Knowledge

Accretion (astrophysics)

Source 📝

485:, forming micrometer-sized particles. During this stage, accumulation mechanisms are largely non-gravitational in nature. However, planetesimal formation in the centimeter-to-meter range is not well understood, and no convincing explanation is offered as to why such grains would accumulate rather than simply rebound. In particular, it is still not clear how these objects grow to become 0.1–1 km (0.06–0.6 mi) sized planetesimals; this problem is known as the "meter size barrier": As dust particles grow by coagulation, they acquire increasingly large relative velocities with respect to other particles in their vicinity, as well as a systematic inward drift velocity, that leads to destructive collisions, and thereby limit the growth of the aggregates to some maximum size. Ward (1996) suggests that when slow moving grains collide, the very low, yet non-zero, gravity of colliding grains impedes their escape. It is also thought that grain fragmentation plays an important role replenishing small grains and keeping the disk thick, but also in maintaining a relatively high abundance of solids of all sizes. 423: 4334: 493:. In a streaming instability the interaction between the solids and the gas in the protoplanetary disk results in the growth of local concentrations, as new particles accumulate in the wake of small concentrations, causing them to grow into massive filaments. Alternatively, if the grains that form due to the agglomeration of dust are highly porous their growth may continue until they become large enough to collapse due to their own gravity. The low density of these objects allows them to remain strongly coupled with the gas, thereby avoiding high velocity collisions which could result in their erosion or fragmentation. 299: 630: 208: 504:) over roughly 0.1–1 million years. Finally, the planetary embryos collide to form planets over 10–100 million years. The planetesimals are massive enough that mutual gravitational interactions are significant enough to be taken into account when computing their evolution. Growth is aided by orbital decay of smaller bodies due to gas drag, which prevents them from being stranded between orbits of the embryos. Further collisions and accumulation lead to terrestrial planets or the core of giant planets. 346: 31: 672:
of origin for periodic comets. The classic Oort cloud theory states that the Oort cloud, a sphere measuring about 50,000 AU (0.24 pc) in radius, formed at the same time as the solar nebula and occasionally releases comets into the inner Solar System as a giant planet or star passes nearby and causes gravitational disruptions. Examples of such comet clouds may already have been seen in the
557: 4370: 4394: 4346: 4382: 4358: 582:, which are millimeter-sized spherules that form as molten (or partially molten) droplets in space before being accreted to their parent asteroids. In the inner Solar System, chondrules appear to have been crucial for initiating accretion. The tiny mass of asteroids may be partly due to inefficient chondrule formation beyond 2 3118: 643:, or their precursors, formed in the outer Solar System, possibly millions of years before planet formation. How and when comets formed is debated, with distinct implications for Solar System formation, dynamics, and geology. Three-dimensional computer simulations indicate the major structural features observed on 671:
proper), and a population whose perihelia are close enough that Neptune can still disturb them as it travels around the Sun (the scattered disk). Because the scattered disk is dynamically active and the Kuiper belt relatively dynamically stable, the scattered disk is now seen as the most likely point
357:
At the next stage, the envelope completely disappears, having been gathered up by the disk, and the protostar becomes a classical T Tauri star. The latter have accretion disks and continue to accrete hot gas, which manifests itself by strong emission lines in their spectrum. The former do not possess
512:
is aided by the gas drag felt by objects as they accelerate toward a massive body. Gas drag slows the pebbles below the escape velocity of the massive body causing them to spiral toward and to be accreted by it. Pebble accretion may accelerate the formation of planets by a factor of 1000 compared to
488:
A number of mechanisms have been proposed for crossing the 'meter-sized' barrier. Local concentrations of pebbles may form, which then gravitationally collapse into planetesimals the size of large asteroids. These concentrations can occur passively due to the structure of the gas disk, for example,
620:
generally assume micrometer-sized dust grains sticking together and settling to the midplane of the nebula to form a dense layer of dust, which, because of gravitational forces, was converted into a disk of kilometer-sized planetesimals. But, several arguments suggest that asteroids may not have
295:(non-contracting) core containing a small fraction of the mass of the original nebula. This core forms the seed of what will become a star. As the collapse continues, conservation of angular momentum dictates that the rotation of the infalling envelope accelerates, which eventually forms a disk. 690:
determined in 2015 that when Sun's heat penetrates the surface, it triggers evaporation (sublimation) of buried ice. While some of the resulting water vapour may escape from the nucleus, 80% of it recondenses in layers beneath the surface. This observation implies that the thin ice-rich layers
691:
exposed close to the surface may be a consequence of cometary activity and evolution, and that global layering does not necessarily occur early in the comet's formation history. While most scientists thought that all the evidence indicated that the structure of nuclei of comets is processed
358:
accretion disks. Classical T Tauri stars evolve into weakly lined T Tauri stars. This happens after about 1 million years. The mass of the disk around a classical T Tauri star is about 1–3% of the stellar mass, and it is accreted at a rate of 10 to 10 
263:
and fragmentation. These fragments then form small, dense cores, which in turn collapse into stars. The cores range in mass from a fraction to several times that of the Sun and are called protostellar (protosolar) nebulae. They possess diameters of 2,000–20,000
489:
between eddies, at pressure bumps, at the edge of a gap created by a giant planet, or at the boundaries of turbulent regions of the disk. Or, the particles may take an active role in their concentration via a feedback mechanism referred to as a
1438:
Silverberg, Steven M.; Wisniewski, John P.; Kuchner, Marc J.; Lawson, Kellen D.; Bans, Alissa S.; Debes, John H.; Biggs, Joseph R.; Bosch, Milton K. D.; Doll, Katharina; Luca, Hugo A. Durantini; Enachioaie, Alexandru (14 January 2020).
396:, where the accretion continues to persist for much longer periods, sometimes lasting for more than 40 million years). The disk eventually disappears due to accretion onto the central star, planet formation, ejection by jets, and 4111: 4106: 4101: 342:, evolved protostars, or young stellar objects. By this time, the forming star has already accreted much of its mass; the total mass of the disk and remaining envelope does not exceed 10–20% of the mass of the central YSO. 4096: 507:
If the planetesimals formed via the gravitational collapse of local concentrations of pebbles, their growth into planetary embryos and the cores of giant planets is dominated by the further accretions of pebbles.
513:
the accretion of planetesimals, allowing giant planets to form before the dissipation of the gas disk. However, core growth via pebble accretion appears incompatible with the final masses and compositions of
2869:
Marschall, R.; Morbidelli, A.; Bottke, W. F.; Vokrouhlicky, D.; Nesvorny, D.; Deienno, R. (May 2023). "Comets are Fragments: What the Kuiper Belt Size Distribution Tells Us About its Collisional Evolution".
586:, or less-efficient delivery of chondrules from near the protostar. Also, impacts controlled the formation and destruction of asteroids, and are thought to be a major factor in their geological evolution. 1757:
Johansen, A.; Blum, J.; Tanaka, H.; Ormel, C.; Bizzarro, M.; Rickman, H. (2014). "The Multifaceted Planetesimal Formation Process". In Beuther, H.; Klessen, R. S.; Dullemond, C. P.; Henning, T. (eds.).
666:
migrated outward into the proto-Kuiper belt, which at the time was much closer to the Sun, and left in its wake a population of dynamically stable objects that could never be affected by its orbit (the
1040:
Montmerle, Thierry; Augereau, Jean-Charles; Chaussidon, Marc; Counelle, Mathieu; Marty, Bernard; et al. (June 2006). "Solar System Formation and Early Evolution: the First 100 Million Years".
699:
mission confirmed the idea that comets are "rubble piles" of disparate material. Comets appear to have formed as ~100-km bodies, then overwhelmingly ground/recontacted into their present states.
4091: 578:
origin and evolution; however, the mechanism of asteroid accretion and growth is not well understood. Evidence suggests the main growth of asteroids can result from gas-assisted accretion of
392:. The jets are byproducts of accretion: they carry away excessive angular momentum. The classical T Tauri stage lasts about 10 million years (there are only a few examples of so-called 4253: 4118: 1498:
Adams, Fred C.; Hollenbach, David; Laughlin, Gregory; Gorti, Uma (August 2004). "Photoevaporation of circumstellar disks due to external far-ultraviolet radiation in stellar aggregates".
2697: 1251:
Mohanty, Subhanjoy; Jayawardhana, Ray; Basri, Gibor (June 2005). "The T Tauri Phase down to Nearly Planetary Masses: Echelle Spectra of 82 Very Low Mass Stars and Brown Dwarfs".
131:. He calculated, in detail, the different stages of terrestrial planet formation. Since then, the model has been further developed using intensive numerical simulations to study 338:. This birth of a new star occurs approximately 100,000 years after the collapse begins. Objects at this stage are known as Class I protostars, which are also called young 2723:
Filacchione, G.; de Sanctis, M. C.; Capaccioni, F.; Raponi, A.; Tosi, F.; et al. (13 January 2016). "Exposed water ice on the nucleus of comet 67P/Churyumov–Gerasimenko".
4145: 2801:
Rickman, H; Marchi, S; AHearn, M; Barbieri, C; El-Maarry, M; Güttler, C; Ip, W (2015). "Comet 67P/Churyumov-Gerasimenko: Constraints on its origin from OSIRIS observations".
422: 3930: 3925: 4086: 3549: 773: 733: 442:. The more massive planetesimals accrete some smaller ones, while others shatter in collisions. Accretion disks are common around smaller stars, stellar remnants in a 1817:
Johansen, A.; Jacquet, E.; Cuzzi, J. N.; Morbidelli, A.; Gounelle, M. (2015). "New Paradigms For Asteroid Formation". In Michel, P.; DeMeo, F.; Bottke, W. (eds.).
3853: 911:"Birth of the planets: The Earth and its fellow planets may be survivors from a time when planets ricocheted around the Sun like ball bearings on a pinball table" 2915: 1189:
Motte, F.; Andre, P.; Neri, R. (August 1998). "The initial conditions of star formation in the ρ Ophiuchi main cloud: wide-field millimeter continuum mapping".
3824: 3407: 798: 4140: 3092: 4123: 3960: 2029:
Helled, Ravit; Bodenheimer, Peter (July 2014). "The Formation of Uranus and Neptune: Challenges and Implications for Intermediate-mass Exoplanets".
2508:
Nuth, Joseph A.; Hill, Hugh G. M.; Kletetschka, Gunther (20 July 2000). "Determining the ages of comets from the fraction of crystalline dust".
4426: 4293: 365:
per year. A pair of bipolar jets is usually present as well. The accretion explains all peculiar properties of classical T Tauri stars: strong
4333: 276:
of roughly 10,000 to 100,000/cm (160,000 to 1,600,000/cu in). Compare it with the particle number density of the air at the sea level—2.8
4268: 4220: 4215: 4210: 4205: 4200: 4195: 4190: 4185: 4180: 4175: 4170: 4165: 4160: 4155: 4150: 3841: 2647: 2606: 2350: 2310: 2189: 2160: 1852: 1793: 2701: 3950: 3940: 1876:
Weidenschilling, S. J.; Spaute, D.; Davis, D. R.; Marzari, F.; Ohtsuki, K. (August 1997). "Accretional Evolution of a Planetesimal Swarm".
3986: 3920: 3034: 525:, the formation time of a giant planet via pebble accretion is comparable to the formation times resulting from planetesimal accretion. 2622:
Greenberg, Richard (1985). "The Origin of Comets among the Accreting Outer Planets". In Carusi, Andrea; Valsecchi, Giovanni B. (eds.).
287:
The initial collapse of a solar-mass protostellar nebula takes around 100,000 years. Every nebula begins with a certain amount of
4278: 4128: 3935: 3812: 4416: 4311: 3945: 2908: 2785: 2561: 988: 647:
can be explained by pairwise low velocity accretion of weak cometesimals. The currently favored formation mechanism is that of the
605:; others were aqueously altered. After the asteroids had cooled, they were eroded by impacts for 4.5 billion years, or disrupted. 4006: 3996: 3484: 4081: 4032: 3955: 3860: 3836: 3807: 3794: 3097: 651:, which states that comets are probably a remnant of the original planetesimal "building blocks" from which the planets grew. 477:, several stages can be considered. First, when gas and dust grains collide, they agglomerate by microphysical processes like 4037: 3674: 1399:"Emission-line diagnostics of T Tauri magnetospheric accretion. II. Improved model tests and insights into accretion physics" 34: 2133:
D'Angelo, Gennaro; Durisen, Richard H.; Lissauer, Jack J. (December 2010). "Giant Planet Formation". In Seager, Sara (ed.).
687: 4263: 3910: 3865: 291:. Gas in the central part of the nebula, with relatively low angular momentum, undergoes fast compression and forms a hot 4421: 3900: 2901: 389: 388:
and jets. The emission lines actually form as the accreted gas hits the "surface" of the star, which happens around its
298: 4243: 4042: 105: 608:
For accretion to occur, impact velocities must be less than about twice the escape velocity, which is about 140 
910: 408:, which, over hundreds of millions of years, evolves into an ordinary Sun-like star, dependent on its initial mass. 4324: 4076: 4071: 4061: 3819: 3479: 1016:. Massive Galaxies Over Cosmic Time 3. 8–10 November 2010. Tucson, Arizona. National Optical Astronomy Observatory. 540:. However, Jovian planets began as large, icy planetesimals, which then captured hydrogen and helium gas from the 4306: 4056: 3744: 3734: 3729: 3714: 3709: 3509: 3393: 2780:. World Scientific Series in Astronomy and Astrophysics, Volume 2 (2nd ed.). World Scientific. p. 364. 715: 545: 174: 629: 496:
Grains eventually stick together to form mountain-size (or larger) bodies called planetesimals. Collisions and
306:
As the infall of material from the disk continues, the envelope eventually becomes thin and transparent and the
143:. As the cloud collapses, losing potential energy, it heats up, gaining kinetic energy, and the conservation of 4066: 4011: 3872: 3679: 3659: 3062: 1913:
Kary, David M.; Lissauer, Jack; Greenzweig, Yuval (November 1993). "Nebular Gas Drag and Planetary Accretion".
1304:
Martin, E. L.; Rebolo, R.; Magazzu, A.; Pavlenko, Ya. V. (February 1994). "Pre-main sequence lithium burning".
794: 536:. The particles that make up the terrestrial planets are made from metal and rock that condensed in the inner 4288: 4248: 3991: 3915: 3489: 3027: 2966: 405: 273: 2483: 636:, a Kuiper belt object which is thought to represent the original planetesimals from which the planets grew 4001: 3882: 3494: 3444: 2626:. Astrophysics and Space Science Library, Volume 115. Vol. 115. Springer Netherlands. pp. 3–10. 463: 382: 260: 207: 124:. None of these models proved completely successful, and many of the proposed theories were descriptive. 3970: 3614: 3514: 3348: 490: 239: 1007:
Kereš, Dušan; Davé, Romeel; Fardal, Mark; Faucher-Giguere, C.-A.; Hernquist, Lars; et al. (2010).
821: 593:. These accreted together to form parent asteroids. Some of these bodies subsequently melted, forming 4258: 4238: 3848: 3519: 3434: 3130: 3057: 2879: 2820: 2734: 2627: 2598: 2590: 2519: 2456: 2403: 2338: 2298: 2231: 2148: 2105: 2048: 1995: 1951: 1924: 1887: 1832: 1773: 1720: 1701:
Birnstiel, T.; Dullemond, C. P.; Brauer, F. (August 2009). "Dust retention in protoplanetary disks".
1670: 1595: 1565: 1517: 1462: 1410: 1362: 1323: 1270: 1225: 1198: 1156: 1101: 1049: 883: 858: 721: 680: 307: 3689: 4398: 4051: 3599: 3579: 3534: 3504: 3313: 3308: 3107: 1976:
Lambrechts, M.; Johansen, A. (August 2012). "Rapid growth of gas-giant cores by pebble accretion".
1622: 522: 478: 427: 417: 136: 69: 42: 718: – Study of astronomy using spectroscopy to measure the spectrum of electromagnetic radiation 4386: 4374: 3647: 3594: 3564: 3524: 3439: 3139: 3020: 2981: 2971: 2836: 2810: 2758: 2671: 2653: 2543: 2447:
Weidenschilling, S. J. (June 1997). "The Origin of Comets in the Solar Nebula: A Unified Model".
2429: 2221: 2138: 2095: 2064: 2038: 2011: 1985: 1858: 1822: 1799: 1763: 1736: 1710: 1660: 1533: 1507: 1480: 1452: 1313: 1286: 1260: 1125: 1065: 648: 529: 455: 235: 93: 1346: 349:
When the lower-mass star in a binary system enters an expansion phase, its outer atmosphere may
127:
The 1944 accretion model by Otto Schmidt was further developed in a quantitative way in 1969 by
1090:
Pudritz, Ralph E. (January 2002). "Clustered Star Formation and the Origin of Stellar Masses".
345: 3895: 3739: 3684: 3554: 3529: 3277: 3272: 3221: 3071: 2991: 2986: 2976: 2781: 2750: 2643: 2602: 2535: 2421: 2394: 2346: 2306: 2257: 2185: 2156: 1848: 1789: 1117: 1092: 984: 583: 265: 4350: 4283: 4273: 4021: 3701: 3634: 3584: 3474: 3464: 3388: 3318: 3303: 3102: 2828: 2824: 2742: 2725: 2696:
Filacchione, Gianrico; Capaccioni, Fabrizio; Taylor, Matt; Bauer, Markus (13 January 2016).
2635: 2527: 2510: 2464: 2411: 2247: 2239: 2113: 2056: 2003: 1999: 1932: 1915: 1895: 1878: 1844: 1840: 1785: 1781: 1728: 1724: 1678: 1603: 1599: 1525: 1470: 1418: 1370: 1327: 1278: 1233: 1202: 1164: 1109: 1057: 1053: 1008: 976: 891: 744: 609: 602: 509: 482: 459: 397: 288: 144: 113: 30: 3764: 3559: 3459: 3383: 3373: 3152: 2327: 2287: 633: 613: 467: 231: 128: 117: 27:
Accumulation of particles into a massive object by gravitationally attracting more matter
2883: 2738: 2631: 2523: 2460: 2407: 2342: 2302: 2235: 2210:"Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion" 2152: 2109: 2052: 1928: 1891: 1836: 1777: 1674: 1569: 1521: 1466: 1414: 1366: 1274: 1229: 1160: 1105: 887: 862: 404:
radiation from the central star and nearby stars. As a result, the young star becomes a
4338: 3624: 3619: 3469: 3424: 3333: 2956: 2941: 2252: 2209: 709: 659: 594: 556: 474: 393: 315: 148: 65: 2854:
Michel, P.; Schwartz, S.; Jutzi, M.; Marchi, S.; Zhang, Y.; Richardson, D. C. (2018).
943: 302:
Infrared image of the molecular outflow from an otherwise hidden newborn star HH 46/47
4410: 3754: 3429: 3368: 3323: 3262: 3257: 3232: 3167: 3157: 3147: 2840: 2657: 2177: 2068: 2060: 1862: 1803: 1484: 1169: 1144: 1069: 915: 895: 644: 617: 616:) for a 100 km (60 mi) radius asteroid. Simple models for accretion in the 533: 385: 370: 212: 190: 139:. Prior to collapse, this gas is mostly in the form of molecular clouds, such as the 2433: 2015: 1740: 1537: 1129: 334:), hydrogen fusion follows. Otherwise, if its mass is too low, the object becomes a 4362: 3905: 3890: 3784: 3774: 3666: 3589: 3358: 3338: 3328: 3226: 3162: 2951: 2936: 2762: 2593:. In McFadden, Lucy-Ann Adams; Weissman, Paul Robert; Johnson, Torrence V. (eds.). 2547: 1394: 1342: 1290: 673: 590: 541: 537: 439: 339: 326: 311: 140: 132: 97: 49: 17: 2832: 2390:"The shape and structure of cometary nuclei as a result of low-velocity accretion" 2007: 1732: 135:
accumulation. It is now accepted that stars form by the gravitational collapse of
120:
resurrected the initial Laplacian ideas about planet formation and developed the
3831: 3779: 3724: 3719: 3609: 3604: 3574: 3544: 3539: 3499: 3454: 3449: 3378: 3363: 3353: 3298: 3242: 3237: 3203: 3188: 3183: 3177: 2639: 1586:
Chambers, John E. (July 2004). "Planetary accretion in the inner Solar System".
973:
Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets
767: 761: 727: 692: 668: 501: 443: 435: 401: 335: 292: 193:
and smooth gas accretion. Accretion also occurs inside galaxies, forming stars.
182: 178: 160: 2893: 2118: 2083: 1607: 1475: 1440: 770: – Celestial body composed of many pieces of rock held together by gravity 3802: 3569: 3343: 3267: 3193: 3172: 2946: 1061: 756: 655: 544:. Differentiation between these two classes of planetesimals arise due to the 447: 374: 350: 252: 243: 216: 2288:"Meteorite Evidence for the Accretion and Collisional Evolution of Asteroids" 980: 849:
Woolfson, M. M. (March 1993). "The Solar System – its Origin and Evolution".
3759: 3749: 3252: 3247: 3213: 3198: 3087: 3001: 2961: 2925: 2672:"Evaporation and Accretion of Extrasolar Comets Following White Dwarf Kicks" 2416: 2389: 1683: 1648: 1216:
Stahler, Steven W. (September 1988). "Deuterium and the Stellar Birthline".
1113: 579: 571: 564: 560: 318: 202: 2754: 2539: 2468: 2425: 2366: 2261: 2243: 2180:; Schneider, Nicholas; Voit, Mark (2014). "Formation of the Solar System". 1936: 1899: 1121: 462:
and fall onto the central massive object. Occasionally, this can result in
259:) in diameter. Over millions of years, giant molecular clouds are prone to 2856:
Catastrophic Disruptions As The Origin Of 67PC-G And Small Bilobate Comets
2333:. In Bottke Jr., W. F.; Cellino, A.; Paolicchi, P.; Binzel, R. P. (eds.). 2293:. In Bottke Jr., W. F.; Cellino, A.; Paolicchi, P.; Binzel, R. P. (eds.). 3769: 3642: 1512: 1318: 1265: 575: 378: 314:
light and later in the visible. Around this time the protostar begins to
173:
cooled to the point where atoms could form. As the Universe continued to
170: 166: 38: 2746: 3654: 663: 598: 518: 497: 57: 500:
between planetesimals combine to produce Moon-size planetary embryos (
3965: 3293: 3117: 3052: 2531: 1649:"Planet seeding through gas-assisted capture of interstellar objects" 871: 750: 514: 451: 269: 256: 220: 186: 81: 73: 589:
Chondrules, metal grains, and other components likely formed in the
4357: 2815: 2226: 2100: 1827: 1665: 1529: 1457: 1423: 1398: 1375: 1350: 1282: 1237: 2143: 2043: 1990: 1821:. Space Science Series. University of Arizona Press. p. 471. 1768: 1715: 1441:"Peter Pan Disks: Long-lived Accretion Disks Around Young M Stars" 640: 628: 555: 421: 344: 297: 206: 1145:"The onset of collapse in turbulently supported molecular clouds" 950: 738: 366: 227: 77: 3016: 2897: 574:
contain a record of accretion and impacts during all stages of
189:
formed. Indirect evidence is widespread. Galaxies grow through
2996: 1752: 1750: 942:
Papaloizou, John C. B.; Terquem, Caroline (28 November 2005).
712: – Study of molecules in the Universe and their reactions 61: 3012: 2084:"Planet Formation by Gas-assisted Accretion of Small Solids" 764: – Ring of cosmic dust orbiting an astronomical object 747: – Type of emission nebula created by dying red giants 695:
of smaller ice planetesimals of a previous generation, the
438:
accelerates the growth of the particles into boulder-sized
215:, a giant star-forming cloud of gas and dust located 5,400 211:
The visible-light (left) and infrared (right) views of the
2184:(7th ed.). San Francisco: Pearson. pp. 136–169. 56:
is the accumulation of particles into a massive object by
4254:
Exoplanetary Circumstellar Environments and Disk Explorer
975:. Jerusalem: Israel Program for Scientific Translations. 2858:. 42nd COSPAR Scientific Assembly. p. B1.1-0002-18. 450:
surrounded by material (such as those at the centers of
2700:(Press release). European Space Agency. Archived from 2328:"Chronology of Asteroid Accretion and Differentiation" 96:
formed from meteoric material was proposed in 1944 by
4322: 2691: 2689: 753: – Spacecraft mission to study stellar accretion 2597:(2nd ed.). Amsterdam: Academic Press. pp.  2484:"Comets: Facts About The 'Dirty Snowballs' of Space" 654:
Astronomers think that comets originate in both the
532:
differs from that of giant gas planets, also called
177:
and cool, the atoms lost enough kinetic energy, and
4231: 4020: 3979: 3881: 3793: 3700: 3633: 3406: 3286: 3212: 3138: 3125: 3080: 2698:"Exposed ice on Rosetta's comet confirmed as water" 851:
Quarterly Journal of the Royal Astronomical Society
822:"Transcript of The Accretion of Galaxies and Stars" 730: – Asteroids found outside of the Solar System 2674:. Cornell University Department of Astronomy. 2014 521:. Direct calculations indicate that, in a typical 321:. If the protostar is sufficiently massive (above 147:ensures that the cloud forms a flattened disk—the 3931:Habitability of K-type main-sequence star systems 3926:Habitability of F-type main-sequence star systems 2337:. University of Arizona Press. pp. 687–695. 2297:. University of Arizona Press. pp. 697–709. 2137:. University of Arizona Press. pp. 319–346. 1762:. University of Arizona Press. pp. 547–570. 1653:Monthly Notices of the Royal Astronomical Society 1149:Monthly Notices of the Royal Astronomical Society 937: 935: 933: 3550:List of interstellar and circumstellar molecules 1696: 1694: 1581: 1579: 1560:. Completing the Inventory of the Solar System. 1556:Ward, William R. (1996). "Planetary Accretion". 1388: 1386: 797:. European Southern Observatory. 8 August 2008. 774:Timeline of gravitational physics and relativity 734:List of interstellar and circumstellar molecules 2369:. University of Bern, via Phys.org. 29 May 2015 1952:"To Build a Gas Giant Planet, Just Add Pebbles" 1035: 1033: 1031: 1029: 1027: 1025: 1023: 741: – Nuclear explosion in a white dwarf star 2624:Dynamics of Comets: Their Origin and Evolution 2584: 2582: 1351:"Accretion and the evolution of T Tauri disks" 844: 842: 724: – Accumulation of matter around a planet 458:, are necessary to allow orbiting gas to lose 3028: 2909: 2281: 2279: 2277: 2275: 2273: 2271: 1143:Clark, Paul C.; Bonnell, Ian A. (July 2005). 1085: 1083: 1081: 1079: 92:The accretion model that Earth and the other 8: 2203: 2201: 1647:Grishin, Evgeni; et al. (August 2019). 1551: 1549: 1547: 1184: 1182: 1180: 1002: 1000: 876:Studies in History and Philosophy of Science 473:In the formation of terrestrial planets or 3135: 3035: 3021: 3013: 2916: 2902: 2894: 3093:Exoplanet orbital and physical parameters 2814: 2591:"Comet Populations and Cometary Dynamics" 2589:Levison, Harold F.; Donnes, Luke (2007). 2415: 2251: 2225: 2142: 2117: 2099: 2042: 1989: 1826: 1767: 1714: 1682: 1664: 1511: 1474: 1456: 1422: 1374: 1317: 1264: 1168: 3961:List of potentially habitable exoplanets 2326:Shukolyukov, A.; Lugmair, G. W. (2002). 29: 4329: 1845:10.2458/azu_uapress_9780816532131-ch025 1786:10.2458/azu_uapress_9780816531240-ch024 786: 567:meteorite. A millimeter scale is shown. 310:(YSO) becomes observable, initially in 223:) away in the constellation Sagittarius 165:A few hundred thousand years after the 2082:D'Angelo, G.; Bodenheimer, P. (2024). 662:. The scattered disk was created when 454:). Some dynamics in the disk, such as 4269:Geodynamics of terrestrial exoplanets 2482:Choi, Charles Q. (15 November 2014). 870:Palmquist, Stephen (September 1987). 84:, are formed by accretion processes. 7: 3951:Habitability of yellow dwarf systems 3941:Habitability of neutron star systems 2388:Jutzi, M.; Asphaug, E. (June 2015). 868:For details of Kant's position, see 4294:Sudarsky's gas giant classification 3921:Habitability of binary star systems 1621:Küffmeier, Michael (3 April 2015). 1588:Earth and Planetary Science Letters 993:. NASA Technical Translation F-677. 4279:Nexus for Exoplanet System Science 3936:Habitability of natural satellites 820:Masters, Harris (26 August 2010). 430:showing a young star at its center 60:attracting more matter, typically 25: 3946:Habitability of red dwarf systems 2776:Krishna Swamy, K. S. (May 1997). 2562:"How Asteroids and Comets Formed" 1623:"What is the meter size barrier?" 909:Henbest, Nigel (24 August 1991). 185:. As further accretion occurred, 4392: 4380: 4368: 4356: 4344: 4332: 4043:Stars with proto-planetary discs 4007:NASA Star and Exoplanet Database 3997:Extrasolar Planets Encyclopaedia 3485:Extraterrestrial sample curation 3116: 2595:Encyclopedia of the Solar System 1170:10.1111/j.1365-2966.2005.09105.x 944:"Planet formation and migration" 801:from the original on 24 May 2011 181:coalesced sufficiently, to form 3956:Habitable zone for complex life 3394:Ultra-short period planet (USP) 3098:Methods of detecting exoplanets 2872:Asteroids, Comets, Meteors 2023 2208:Johansen, Anders (April 2015). 1950:Lewin, Sarah (19 August 2015). 872:"Kant's Cosmogony Re-evaluated" 4137:Discovered exoplanets by year 1397:; Hartmann, Lee (April 2001). 1: 4427:Solar System dynamic theories 4264:Extrasolar planets in fiction 3911:Extraterrestrial liquid water 971:Safronov, Viktor S. (1972) . 373:(up to 100% of the intrinsic 4284:Planets in globular clusters 3901:Circumstellar habitable zone 2803:Astronomy & Astrophysics 2286:Scott, Edward R. D. (2002). 1978:Astronomy & Astrophysics 896:10.1016/0039-3681(87)90021-5 4244:Exoplanet naming convention 3354:Planet/Brown dwarf boundary 2833:10.1051/0004-6361/201526093 2640:10.1007/978-94-009-5400-7_1 2367:"How comets were assembled" 2008:10.1051/0004-6361/201219127 1733:10.1051/0004-6361/200912452 353:, forming an accretion disk 230:are thought to form inside 4443: 3480:Extraterrestrial materials 3114: 2061:10.1088/0004-637X/789/1/69 1703:Astronomy and Astrophysics 1608:10.1016/j.epsl.2004.04.031 1306:Astronomy and Astrophysics 1191:Astronomy and Astrophysics 498:gravitational interactions 415: 351:fall onto the compact star 200: 158: 4307:Discoveries of exoplanets 4302: 3510:Interplanetary dust cloud 3048: 2932: 2088:The Astrophysical Journal 2031:The Astrophysical Journal 1760:Protostars and Planets VI 1500:The Astrophysical Journal 1445:The Astrophysical Journal 1403:The Astrophysical Journal 1355:The Astrophysical Journal 1253:The Astrophysical Journal 1218:The Astrophysical Journal 1062:10.1007/s11038-006-9087-5 1010:Gas Accretion in Galaxies 716:Astronomical spectroscopy 688:67P/Churyumov–Gerasimenko 426:Artist's impression of a 406:weakly lined T Tauri star 4417:Concepts in astrophysics 4012:Open Exoplanet Catalogue 3987:Nearby Habitable Systems 3873:Transit-timing variation 2119:10.3847/1538-4357/ad3bae 1476:10.3847/1538-4357/ab68e6 1042:Earth, Moon, and Planets 242:of roughly 300,000  4289:Small planet radius gap 3992:Exoplanet Data Explorer 3916:Galactic habitable zone 3490:Giant-impact hypothesis 2967:Extragalactic astronomy 2825:2015A&A...583A..44R 2417:10.1126/science.aaa4747 2000:2012A&A...544A..32L 1725:2009A&A...503L...5B 1600:2004E&PSL.223..241C 1328:1994A&A...282..503M 1203:1998A&A...336..150M 1114:10.1126/science.1068298 1054:2006EM&P...98...39M 795:"Science with the VLTI" 274:particle number density 122:modern Laplacian theory 108:(1960) and finally the 4249:Exoplanet phase curves 4087:Terrestrial candidates 4038:Multiplanetary systems 4002:NASA Exoplanet Archive 3685:Mean-motion resonances 3495:Gravitational collapse 3445:Circumstellar envelope 2469:10.1006/icar.1997.5712 2244:10.1126/sciadv.1500109 2182:The Cosmic Perspective 1937:10.1006/icar.1993.1172 1900:10.1006/icar.1997.5747 637: 568: 552:Accretion of asteroids 483:electromagnetic forces 464:stellar surface fusion 431: 354: 303: 240:giant molecular clouds 224: 45: 4124:Potentially habitable 4029:Exoplanetary systems 3971:Superhabitable planet 3730:F/Yellow-white dwarfs 3615:Sample-return mission 3515:Interplanetary medium 1684:10.1093/mnras/stz1505 1558:ASP Conference Series 632: 559: 548:of the solar nebula. 491:streaming instability 425: 416:Further information: 348: 301: 210: 159:Further information: 155:Accretion of galaxies 33: 4259:Extragalactic planet 4239:Carl Sagan Institute 3520:Interplanetary space 3435:Circumplanetary disk 3108:Planet-hosting stars 722:Circumplanetary disk 479:van der Waals forces 412:Accretion of planets 308:young stellar object 70:astronomical objects 4422:Celestial mechanics 3600:Protoplanetary disk 3580:Planetary migration 3535:Interstellar medium 3314:Circumtriple planet 3309:Circumbinary planet 2924:Major subfields of 2884:2023LPICo2851.2470M 2747:10.1038/nature16190 2739:2016Natur.529..368F 2632:1985ASSL..115....3G 2524:2000Natur.406..275N 2461:1997Icar..127..290W 2408:2015Sci...348.1355J 2402:(6241): 1355–1358. 2343:2002aste.book..687S 2303:2002aste.book..697S 2236:2015SciA....1E0109J 2153:2010exop.book..319D 2110:2024ApJ...967..124D 2053:2014ApJ...789...69H 1929:1993Icar..106..288K 1892:1997Icar..128..429W 1837:2015aste.book..471J 1778:2014prpl.conf..547J 1675:2019MNRAS.487.3324G 1570:1996ASPC..107..337W 1522:2004ApJ...611..360A 1467:2020ApJ...890..106S 1415:2001ApJ...550..944M 1367:1998ApJ...495..385H 1345:; Gullbring, Eric; 1275:2005ApJ...626..498M 1230:1988ApJ...332..804S 1161:2005MNRAS.361....2C 1106:2002Sci...295...68P 888:1987SHPS...18..255P 863:1993QJRAS..34....1W 625:Accretion of comets 621:accreted this way. 530:terrestrial planets 523:protoplanetary disk 428:protoplanetary disk 418:Protoplanetary disk 94:terrestrial planets 43:protoplanetary disk 18:Planetary accretion 3565:Nebular hypothesis 3540:Interstellar space 3525:Interstellar cloud 3505:Internal structure 3440:Circumstellar disc 2982:Physical cosmology 2972:Galactic astronomy 2704:on 18 January 2016 2176:Bennett, Jeffrey; 1393:Muzerolle, James; 649:nebular hypothesis 638: 569: 456:dynamical friction 434:Self-accretion of 432: 355: 304: 266:astronomical units 236:molecular hydrogen 225: 197:Accretion of stars 102:protoplanet theory 100:, followed by the 46: 4320: 4319: 3896:Astrooceanography 3530:Interstellar dust 3402: 3401: 3278:Ultra-hot Neptune 3273:Ultra-hot Jupiter 3222:Eccentric Jupiter 3072:Planetary science 3010: 3009: 3002:Stellar astronomy 2992:Planetary science 2987:Planetary geology 2977:Orbital mechanics 2778:Physics of Comets 2733:(7586): 368–372. 2649:978-94-010-8884-8 2608:978-0-12-088589-3 2566:Science Clarified 2518:(6793): 275–276. 2352:978-0-8165-2281-1 2312:978-0-8165-2281-1 2191:978-0-321-89384-0 2162:978-0-8165-2945-2 1854:978-0-8165-3213-1 1795:978-0-8165-3124-0 981:2027/uc1.b4387676 528:The formation of 16:(Redirected from 4434: 4397: 4396: 4395: 4385: 4384: 4383: 4373: 4372: 4371: 4361: 4360: 4349: 4348: 4347: 4337: 4336: 4328: 4274:Neptunian desert 3660:Tidally detached 3595:Planet formation 3585:Planetary system 3475:Exozodiacal dust 3465:Disrupted planet 3389:Ultra-cool dwarf 3319:Disrupted planet 3304:Chthonian planet 3136: 3120: 3103:Planetary system 3037: 3030: 3023: 3014: 2918: 2911: 2904: 2895: 2888: 2887: 2866: 2860: 2859: 2851: 2845: 2844: 2818: 2798: 2792: 2791: 2773: 2767: 2766: 2720: 2714: 2713: 2711: 2709: 2693: 2684: 2683: 2681: 2679: 2668: 2662: 2661: 2619: 2613: 2612: 2586: 2577: 2576: 2574: 2572: 2558: 2552: 2551: 2532:10.1038/35018516 2505: 2499: 2498: 2496: 2494: 2479: 2473: 2472: 2444: 2438: 2437: 2419: 2385: 2379: 2378: 2376: 2374: 2363: 2357: 2356: 2332: 2323: 2317: 2316: 2292: 2283: 2266: 2265: 2255: 2229: 2214:Science Advances 2205: 2196: 2195: 2173: 2167: 2166: 2146: 2130: 2124: 2123: 2121: 2103: 2079: 2073: 2072: 2046: 2026: 2020: 2019: 1993: 1973: 1967: 1966: 1964: 1962: 1947: 1941: 1940: 1910: 1904: 1903: 1873: 1867: 1866: 1830: 1814: 1808: 1807: 1771: 1754: 1745: 1744: 1718: 1698: 1689: 1688: 1686: 1668: 1659:(3): 3324–3332. 1644: 1638: 1637: 1635: 1633: 1618: 1612: 1611: 1594:(3–4): 241–252. 1583: 1574: 1573: 1553: 1542: 1541: 1515: 1513:astro-ph/0404383 1495: 1489: 1488: 1478: 1460: 1435: 1429: 1428: 1426: 1390: 1381: 1380: 1378: 1347:D'Alessio, Paula 1338: 1332: 1331: 1321: 1319:astro-ph/9308047 1301: 1295: 1294: 1268: 1266:astro-ph/0502155 1248: 1242: 1241: 1213: 1207: 1206: 1186: 1175: 1174: 1172: 1140: 1134: 1133: 1087: 1074: 1073: 1037: 1018: 1017: 1015: 1004: 995: 994: 968: 962: 961: 959: 957: 948: 939: 928: 927: 925: 923: 906: 900: 899: 866: 846: 837: 836: 834: 832: 817: 811: 810: 808: 806: 791: 745:Planetary nebula 510:Pebble accretion 460:angular momentum 398:photoevaporation 324: 289:angular momentum 284:10/cu in). 283: 279: 145:angular momentum 137:interstellar gas 114:Michael Woolfson 64:matter, into an 21: 4442: 4441: 4437: 4436: 4435: 4433: 4432: 4431: 4407: 4406: 4403: 4393: 4391: 4381: 4379: 4369: 4367: 4355: 4345: 4343: 4331: 4323: 4321: 4316: 4312:Search projects 4298: 4227: 4016: 3975: 3877: 3849:Radial velocity 3789: 3745:K/Orange dwarfs 3735:G/Yellow dwarfs 3696: 3690:Titius–Bode law 3629: 3560:Molecular cloud 3460:Detached object 3411: 3409: 3398: 3384:Toroidal planet 3374:Sub-brown dwarf 3282: 3208: 3180:(Super-Mercury) 3153:Coreless planet 3129: 3127: 3121: 3112: 3076: 3044: 3041: 3011: 3006: 2997:Solar astronomy 2928: 2922: 2892: 2891: 2868: 2867: 2863: 2853: 2852: 2848: 2800: 2799: 2795: 2788: 2775: 2774: 2770: 2722: 2721: 2717: 2707: 2705: 2695: 2694: 2687: 2677: 2675: 2670: 2669: 2665: 2650: 2621: 2620: 2616: 2609: 2588: 2587: 2580: 2570: 2568: 2560: 2559: 2555: 2507: 2506: 2502: 2492: 2490: 2481: 2480: 2476: 2446: 2445: 2441: 2387: 2386: 2382: 2372: 2370: 2365: 2364: 2360: 2353: 2330: 2325: 2324: 2320: 2313: 2290: 2285: 2284: 2269: 2220:(3): e1500109. 2207: 2206: 2199: 2192: 2175: 2174: 2170: 2163: 2132: 2131: 2127: 2081: 2080: 2076: 2028: 2027: 2023: 1975: 1974: 1970: 1960: 1958: 1949: 1948: 1944: 1912: 1911: 1907: 1875: 1874: 1870: 1855: 1816: 1815: 1811: 1796: 1756: 1755: 1748: 1700: 1699: 1692: 1646: 1645: 1641: 1631: 1629: 1620: 1619: 1615: 1585: 1584: 1577: 1555: 1554: 1545: 1497: 1496: 1492: 1437: 1436: 1432: 1392: 1391: 1384: 1341:Hartmann, Lee; 1340: 1339: 1335: 1303: 1302: 1298: 1250: 1249: 1245: 1215: 1214: 1210: 1188: 1187: 1178: 1142: 1141: 1137: 1100:(5552): 68–75. 1089: 1088: 1077: 1039: 1038: 1021: 1013: 1006: 1005: 998: 991: 970: 969: 965: 955: 953: 946: 941: 940: 931: 921: 919: 908: 907: 903: 869: 867: 848: 847: 840: 830: 828: 819: 818: 814: 804: 802: 793: 792: 788: 783: 778: 705: 645:cometary nuclei 634:486958 Arrokoth 627: 554: 475:planetary cores 468:Bondi accretion 420: 414: 394:Peter Pan disks 364: 361: 332: 329: 322: 281: 277: 268:(0.01–0.1  249: 246: 205: 199: 163: 157: 129:Viktor Safronov 118:Andrew Prentice 90: 58:gravitationally 28: 23: 22: 15: 12: 11: 5: 4440: 4438: 4430: 4429: 4424: 4419: 4409: 4408: 4402: 4401: 4389: 4377: 4365: 4353: 4341: 4318: 4317: 4315: 4314: 4309: 4303: 4300: 4299: 4297: 4296: 4291: 4286: 4281: 4276: 4271: 4266: 4261: 4256: 4251: 4246: 4241: 4235: 4233: 4229: 4228: 4226: 4225: 4224: 4223: 4218: 4213: 4208: 4203: 4198: 4193: 4188: 4183: 4178: 4173: 4168: 4163: 4158: 4153: 4148: 4143: 4134: 4133: 4132: 4131: 4126: 4121: 4116: 4115: 4114: 4109: 4104: 4099: 4089: 4084: 4079: 4074: 4069: 4064: 4059: 4048: 4047: 4046: 4045: 4040: 4035: 4026: 4024: 4018: 4017: 4015: 4014: 4009: 4004: 3999: 3994: 3989: 3983: 3981: 3977: 3976: 3974: 3973: 3968: 3963: 3958: 3953: 3948: 3943: 3938: 3933: 3928: 3923: 3918: 3913: 3908: 3903: 3898: 3893: 3887: 3885: 3879: 3878: 3876: 3875: 3870: 3869: 3868: 3861:Transit method 3858: 3857: 3856: 3846: 3845: 3844: 3834: 3829: 3828: 3827: 3817: 3816: 3815: 3808:Direct imaging 3805: 3799: 3797: 3791: 3790: 3788: 3787: 3782: 3777: 3772: 3767: 3762: 3757: 3752: 3747: 3742: 3737: 3732: 3727: 3722: 3717: 3712: 3706: 3704: 3698: 3697: 3695: 3694: 3693: 3692: 3687: 3682: 3677: 3669: 3664: 3663: 3662: 3652: 3651: 3650: 3639: 3637: 3631: 3630: 3628: 3627: 3625:Star formation 3622: 3620:Scattered disc 3617: 3612: 3607: 3602: 3597: 3592: 3587: 3582: 3577: 3572: 3567: 3562: 3557: 3552: 3547: 3542: 3537: 3532: 3527: 3522: 3517: 3512: 3507: 3502: 3497: 3492: 3487: 3482: 3477: 3472: 3470:Excretion disk 3467: 3462: 3457: 3452: 3447: 3442: 3437: 3432: 3427: 3425:Accretion disk 3422: 3416: 3414: 3404: 3403: 3400: 3399: 3397: 3396: 3391: 3386: 3381: 3376: 3371: 3366: 3361: 3356: 3351: 3346: 3341: 3336: 3334:Eyeball planet 3331: 3326: 3321: 3316: 3311: 3306: 3301: 3296: 3290: 3288: 3284: 3283: 3281: 3280: 3275: 3270: 3265: 3260: 3255: 3250: 3245: 3240: 3235: 3230: 3224: 3218: 3216: 3210: 3209: 3207: 3206: 3201: 3196: 3191: 3186: 3181: 3175: 3170: 3165: 3160: 3155: 3150: 3144: 3142: 3133: 3123: 3122: 3115: 3113: 3111: 3110: 3105: 3100: 3095: 3090: 3084: 3082: 3078: 3077: 3075: 3074: 3069: 3068: 3067: 3066: 3065: 3049: 3046: 3045: 3042: 3040: 3039: 3032: 3025: 3017: 3008: 3007: 3005: 3004: 2999: 2994: 2989: 2984: 2979: 2974: 2969: 2964: 2959: 2957:Cosmochemistry 2954: 2949: 2944: 2942:Astrochemistry 2939: 2933: 2930: 2929: 2923: 2921: 2920: 2913: 2906: 2898: 2890: 2889: 2861: 2846: 2809:: Article 44. 2793: 2786: 2768: 2715: 2685: 2663: 2648: 2614: 2607: 2578: 2553: 2500: 2474: 2455:(2): 290–306. 2439: 2380: 2358: 2351: 2318: 2311: 2267: 2197: 2190: 2178:Donahue, Megan 2168: 2161: 2125: 2074: 2021: 1968: 1942: 1923:(1): 288–307. 1905: 1886:(2): 429–455. 1868: 1853: 1809: 1794: 1746: 1690: 1639: 1613: 1575: 1543: 1530:10.1086/421989 1506:(1): 360–379. 1490: 1430: 1424:10.1086/319779 1409:(2): 944–961. 1382: 1376:10.1086/305277 1361:(1): 385–400. 1349:(March 1998). 1333: 1296: 1283:10.1086/429794 1259:(1): 498–522. 1243: 1238:10.1086/166694 1208: 1176: 1135: 1075: 1048:(1–4): 39–95. 1019: 996: 989: 963: 929: 901: 882:(3): 255–269. 838: 812: 785: 784: 782: 779: 777: 776: 771: 765: 759: 754: 748: 742: 736: 731: 725: 719: 713: 710:Astrochemistry 706: 704: 701: 660:scattered disk 626: 623: 595:metallic cores 553: 550: 534:Jovian planets 413: 410: 390:magnetic poles 377:of the star), 371:emission lines 362: 359: 330: 327: 247: 244: 201:Main article: 198: 195: 156: 153: 149:accretion disk 110:capture theory 106:William McCrea 89: 86: 66:accretion disk 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4439: 4428: 4425: 4423: 4420: 4418: 4415: 4414: 4412: 4405: 4400: 4390: 4388: 4378: 4376: 4366: 4364: 4359: 4354: 4352: 4342: 4340: 4335: 4330: 4326: 4313: 4310: 4308: 4305: 4304: 4301: 4295: 4292: 4290: 4287: 4285: 4282: 4280: 4277: 4275: 4272: 4270: 4267: 4265: 4262: 4260: 4257: 4255: 4252: 4250: 4247: 4245: 4242: 4240: 4237: 4236: 4234: 4230: 4222: 4219: 4217: 4214: 4212: 4209: 4207: 4204: 4202: 4199: 4197: 4194: 4192: 4189: 4187: 4184: 4182: 4179: 4177: 4174: 4172: 4169: 4167: 4164: 4162: 4159: 4157: 4154: 4152: 4149: 4147: 4144: 4142: 4139: 4138: 4136: 4135: 4130: 4127: 4125: 4122: 4120: 4117: 4113: 4110: 4108: 4105: 4103: 4100: 4098: 4095: 4094: 4093: 4090: 4088: 4085: 4083: 4080: 4078: 4075: 4073: 4070: 4068: 4065: 4063: 4060: 4058: 4055: 4054: 4053: 4050: 4049: 4044: 4041: 4039: 4036: 4034: 4031: 4030: 4028: 4027: 4025: 4023: 4019: 4013: 4010: 4008: 4005: 4003: 4000: 3998: 3995: 3993: 3990: 3988: 3985: 3984: 3982: 3978: 3972: 3969: 3967: 3964: 3962: 3959: 3957: 3954: 3952: 3949: 3947: 3944: 3942: 3939: 3937: 3934: 3932: 3929: 3927: 3924: 3922: 3919: 3917: 3914: 3912: 3909: 3907: 3904: 3902: 3899: 3897: 3894: 3892: 3889: 3888: 3886: 3884: 3880: 3874: 3871: 3867: 3864: 3863: 3862: 3859: 3855: 3852: 3851: 3850: 3847: 3843: 3840: 3839: 3838: 3835: 3833: 3830: 3826: 3823: 3822: 3821: 3818: 3814: 3811: 3810: 3809: 3806: 3804: 3801: 3800: 3798: 3796: 3792: 3786: 3785:Yellow giants 3783: 3781: 3778: 3776: 3773: 3771: 3768: 3766: 3763: 3761: 3758: 3756: 3753: 3751: 3748: 3746: 3743: 3741: 3738: 3736: 3733: 3731: 3728: 3726: 3723: 3721: 3718: 3716: 3713: 3711: 3708: 3707: 3705: 3703: 3699: 3691: 3688: 3686: 3683: 3681: 3678: 3676: 3673: 3672: 3670: 3668: 3665: 3661: 3658: 3657: 3656: 3653: 3649: 3646: 3645: 3644: 3641: 3640: 3638: 3636: 3632: 3626: 3623: 3621: 3618: 3616: 3613: 3611: 3608: 3606: 3603: 3601: 3598: 3596: 3593: 3591: 3588: 3586: 3583: 3581: 3578: 3576: 3573: 3571: 3568: 3566: 3563: 3561: 3558: 3556: 3555:Merging stars 3553: 3551: 3548: 3546: 3543: 3541: 3538: 3536: 3533: 3531: 3528: 3526: 3523: 3521: 3518: 3516: 3513: 3511: 3508: 3506: 3503: 3501: 3498: 3496: 3493: 3491: 3488: 3486: 3483: 3481: 3478: 3476: 3473: 3471: 3468: 3466: 3463: 3461: 3458: 3456: 3453: 3451: 3448: 3446: 3443: 3441: 3438: 3436: 3433: 3431: 3430:Asteroid belt 3428: 3426: 3423: 3421: 3418: 3417: 3415: 3413: 3405: 3395: 3392: 3390: 3387: 3385: 3382: 3380: 3377: 3375: 3372: 3370: 3369:Pulsar planet 3367: 3365: 3362: 3360: 3357: 3355: 3352: 3350: 3347: 3345: 3342: 3340: 3337: 3335: 3332: 3330: 3327: 3325: 3324:Double planet 3322: 3320: 3317: 3315: 3312: 3310: 3307: 3305: 3302: 3300: 3297: 3295: 3292: 3291: 3289: 3285: 3279: 3276: 3274: 3271: 3269: 3266: 3264: 3263:Super-Neptune 3261: 3259: 3258:Super-Jupiter 3256: 3254: 3251: 3249: 3246: 3244: 3241: 3239: 3236: 3234: 3233:Helium planet 3231: 3228: 3225: 3223: 3220: 3219: 3217: 3215: 3211: 3205: 3202: 3200: 3197: 3195: 3192: 3190: 3187: 3185: 3182: 3179: 3176: 3174: 3171: 3169: 3168:Hycean planet 3166: 3164: 3161: 3159: 3158:Desert planet 3156: 3154: 3151: 3149: 3148:Carbon planet 3146: 3145: 3143: 3141: 3137: 3134: 3132: 3124: 3119: 3109: 3106: 3104: 3101: 3099: 3096: 3094: 3091: 3089: 3086: 3085: 3083: 3079: 3073: 3070: 3064: 3061: 3060: 3059: 3056: 3055: 3054: 3051: 3050: 3047: 3038: 3033: 3031: 3026: 3024: 3019: 3018: 3015: 3003: 3000: 2998: 2995: 2993: 2990: 2988: 2985: 2983: 2980: 2978: 2975: 2973: 2970: 2968: 2965: 2963: 2960: 2958: 2955: 2953: 2950: 2948: 2945: 2943: 2940: 2938: 2935: 2934: 2931: 2927: 2919: 2914: 2912: 2907: 2905: 2900: 2899: 2896: 2885: 2881: 2877: 2873: 2865: 2862: 2857: 2850: 2847: 2842: 2838: 2834: 2830: 2826: 2822: 2817: 2812: 2808: 2804: 2797: 2794: 2789: 2787:981-02-2632-2 2783: 2779: 2772: 2769: 2764: 2760: 2756: 2752: 2748: 2744: 2740: 2736: 2732: 2728: 2727: 2719: 2716: 2703: 2699: 2692: 2690: 2686: 2673: 2667: 2664: 2659: 2655: 2651: 2645: 2641: 2637: 2633: 2629: 2625: 2618: 2615: 2610: 2604: 2600: 2596: 2592: 2585: 2583: 2579: 2567: 2563: 2557: 2554: 2549: 2545: 2541: 2537: 2533: 2529: 2525: 2521: 2517: 2513: 2512: 2504: 2501: 2489: 2485: 2478: 2475: 2470: 2466: 2462: 2458: 2454: 2450: 2443: 2440: 2435: 2431: 2427: 2423: 2418: 2413: 2409: 2405: 2401: 2397: 2396: 2391: 2384: 2381: 2368: 2362: 2359: 2354: 2348: 2344: 2340: 2336: 2335:Asteroids III 2329: 2322: 2319: 2314: 2308: 2304: 2300: 2296: 2295:Asteroids III 2289: 2282: 2280: 2278: 2276: 2274: 2272: 2268: 2263: 2259: 2254: 2249: 2245: 2241: 2237: 2233: 2228: 2223: 2219: 2215: 2211: 2204: 2202: 2198: 2193: 2187: 2183: 2179: 2172: 2169: 2164: 2158: 2154: 2150: 2145: 2140: 2136: 2129: 2126: 2120: 2115: 2111: 2107: 2102: 2097: 2094:(2): id.124. 2093: 2089: 2085: 2078: 2075: 2070: 2066: 2062: 2058: 2054: 2050: 2045: 2040: 2036: 2032: 2025: 2022: 2017: 2013: 2009: 2005: 2001: 1997: 1992: 1987: 1983: 1979: 1972: 1969: 1957: 1953: 1946: 1943: 1938: 1934: 1930: 1926: 1922: 1918: 1917: 1909: 1906: 1901: 1897: 1893: 1889: 1885: 1881: 1880: 1872: 1869: 1864: 1860: 1856: 1850: 1846: 1842: 1838: 1834: 1829: 1824: 1820: 1813: 1810: 1805: 1801: 1797: 1791: 1787: 1783: 1779: 1775: 1770: 1765: 1761: 1753: 1751: 1747: 1742: 1738: 1734: 1730: 1726: 1722: 1717: 1712: 1708: 1704: 1697: 1695: 1691: 1685: 1680: 1676: 1672: 1667: 1662: 1658: 1654: 1650: 1643: 1640: 1628: 1624: 1617: 1614: 1609: 1605: 1601: 1597: 1593: 1589: 1582: 1580: 1576: 1571: 1567: 1563: 1559: 1552: 1550: 1548: 1544: 1539: 1535: 1531: 1527: 1523: 1519: 1514: 1509: 1505: 1501: 1494: 1491: 1486: 1482: 1477: 1472: 1468: 1464: 1459: 1454: 1450: 1446: 1442: 1434: 1431: 1425: 1420: 1416: 1412: 1408: 1404: 1400: 1396: 1395:Calvet, Nuria 1389: 1387: 1383: 1377: 1372: 1368: 1364: 1360: 1356: 1352: 1348: 1344: 1343:Calvet, Nuria 1337: 1334: 1329: 1325: 1320: 1315: 1311: 1307: 1300: 1297: 1292: 1288: 1284: 1280: 1276: 1272: 1267: 1262: 1258: 1254: 1247: 1244: 1239: 1235: 1231: 1227: 1223: 1219: 1212: 1209: 1204: 1200: 1196: 1192: 1185: 1183: 1181: 1177: 1171: 1166: 1162: 1158: 1154: 1150: 1146: 1139: 1136: 1131: 1127: 1123: 1119: 1115: 1111: 1107: 1103: 1099: 1095: 1094: 1086: 1084: 1082: 1080: 1076: 1071: 1067: 1063: 1059: 1055: 1051: 1047: 1043: 1036: 1034: 1032: 1030: 1028: 1026: 1024: 1020: 1012: 1011: 1003: 1001: 997: 992: 990:0-7065-1225-1 986: 982: 978: 974: 967: 964: 952: 945: 938: 936: 934: 930: 918: 917: 916:New Scientist 912: 905: 902: 897: 893: 889: 885: 881: 877: 873: 864: 860: 856: 852: 845: 843: 839: 827: 823: 816: 813: 800: 796: 790: 787: 780: 775: 772: 769: 766: 763: 760: 758: 755: 752: 749: 746: 743: 740: 737: 735: 732: 729: 726: 723: 720: 717: 714: 711: 708: 707: 702: 700: 698: 694: 689: 685: 683: 677: 675: 670: 665: 661: 657: 652: 650: 646: 642: 635: 631: 624: 622: 619: 618:asteroid belt 615: 611: 606: 604: 600: 596: 592: 587: 585: 581: 577: 573: 566: 562: 558: 551: 549: 547: 543: 539: 535: 531: 526: 524: 520: 516: 511: 505: 503: 499: 494: 492: 486: 484: 480: 476: 471: 469: 465: 461: 457: 453: 449: 445: 441: 440:planetesimals 437: 429: 424: 419: 411: 409: 407: 403: 399: 395: 391: 387: 384: 380: 376: 372: 368: 352: 347: 343: 341: 340:T Tauri stars 337: 333: 320: 317: 313: 309: 300: 296: 294: 290: 285: 275: 271: 267: 262: 258: 254: 250: 241: 237: 233: 229: 222: 218: 214: 213:Trifid Nebula 209: 204: 196: 194: 192: 188: 184: 183:protogalaxies 180: 176: 172: 168: 162: 154: 152: 150: 146: 142: 138: 134: 130: 125: 123: 119: 115: 111: 107: 103: 99: 95: 87: 85: 83: 79: 75: 71: 67: 63: 59: 55: 51: 44: 40: 36: 32: 19: 4404: 4399:Solar System 4129:Proper names 3906:Earth analog 3891:Astrobiology 3883:Habitability 3820:Microlensing 3780:White dwarfs 3750:M/Red dwarfs 3740:Herbig Ae/Be 3725:Brown dwarfs 3667:Rogue planet 3648:Interstellar 3590:Planetesimal 3419: 3359:Planetesimal 3339:Giant planet 3329:Ecumenopolis 3227:Mini-Neptune 3163:Dwarf planet 2952:Astrophysics 2937:Astrobiology 2875: 2871: 2864: 2855: 2849: 2806: 2802: 2796: 2777: 2771: 2730: 2724: 2718: 2706:. Retrieved 2702:the original 2676:. Retrieved 2666: 2623: 2617: 2594: 2569:. Retrieved 2565: 2556: 2515: 2509: 2503: 2491:. Retrieved 2487: 2477: 2452: 2448: 2442: 2399: 2393: 2383: 2371:. Retrieved 2361: 2334: 2321: 2294: 2217: 2213: 2181: 2171: 2134: 2128: 2091: 2087: 2077: 2034: 2030: 2024: 1981: 1977: 1971: 1959:. Retrieved 1955: 1945: 1920: 1914: 1908: 1883: 1877: 1871: 1819:Asteroids IV 1818: 1812: 1759: 1709:(1): L5–L8. 1706: 1702: 1656: 1652: 1642: 1630:. Retrieved 1626: 1616: 1591: 1587: 1561: 1557: 1503: 1499: 1493: 1448: 1444: 1433: 1406: 1402: 1358: 1354: 1336: 1309: 1305: 1299: 1256: 1252: 1246: 1221: 1217: 1211: 1194: 1190: 1152: 1148: 1138: 1097: 1091: 1045: 1041: 1009: 972: 966: 954:. Retrieved 920:. Retrieved 914: 904: 879: 875: 854: 850: 829:. Retrieved 825: 815: 803:. Retrieved 789: 696: 693:rubble piles 681: 678: 674:Helix Nebula 653: 639: 607: 591:solar nebula 588: 570: 542:solar nebula 538:Solar System 527: 506: 502:protoplanets 495: 487: 472: 444:close binary 433: 356: 312:far-infrared 305: 286: 232:giant clouds 226: 219:(1,700  164: 141:Orion Nebula 133:planetesimal 126: 121: 109: 101: 98:Otto Schmidt 91: 53: 50:astrophysics 47: 4387:Outer space 4375:Spaceflight 4141:before 2000 4057:Discoveries 3832:Polarimetry 3720:Binary star 3610:Rubble pile 3605:Ring system 3575:Outer space 3545:Kuiper belt 3500:Hills cloud 3455:Debris disk 3450:Cosmic dust 3379:Sub-Neptune 3364:Protoplanet 3299:Brown dwarf 3287:Other types 3243:Hot Neptune 3238:Hot Jupiter 3229:(Gas dwarf) 3204:Super-Earth 3189:Ocean world 3184:Lava planet 3178:Iron planet 3140:Terrestrial 3081:Main topics 1961:22 November 1564:: 337–361. 1312:: 503–517. 1224:: 804–825. 1197:: 150–172. 1155:(1): 2–16. 768:Rubble pile 762:Ring system 728:Exoasteroid 669:Kuiper belt 448:black holes 436:cosmic dust 402:ultraviolet 386:variability 383:photometric 336:brown dwarf 293:hydrostatic 253:light-years 217:light-years 179:dark matter 161:Protogalaxy 116:. In 1978, 4411:Categories 4052:Exoplanets 4033:Host stars 3980:Catalogues 3803:Astrometry 3765:Subdwarf B 3702:Host stars 3675:Retrograde 3570:Oort cloud 3408:Formation 3344:Mesoplanet 3268:Super-puff 3194:Mega-Earth 3173:Ice planet 3058:Definition 3043:Exoplanets 2947:Astrometry 2816:1505.07021 2708:14 January 2678:22 January 2571:16 January 2227:1503.07347 2135:Exoplanets 2101:2404.05906 1828:1505.02941 1666:1804.09716 1632:15 January 1627:Astrobites 1458:2001.05030 1451:(2): 106. 956:21 October 781:References 757:Quasi-star 656:Oort cloud 612:(460  580:chondrules 572:Meteorites 561:Chondrules 546:frost line 381:activity, 375:luminosity 280:10/cm (4.6 72:, such as 4351:Astronomy 4146:2000–2009 4112:1501–2000 4107:1001–1500 3795:Detection 3760:Red giant 3420:Accretion 3412:evolution 3253:Ice giant 3248:Gas giant 3199:Sub-Earth 3088:Exoplanet 2962:Cosmology 2926:astronomy 2841:118394879 2658:209834532 2493:8 January 2488:Space.com 2373:8 January 2144:1006.5486 2069:118878865 2044:1404.5018 2037:(1). 69. 1991:1205.3030 1956:Space.com 1863:118709894 1804:119300087 1769:1402.1344 1716:0907.0985 1485:210718358 1070:120504344 831:8 January 686:to comet 565:chondrite 319:deuterium 255:(20  203:Protostar 54:accretion 37:image of 4102:501–1000 4082:Heaviest 4062:Extremes 3770:Subgiant 3643:Exocomet 2878:: 2470. 2755:26760209 2540:10917522 2434:36638785 2426:26022415 2262:26601169 2016:53961588 1741:12932274 1538:16093937 1130:33585808 1122:11778037 922:18 April 857:: 1–20. 805:11 April 799:Archived 703:See also 658:and the 576:asteroid 452:galaxies 379:magnetic 363:☉ 272:) and a 261:collapse 248:☉ 234:of cold 187:galaxies 171:Universe 167:Big Bang 88:Overview 74:galaxies 39:HL Tauri 4339:Physics 4325:Portals 4077:Largest 4072:Nearest 3775:T Tauri 3671:Orbits 3655:Exomoon 3635:Systems 3349:Planemo 3214:Gaseous 2880:Bibcode 2821:Bibcode 2763:4446724 2735:Bibcode 2628:Bibcode 2599:575–588 2548:4430764 2520:Bibcode 2457:Bibcode 2404:Bibcode 2395:Science 2339:Bibcode 2299:Bibcode 2253:4640629 2232:Bibcode 2149:Bibcode 2106:Bibcode 2049:Bibcode 1996:Bibcode 1984:: A32. 1925:Bibcode 1888:Bibcode 1833:Bibcode 1774:Bibcode 1721:Bibcode 1671:Bibcode 1596:Bibcode 1566:Bibcode 1518:Bibcode 1463:Bibcode 1411:Bibcode 1363:Bibcode 1324:Bibcode 1291:8462683 1271:Bibcode 1226:Bibcode 1199:Bibcode 1157:Bibcode 1102:Bibcode 1093:Science 1050:Bibcode 884:Bibcode 859:Bibcode 697:Rosetta 684:mission 682:Rosetta 664:Neptune 603:mantles 599:olivine 519:Neptune 369:in the 251:and 65 191:mergers 82:planets 68:. Most 62:gaseous 4092:Kepler 4067:Firsts 3966:Tholin 3837:Timing 3755:Pulsar 3680:Trojan 3294:Blanet 3053:Planet 2839:  2784:  2761:  2753:  2726:Nature 2656:  2646:  2605:  2546:  2538:  2511:Nature 2449:Icarus 2432:  2424:  2349:  2309:  2260:  2250:  2188:  2159:  2067:  2014:  1916:Icarus 1879:Icarus 1861:  1851:  1802:  1792:  1739:  1536:  1483:  1289:  1128:  1120:  1068:  987:  751:Q-PACE 641:Comets 601:-rich 515:Uranus 325:  175:expand 169:, the 80:, and 4363:Stars 4232:Other 4097:1–500 4022:Lists 3131:types 3126:Sizes 2837:S2CID 2811:arXiv 2759:S2CID 2654:S2CID 2544:S2CID 2430:S2CID 2331:(PDF) 2291:(PDF) 2222:arXiv 2139:arXiv 2096:arXiv 2065:S2CID 2039:arXiv 2012:S2CID 1986:arXiv 1859:S2CID 1823:arXiv 1800:S2CID 1764:arXiv 1737:S2CID 1711:arXiv 1661:arXiv 1534:S2CID 1508:arXiv 1481:S2CID 1453:arXiv 1314:arXiv 1287:S2CID 1261:arXiv 1126:S2CID 1066:S2CID 1014:(PDF) 947:(PDF) 826:Prezi 563:in a 466:(see 446:, or 228:Stars 78:stars 4221:2024 4216:2023 4211:2022 4206:2021 4201:2020 4196:2019 4191:2018 4186:2017 4181:2016 4176:2015 4171:2014 4166:2013 4161:2012 4156:2011 4151:2010 3866:list 3854:list 3842:list 3825:list 3813:list 3410:and 3128:and 2876:2851 2782:ISBN 2751:PMID 2710:2016 2680:2016 2644:ISBN 2603:ISBN 2573:2016 2536:PMID 2495:2016 2422:PMID 2375:2016 2347:ISBN 2307:ISBN 2258:PMID 2186:ISBN 2157:ISBN 1963:2015 1849:ISBN 1790:ISBN 1634:2015 1118:PMID 985:ISBN 958:2015 951:CERN 924:2008 833:2016 807:2011 739:Nova 679:The 614:ft/s 597:and 517:and 481:and 367:flux 316:fuse 41:, a 35:ALMA 3063:IAU 2829:doi 2807:583 2743:doi 2731:529 2636:doi 2528:doi 2516:406 2465:doi 2453:127 2412:doi 2400:348 2248:PMC 2240:doi 2114:doi 2092:967 2057:doi 2035:789 2004:doi 1982:544 1933:doi 1921:106 1896:doi 1884:128 1841:doi 1782:doi 1729:doi 1707:503 1679:doi 1657:487 1604:doi 1592:233 1562:107 1526:doi 1504:611 1471:doi 1449:890 1419:doi 1407:550 1371:doi 1359:495 1310:282 1279:doi 1257:626 1234:doi 1222:332 1195:336 1165:doi 1153:361 1110:doi 1098:295 1058:doi 977:hdl 892:doi 610:m/s 470:). 400:by 112:of 104:of 48:In 4413:: 4119:K2 2874:. 2835:. 2827:. 2819:. 2805:. 2757:. 2749:. 2741:. 2729:. 2688:^ 2652:. 2642:. 2634:. 2601:. 2581:^ 2564:. 2542:. 2534:. 2526:. 2514:. 2486:. 2463:. 2451:. 2428:. 2420:. 2410:. 2398:. 2392:. 2345:. 2305:. 2270:^ 2256:. 2246:. 2238:. 2230:. 2216:. 2212:. 2200:^ 2155:. 2147:. 2112:. 2104:. 2090:. 2086:. 2063:. 2055:. 2047:. 2033:. 2010:. 2002:. 1994:. 1980:. 1954:. 1931:. 1919:. 1894:. 1882:. 1857:. 1847:. 1839:. 1831:. 1798:. 1788:. 1780:. 1772:. 1749:^ 1735:. 1727:. 1719:. 1705:. 1693:^ 1677:. 1669:. 1655:. 1651:. 1625:. 1602:. 1590:. 1578:^ 1546:^ 1532:. 1524:. 1516:. 1502:. 1479:. 1469:. 1461:. 1447:. 1443:. 1417:. 1405:. 1401:. 1385:^ 1369:. 1357:. 1353:. 1322:. 1308:. 1285:. 1277:. 1269:. 1255:. 1232:. 1220:. 1193:. 1179:^ 1163:. 1151:. 1147:. 1124:. 1116:. 1108:. 1096:. 1078:^ 1064:. 1056:. 1046:98 1044:. 1022:^ 999:^ 983:. 949:. 932:^ 913:. 890:. 880:18 878:. 874:. 855:34 853:. 841:^ 824:. 676:. 584:AU 323:80 270:pc 257:pc 221:pc 151:. 76:, 52:, 4327:: 3715:B 3710:A 3036:e 3029:t 3022:v 2917:e 2910:t 2903:v 2886:. 2882:: 2843:. 2831:: 2823:: 2813:: 2790:. 2765:. 2745:: 2737:: 2712:. 2682:. 2660:. 2638:: 2630:: 2611:. 2575:. 2550:. 2530:: 2522:: 2497:. 2471:. 2467:: 2459:: 2436:. 2414:: 2406:: 2377:. 2355:. 2341:: 2315:. 2301:: 2264:. 2242:: 2234:: 2224:: 2218:1 2194:. 2165:. 2151:: 2141:: 2122:. 2116:: 2108:: 2098:: 2071:. 2059:: 2051:: 2041:: 2018:. 2006:: 1998:: 1988:: 1965:. 1939:. 1935:: 1927:: 1902:. 1898:: 1890:: 1865:. 1843:: 1835:: 1825:: 1806:. 1784:: 1776:: 1766:: 1743:. 1731:: 1723:: 1713:: 1687:. 1681:: 1673:: 1663:: 1636:. 1610:. 1606:: 1598:: 1572:. 1568:: 1540:. 1528:: 1520:: 1510:: 1487:. 1473:: 1465:: 1455:: 1427:. 1421:: 1413:: 1379:. 1373:: 1365:: 1330:. 1326:: 1316:: 1293:. 1281:: 1273:: 1263:: 1240:. 1236:: 1228:: 1205:. 1201:: 1173:. 1167:: 1159:: 1132:. 1112:: 1104:: 1072:. 1060:: 1052:: 979:: 960:. 926:. 898:. 894:: 886:: 865:. 861:: 835:. 809:. 360:M 331:J 328:M 282:× 278:× 245:M 238:— 20:)

Index

Planetary accretion

ALMA
HL Tauri
protoplanetary disk
astrophysics
gravitationally
gaseous
accretion disk
astronomical objects
galaxies
stars
planets
terrestrial planets
Otto Schmidt
William McCrea
Michael Woolfson
Andrew Prentice
Viktor Safronov
planetesimal
interstellar gas
Orion Nebula
angular momentum
accretion disk
Protogalaxy
Big Bang
Universe
expand
dark matter
protogalaxies

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.