: 1285: 1283: 1280: 1278: 1275: 1274: 1271: 1268: 1266: 1263: 1261: 1258: 1256: 1253: 1252: 1249: 1246: 1244: 1241: 1239: 1236: 1234: 1231: 1230: 1228: 1176: 1173: 1160:Main article: 1157: 1154: 1095: 1094: 1083: 1078: 1072: 1069: 1067: 1064: 1062: 1059: 1058: 1055: 1052: 1050: 1047: 1044: 1041: 1039: 1036: 1033: 1030: 1029: 1026: 1023: 1021: 1018: 1015: 1012: 1009: 1007: 1004: 1001: 998: 997: 995: 964:surface normal 930: 927: 926: 925: 914: 909: 903: 900: 897: 894: 892: 889: 886: 883: 882: 879: 876: 873: 870: 867: 865: 862: 859: 856: 855: 853: 830: 829: 817: 813: 809: 806: 803: 800: 796: 792: 789: 786: 781: 778: 774: 722: 721:Two dimensions 719: 711: 710: 699: 694: 688: 685: 682: 680: 677: 675: 672: 670: 667: 666: 663: 660: 658: 655: 652: 650: 647: 645: 642: 641: 638: 635: 633: 630: 628: 625: 622: 620: 617: 616: 613: 610: 608: 605: 603: 600: 598: 595: 592: 591: 589: 550: 549: 546: 545: 542: 539: 536: 533: 530: 527: 524: 520: 519: 516: 513: 510: 507: 504: 501: 498: 483: 482: 470: 465: 462: 457: 413: 410: 384: 383: 372: 368: 364: 361: 357: 353: 350: 346: 319: 318: 307: 304: 300: 296: 292: 191: 190: 179: 176: 173: 169: 165: 161: 102: 99: 97: 94: 15: 13: 10: 9: 6: 4: 3: 2: 3426: 3415: 3412: 3410: 3407: 3405: 3402: 3400: 3397: 3395: 3392: 3391: 3389: 3376: 3375: 3369: 3363: 3360: 3358: 3355: 3354: 3352: 3348: 3342: 3340: 3336: 3334: 3331: 3329: 3326: 3324: 3321: 3319: 3316: 3314: 3311: 3309: 3306: 3304: 3301: 3299: 3296: 3294: 3291: 3290: 3288: 3284: 3278: 3275: 3273: 3270: 3268: 3265: 3263: 3260: 3258: 3257:Demihypercube 3255: 3253: 3250: 3248: 3245: 3243: 3240: 3238: 3235: 3234: 3232: 3230: 3226: 3222: 3216: 3213: 3211: 3208: 3206: 3203: 3201: 3198: 3196: 3193: 3191: 3188: 3186: 3183: 3182: 3180: 3176: 3171: 3161: 3158: 3156: 3153: 3151: 3148: 3146: 3143: 3141: 3138: 3136: 3133: 3131: 3128: 3126: 3123: 3122: 3120: 3116: 3112: 3105: 3100: 3098: 3093: 3091: 3086: 3085: 3082: 3074: 3072:0-8176-4267-6 3068: 3064: 3060: 3059: 3053: 3049: 3043: 3039: 3036:. Cambridge: 3035: 3034: 3028: 3024: 3022:0-7923-5302-1 3018: 3014: 3010: 3009: 3004: 3000: 2999: 2995: 2986: 2983: 2977: 2974: 2968: 2965: 2959: 2956: 2950: 2947: 2941: 2938: 2932: 2929: 2923: 2920: 2914: 2911: 2905: 2902: 2896: 2893: 2887: 2885: 2883: 2881: 2877: 2871: 2867: 2864: 2862: 2859: 2857: 2854: 2852: 2849: 2847: 2844: 2843: 2839: 2837: 2834: 2830: 2811: 2807: 2802: 2799: 2794: 2786: 2785: 2784: 2782: 2774: 2766: 2764: 2760: 2757: 2751: 2745: 2739: 2733: 2727: 2723: 2717: 2695: 2689: 2685:has bivector 2675: 2657: 2640: 2637: 2634: 2622: 2621: 2620: 2617: 2611: 2607:that rotates 2605: 2599: 2579: 2568: 2564: 2549: 2548: 2547: 2544: 2538: 2518: 2507: 2503: 2497: 2487: 2480: 2470: 2466: 2461: 2448: 2438: 2437: 2436: 2419: 2413: 2403: 2399: 2388: 2380: 2379: 2378: 2375: 2370: 2365: 2363: 2359: 2353: 2351: 2347: 2343: 2339: 2335: 2328: 2326: 2318: 2303: 2300: 2294: 2288: 2283: 2278: 2272: 2263: 2240: 2234: 2228: 2225: 2221: 2199: 2196: 2192: 2183: 2180: 2176: 2163: 2162: 2161: 2144: 2141: 2130: 2113: 2078: 2077: 2076: 2073: 2068: 2063: 2059:The quantity 2057: 2054: 2049: 2009: 1987: 1976: 1973: 1964: 1952: 1949: 1945: 1932: 1931: 1930: 1927: 1920: 1913: 1907: 1905: 1874: 1871: 1867: 1854: 1853: 1852: 1849: 1842: 1835: 1833: 1827: 1816: 1812: 1802: 1793: 1786: 1784: 1777: 1775: 1773: 1757: 1746: 1730: 1719: 1713: 1709: 1705: 1694: 1677: 1673: 1668: 1665: 1660: 1652: 1651: 1650: 1640: 1638: 1632: 1626: 1622: 1613: 1608: 1601: 1585: 1580: 1574: 1571: 1568: 1563: 1560: 1557: 1552: 1547: 1540: 1537: 1534: 1531: 1526: 1523: 1520: 1515: 1510: 1503: 1498: 1493: 1490: 1487: 1482: 1479: 1476: 1469: 1464: 1459: 1456: 1453: 1450: 1445: 1442: 1439: 1433: 1424: 1423: 1422: 1379: 1376: 1368: 1366: 1346: 1340: 1337: 1334: 1329: 1326: 1323: 1318: 1313: 1306: 1303: 1300: 1297: 1292: 1289: 1286: 1281: 1276: 1269: 1264: 1259: 1254: 1247: 1242: 1237: 1232: 1226: 1217: 1216: 1215: 1214:coordinates. 1184: 1182: 1174: 1172: 1169: 1163: 1155: 1153: 1149: 1147: 1143: 1139: 1135: 1131: 1127: 1123: 1119: 1115: 1108: 1107:Earth's orbit 1104: 1099: 1081: 1076: 1070: 1065: 1060: 1053: 1048: 1045: 1042: 1037: 1034: 1031: 1024: 1019: 1016: 1013: 1010: 1005: 1002: 999: 993: 984: 983: 982: 967: 965: 961: 955: 952: 935: 928: 912: 907: 901: 898: 895: 890: 887: 884: 877: 874: 871: 868: 863: 860: 857: 851: 842: 841: 840: 838: 815: 811: 807: 804: 801: 798: 794: 790: 787: 784: 779: 776: 772: 764: 763: 762: 760: 744: 740: 739:complex plane 736: 732: 728: 720: 718: 697: 692: 686: 683: 678: 673: 668: 661: 656: 653: 648: 643: 636: 631: 626: 623: 618: 611: 606: 601: 596: 593: 587: 578: 577: 576: 574: 570: 565: 563: 559: 555: 543: 540: 537: 534: 531: 528: 525: 522: 521: 517: 514: 511: 508: 505: 502: 499: 496: 495: 492: 491: 490: 468: 463: 460: 455: 447: 446: 445: 443: 439: 434: 432: 427: 423: 419: 411: 409: 406: 370: 362: 359: 351: 348: 336: 335: 334: 331: 325: 305: 302: 294: 282: 281: 280: 277: 271: 265: 261: 255: 248: 243: 239:| | 237: 229: 223: 217: 213: 208: 207:cross product 204: 200: 177: 174: 171: 163: 151: 150: 149: 146: 140: 135: 131: 124: 120: 116: 115: 108: 100: 95: 93: 91: 87: 83: 79: 75: 71: 67: 62: 60: 56: 51: 49: 45: 41: 37: 32: 30: 26: 22: 3372: 3338: 3277:Hyperpyramid 3242:Hypersurface 3135:Affine space 3125:Vector space 3057: 3032: 3007: 2985: 2976: 2967: 2958: 2949: 2940: 2931: 2922: 2913: 2904: 2895: 2826: 2770: 2761: 2755: 2749: 2743: 2737: 2731: 2725: 2721: 2715: 2693: 2687: 2676: 2672: 2615: 2609: 2603: 2597: 2594: 2542: 2536: 2533: 2434: 2373: 2366: 2360:through the 2354: 2332: 2316: 2304: 2298: 2292: 2286: 2276: 2270: 2261: 2238: 2232: 2229: 2223: 2219: 2216: 2159: 2071: 2061: 2058: 2052: 2047: 2041: 1925: 1918: 1911: 1908: 1901: 1847: 1840: 1836: 1832:unit vectors 1825: 1817: 1810: 1798: 1781: 1755: 1749:) there are 1744: 1728: 1720:= 2, 4, 6... 1717: 1714: 1710: 1703: 1695: 1692: 1644: 1624: 1620: 1617: 1380: 1372: 1363: 1185: 1178: 1165: 1150: 1144:which store 1128:between the 1111: 968: 956: 948: 831: 724: 712: 566: 558:right angles 551: 484: 435: 417: 415: 404: 385: 329: 323: 320: 275: 269: 263: 259: 256: 246: 241: 235: 227: 221: 215: 211: 192: 148:, such that 144: 138: 112: 110: 63: 52: 33: 24: 18: 3362:Codimension 3341:-dimensions 3262:Hypersphere 3145:Free module 2856:Quaternions 2829:eigenplanes 2773:eigenvalues 2709:-plane and 2282:commutative 1801:reflections 1787:Reflections 1413:-plane and 267:is written 245:| sin 123:zero vector 96:Definitions 31:in space. 3388:Categories 3357:Hyperspace 3237:Hyperplane 3063:Birkhäuser 2996:References 1122:South Pole 1118:North Pole 960:axis angle 737:it is the 554:orthogonal 497:Dimension 279:is simply 107:Hyperplane 105:See also: 90:dimensions 3247:Hypercube 3225:Polytopes 3205:Minkowski 3200:Hausdorff 3195:Inductive 3160:Spacetime 3111:Dimension 2833:arguments 2641:⁡ 2334:Bivectors 2329:Bivectors 2314:is even, 2197:− 1988:− 1977:− 1953:− 1875:− 1612:tesseract 1575:β 1572:⁡ 1564:β 1561:⁡ 1541:β 1538:⁡ 1532:− 1527:β 1524:⁡ 1494:α 1491:⁡ 1483:α 1480:⁡ 1460:α 1457:⁡ 1451:− 1446:α 1443:⁡ 1341:θ 1338:⁡ 1330:θ 1327:⁡ 1307:θ 1304:⁡ 1298:− 1293:θ 1290:⁡ 1138:gyroscope 1049:θ 1046:⁡ 1038:θ 1035:⁡ 1020:θ 1017:⁡ 1011:− 1006:θ 1003:⁡ 902:θ 899:⁡ 891:θ 888:⁡ 878:θ 875:⁡ 869:− 864:θ 861:⁡ 812:θ 808:⁡ 795:θ 791:⁡ 780:θ 684:− 654:− 624:− 594:− 363:μ 352:λ 295:∧ 172:≠ 164:∧ 74:bivectors 29:rotations 3374:Category 3350:See also 3150:Manifold 3005:(1999). 2840:See also 2808:⌋ 2795:⌊ 2344:and the 2274:towards 2177:″ 1965:′ 1946:″ 1868:′ 1851:, thus: 1674:⌋ 1661:⌊ 1142:flywheel 1134:Southern 1130:Northern 1103:inclined 469:⌋ 456:⌊ 438:identity 422:rotation 250:, where 21:geometry 3272:Simplex 3210:Fractal 2705:in the 2258:⁠ 2244:⁠ 1767:⁠ 1752:⁠ 1739:⁠ 1725:⁠ 1417:in the 1409:in the 1126:equator 3229:shapes 3069:  3044:  3019:  3013:Kluwer 2217:where 2069:, and 945:-plane 743:origin 426:mapped 233:| 193:where 119:origin 114:planes 66:planes 3333:Eight 3328:Seven 3308:Three 3185:Krull 2872:Notes 2358:rotor 2262:twice 2067:rotor 2065:is a 1373:In a 834:2 × 2 386:with 101:Plane 84:of a 76:from 3318:Five 3313:Four 3293:Zero 3227:and 3067:ISBN 3042:ISBN 3017:ISBN 2747:and 2701:and 2601:and 2236:and 2050:and 1921:− 1) 1843:− 1) 1828:− 1) 1813:− 1) 1706:− 2) 1401:and 1385:and 1210:and 1132:and 1120:and 398:and 390:and 327:and 225:and 142:and 68:and 57:and 38:and 23:, a 3323:Six 3303:Two 3298:One 2638:log 2619:is 2613:to 2321:if 2319:− 2 2296:to 1909:If 1758:− 1 1627:≠ 0 1569:cos 1558:sin 1535:sin 1521:cos 1488:cos 1477:sin 1454:sin 1440:cos 1335:cos 1324:sin 1301:sin 1287:cos 1140:or 1043:cos 1032:sin 1014:sin 1000:cos 949:In 896:cos 885:sin 872:sin 858:cos 805:sin 788:cos 749:to 725:In 575:), 201:or 55:two 19:In 3390:: 3065:. 3061:. 3040:. 3015:. 2879:^ 2753:34 2741:12 2729:34 2724:+ 2719:12 2711:zw 2707:xy 2691:34 2679:zw 2543:mn 2340:, 2302:. 2287:nm 2224:mn 2222:= 2072:nm 2062:mn 1912:x′ 1906:. 1623:= 1419:zw 1411:xy 1204:xy 1200:zw 1192:zw 1188:xy 975:xy 943:xy 839:: 761:: 564:. 544:4 518:8 416:A 306:0. 262:∧ 214:∧ 3339:n 3103:e 3096:t 3089:v 3075:. 3050:. 3025:. 2812:, 2803:2 2800:n 2777:n 2756:β 2750:e 2744:α 2738:e 2732:β 2726:e 2722:α 2716:e 2703:β 2699:α 2694:θ 2688:e 2683:θ 2658:. 2655:) 2651:n 2648:m 2644:( 2635:= 2631:B 2616:n 2610:m 2604:n 2598:m 2580:, 2574:B 2569:e 2565:= 2561:n 2558:m 2537:B 2519:, 2513:B 2508:e 2504:= 2498:2 2494:B 2488:e 2481:2 2477:B 2471:e 2467:= 2462:2 2454:B 2449:R 2420:. 2414:2 2410:B 2404:e 2400:= 2394:B 2389:R 2374:B 2323:n 2317:n 2312:n 2308:n 2299:m 2293:n 2277:n 2271:m 2266:π 2255:2 2252:/ 2248:π 2239:n 2233:m 2220:R 2200:1 2193:R 2188:x 2184:R 2181:= 2173:x 2145:1 2142:= 2138:m 2135:m 2131:= 2127:m 2124:n 2121:n 2118:m 2114:= 2111:) 2107:m 2104:n 2100:( 2097:) 2093:n 2090:m 2086:( 2053:n 2048:m 2044:n 2026:n 2023:m 2020:x 2017:m 2014:n 2010:= 2006:n 2002:) 1998:m 1995:x 1992:m 1985:( 1981:n 1974:= 1970:n 1961:x 1958:n 1950:= 1942:x 1926:n 1919:n 1917:( 1885:m 1882:x 1879:m 1872:= 1864:x 1848:m 1841:n 1839:( 1826:n 1824:( 1820:n 1811:n 1809:( 1805:n 1764:2 1761:/ 1756:n 1745:n 1736:2 1733:/ 1729:n 1718:n 1704:n 1702:( 1698:n 1678:, 1669:2 1666:n 1647:n 1635:α 1625:β 1621:α 1586:. 1581:) 1553:0 1548:0 1516:0 1511:0 1504:0 1499:0 1470:0 1465:0 1434:( 1415:β 1407:α 1403:β 1399:α 1395:β 1391:α 1387:β 1383:α 1347:) 1319:0 1314:0 1282:0 1277:0 1270:0 1265:0 1260:1 1255:0 1248:0 1243:0 1238:0 1233:1 1227:( 1212:w 1208:z 1196:θ 1082:. 1077:) 1071:1 1066:0 1061:0 1054:0 1025:0 994:( 979:θ 971:z 939:z 913:. 908:) 852:( 816:, 802:i 799:+ 785:= 777:i 773:e 755:θ 751:π 747:π 715:π 698:, 693:) 687:1 679:0 674:0 669:0 662:0 657:1 649:0 644:0 637:0 632:0 627:1 619:0 612:0 607:0 602:0 597:1 588:( 541:3 538:3 535:2 532:2 529:1 526:1 515:7 512:6 509:5 506:4 503:3 500:2 487:n 464:2 461:n 405:c 400:μ 396:λ 392:μ 388:λ 371:, 367:b 360:+ 356:a 349:= 345:c 330:b 324:a 303:= 299:B 291:x 276:B 270:B 264:b 260:a 252:φ 247:φ 242:b 236:a 228:b 222:a 216:b 212:a 195:∧ 178:, 175:0 168:b 160:a 145:b 139:a 128:n

Index

geometry
rotations
four-dimensional space
higher dimensions
geometric algebra
simple bivectors
two
three dimensions
planes
angles of rotation
bivectors
geometric algebra
eigenvalues and eigenvectors
rotation matrix
dimensions
Hyperplane
planes
origin
zero vector
n-dimensional space
linear subspace
exterior algebra
geometric algebra
cross product
rotation
mapped
angle of rotation
identity
identity matrix
orthogonal

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.