Knowledge (XXG)

Place cell

Source πŸ“

429:. One important aspect of episodic memory is the spatial context in which the event occurred. Hippocampal place cells have stable firing patterns even when cues from a location are removed and specific place fields begin firing when exposed to signals or a subset of signals from a previous location. This suggests that place cells provide the spatial context for a memory by recalling the neural representation of the environment in which the memory occurred. By establishing spatial context, place cells play a role in completing memory patterns. Furthermore, place cells are able to maintain a spatial representation of one location while recalling the neural map of a separate location, effectively differentiating between present experience and past memory. Place cells are therefore considered to demonstrate both pattern completion and pattern separation qualities. 326:
information is any kind of spatial input that might indicate a distance between two points. For example, the edges of an environment might signal the size of the overall place field or the distance between two points within a place field. Metric signals can be either linear or directional. Directional inputs provide information about the orientation of a place field, whereas linear inputs essentially form a representational grid. Contextual cues allow established place fields to adapt to minor changes in the environment, such as a change in object color or shape. Metric and contextual inputs are processed together in the
226:, meaning that they are defined with respect to the outside world rather than the body. By orienting based on the environment rather than the individual, place fields can work effectively as neural maps of the environment. A typical place cell will have only one or a few place fields in a small laboratory environment. However, in larger environments, place cells have been shown to contain multiple place fields which are usually irregular. Place cells may also show directionality, meaning they will only fire in a certain location when travelling in a particular direction. 33: 306: 595:. Place cells have been shown to degenerate in Alzheimer's mouse models, which causes such problems with spatial memory in these mice. Furthermore, the place cells in these models have unstable representations of space, and cannot learn stable representations for new environments as well as place cells in healthy mice. The hippocampal theta waves, as well as the gamma waves, that influence place cell firing, for example through phase precession, are also affected. 165:
designed to provide a subject with spatial information. Recent findings, such as a study showing that place cells respond to non-spatial dimensions, such as sound frequency, disagree with the cognitive map theory. Instead, they support a new theory saying that the hippocampus has a more general function encoding continuous variables, and location just happens to be one of those variables. This fits in with the idea that the hippocampus has a predictive function.
394: 125: 302:
in color or shape of an object. This suggests that place cells respond to complex stimuli rather than simple individual sensory cues. According to the functional differentation model, sensory information is processed in various cortical structures upstream of the hippocampus before actually reaching the structure, so that the information received by place cells is a compilation, a functional derivative, of different stimuli.
636:
Contrarily, the CA3 place cells are show increased plasticity in aged subjects. The same place fields in the CA3 region to activate in similar environments, whereas different place fields in young rats would fire in similar environments because they would pick up on subtle differences in these environments. One possible cause of these changes in plasticity may be increased reliance on self-motion cues.
230: 504: 609:
path, connection between place fields are strengthened due to plasticity, causing subsequent place fields to fire more quickly and causing place field expansion, possibly aiding young rats in spatial memory and learning. However, this observed place field expansion and plasticity is decreased in aged rat subjects, possibly reducing their capacity for spatial learning and memory.
274:. Upon entering a place field, place cells will fire in bursts at a particular point in the phase of the underlying theta waves. However, as an animal progresses through the place field, the firing will happen progressively earlier in the phase. It is thought that this phenomenon increases the accuracy of the place coding, and aids in plasticity, which is required for learning. 517:
are available. Additionally mice can be headfixed, allowing for the use of microscopy techniques to look directly into the brain. Though rats and mice have similar place cells dynamics, mice have smaller place cells, and on the same size track have an increase in number of place fields per cell. Additionally, their replay is weaker compared to the replay in rats.
5075: 196: 149:, which also fire only in a particular place, but only when the rat performed an additional behaviour, such as sniffing, which was often correlated with the presence of a novel stimulus, or the absence of an expected stimulus. The findings ultimately supported the cognitive map theory, the idea that the hippocampus hold a spatial representation, a 169: 417:, which are a type of neuron in the entorhinal cortex that relay information to place cells in the hippocampus. Grid cells establish a grid representation of a location, so that during movement place cells can fire according to their new location while orienting according to the reference grid of their external environment. 413:. This is especially the case in the absence of continuous sensory inputs. For example, in an environment with a lack of visuospatial inputs, an animal might search for the environment edge using touch, and discern location based on the distance of its movement from that edge. Path integration is largely aided by 130: 129: 126: 131: 192:. But grid cells may perform a more supporting role in the formation of place fields, such as path integration input. Another non-spatial explanation of hippocampal function suggests that the hippocampus performs clustering of inputs to produce representations of the current context – spatial or non-spatial. 460:, and relay a preliminary representation to form place fields. Place fields are extremely specific, as they are capable of remapping and adjusting firing rates in response to subtle sensory signal changes. This specificity is critical for pattern separation, as it distinguishes memories from one another. 282:
In some cases place cells show directionality, meaning they will only fire in a location when the subject is travelling in a particular direction. However, they may also be omnidirectional, meaning they fire regardless of the direction the subject. The lack of directionality in some place cells might
251:
remapping. When global remapping occurs, most or all of the place cells remap, meaning they lose or gain a place field, or their place field changes its location. Partial remapping means that most place fields are unchanged and only a small portion of the place cells remap. Some of the changes to the
164:
There has also been much debate as to whether hippocampal pyramidal cells truly encode non-spatial information as well as spatial information. According to the cognitive map theory, the hippocampus's primary role is to store spatial information through place cells and the hippocampus was biologically
516:
Both rats and mice are often used as model animals for place cells research. Rats became especially popular after the development of multiarray electrodes, which allows for the simultaneous recording of a large number of cells. However, mice have the advantage that a larger range of genetic variants
360:
Although place cells primarily rely on visuospatial input, some studies suggest that olfactory input may also affect the formation and stability of place fields. Olfaction may compensate for a loss of visual information, or even be responsible for the formation of stable place fields in the same way
242:
Remapping refers to the change in the place field characteristics that occurs when a subject experiences a new environment, or the same environment in a new context. This phenomenon was first reported in 1987, and is thought to play a role in the memory function of the hippocampus. There are broadly
144:
These units were cells that fired in a particular place in the environment, the place field. They are described as having a low resting firing rate (<1 Hz) when a rat is not in its place field, but a particularly high firing rate, which can be over 100 Hz in some cases, within the place
68:
Place-cell firing patterns are often determined by stimuli in the environment such as visual landmarks, and olfactory and vestibular stimuli. Place cells have the ability to suddenly change their firing pattern from one pattern to another, a phenomenon known as remapping. This remapping may occur in
564:
is still debated. Spatial view cells respond to locations that are visually explored by eye movement, or the "view of a space", rather than the location of the monkey's body. In the macaque, cells were recorded while the monkey was driving a motorised cab around the experimental room. Additionally,
543:
for the first time in 2007 by Nachum Ulanovsky and his lab. The place cells in bats have a place field in 3D, which is probably due to the bat flying in three dimensions. The place cells in bats can be based on either vision or echolocation, which remapping taking place when bats switch between the
437:
Pattern completion is the ability to recall an entire memory from a partial or degraded sensory cue. Place cells are able to maintain a stable firing field even after significant signals are removed from a location, suggesting that they can recall a pattern based on only part of the original input.
346:
input. An example is the walls of an environment, which provides information about relative distance and location. Place cells generally rely on set distal cues rather than cues in the immediate proximal environment, though local cues can have a profound impact on local place fields. Visual sensory
301:
Place cells were initially believed to fire in direct relation to simple sensory inputs, but studies have suggested that this may not be the case. Place fields are usually unaffected by large sensory changes, like removing a landmark from an environment, but respond to subtle changes, like a change
160:
in the environment, on environmental boundaries, or on an interaction between the two. Additionally, not all place cells rely on the same external cues. One important distinction in cues is local and distal, where local cues appear in the immediate vicinity of a subject, whereas distal cues are far
608:
region remains the same between young and aged rats, average firing rate in this region is higher in aged rats. Young rats exhibit place field plasticity: when they are moving along a straight path, place fields are activated one after another. When young rats repeatedly traverse the same straight
287:
is one such environment where directionality does occur. In this environment, cells may even have multiple place fields, of which one is strongly directional, while the others are not. In virtual reality corridors, the degree of directionality in the population of place cells is particularly high.
474:
Place cells often exhibit reactivation outside their place fields. This reactivation has a much faster time scale than the actual experience, and it occurs mostly in the same order in which it was originally experienced, or, more rarely, in reverse. Replay is believed to have a functional role in
635:
Aged rats further show a high instability in their place cells in the CA1 region. When introduced to the same environment several times, the hippocampal map of the environment changed about 30% of the time, suggesting that the place cells are remapping in response to the exact same environment.
438:
Furthermore, the pattern completion exhibited by place cells is symmetric, because an entire memory can be retrieved from any part of it. For example, in an object-place association memory, spatial context can be used to recall an object and the object can be used to recall the spatial context.
325:
Sensory information received by place cells can be categorized as either metric or contextual information, where metric information corresponds to where place cells should fire and contextual input corresponds to whether or not a place field should fire in a certain environment. Metric sensory
128: 111:
Place cells were first discovered by John O'Keefe and Jonathan Dostrovsky in 1971 in rats' hippocampuses. They noticed that rats with impairments in their hippocampus performed poorly in spatial tasks, and thus hypothesised that this area must hold some kind of spatial representation of the
217:
of sensory neurons, in that the firing region corresponds to a region of sensory information in the environment. However, unlike receptive fields, place cells show no topography, meaning that two neighboring cells do not necessarily have neighboring place fields. Place cells fire spikes in
188:, pyramidal cells in the entorhinal cortex. This theory suggests that the place fields of the place cells are a combination of several grid cells, which have hexagonal grid-like patterns of activity. The theory has been supported by computational models. The relation may arise through 483:. However, when replay is disturbed, it does not necessarily affect place coding, which means it is not essentially for consolidation in all circumstances. The same sequence of activity may occur before the actual experience. This phenomenon, termed preplay, may have a role in 288:
The directionality of place cells has been shown to emerge as a result of the animal's behaviour. For example, the receptive fields become skewed when rats travel a linear track in a single direction. Recent theoretical studies suggest that place cells encode a
603:
Place field properties, including the rate of firing and spike characteristics such as width and amplitude of the spikes, are largely similar between young and aged rats in the CA1 hippocampal region. However, while the size of place fields in the hippocampal
351:
information. A change in color of a specific object or the walls of the environment can affect whether or not a place cell fires in a particular field. Thus, visuospatial sensory information is critical to the formation and recollection of place field.
499:
Place cells were first discovered in rats, but place cells and place-like cells have since been found in a number of different animals, including rodents, bats and primates. Additionally, evidence for place cells in humans was found in 2003.
161:
away, and act more like landmarks. Individual place cells have been shown to follow either or rely on both. Additionally, the cues on which the place cells rely may depend on previous experience of the subject and the saliency of the cue.
3683:
Hori, Etsuro; Nishio, Yoichi; Kazui, Kenichi; Umeno, Katsumi; Tabuchi, Eiichi; Sasaki, Kazuo; Endo, Shunro; Ono, Taketoshi; Nishijo, Hisao (2005). "Place-related neural responses in the monkey hippocampal formation in a virtual space".
80:– the reactivation of the place cells involved in a certain experience at a much faster timescale. Place cells show alterations with age and disease, such as Alzheimer's disease, which may be involved in a decrease of memory function. 40:
layer of a rat. The rat ran back and forth along an elevated track, stopping at each end to eat a small food reward. Dots indicate positions where action potentials were recorded, with color indicating which neuron emitted that action
65:. Place cells work with other types of neurons in the hippocampus and surrounding regions to perform this kind of spatial processing. They have been found in a variety of animals, including rodents, bats, monkeys and humans. 292:
which maps the current state to the predicted successor states, and that directionality emerges from this formalism. This computational framework also provides an account for the distortion of place fields around obstacles.
120:
in the hippocampus. They noted that some of the cells showed activity when a rat was "situated in a particular part of the testing platform facing in a particular direction". These cells would later be called place cells.
2672:
Bourboulou, Romain; Marti, Geoffrey; Michon, François-Xavier; El Feghaly, Elissa; Nouguier, Morgane; Robbe, David; Koenig, Julie; Epsztein, Jerome (2019-03-01). Burgess, Neil; Behrens, Timothy E; Burke, Sara N (eds.).
373:, such as rotations, can cause changes in place cells firing. After receiving vestibular input some place cells may remap to align with this input, though not all cells will remap and are more reliant on visual cues. 361:
visuospatial cues are. This has been confirmed by a study in a virtual environment that was composed of odor gradients. Change in the olfactory stimulus in an environment may also cause the remapping of place cells.
252:
environment that have been shown to induce remapping include changing the shape or size of the environment, the color of the walls, the smell in the environment, or the relevance of a location to the task at hand.
4839:
Mably, Alexandra J.; Gereke, Brian J.; Jones, Dylan T.; Colgin, Laura Lee (2017). "Impairments in spatial representations and rhythmic coordination of place cells in the 3xTg mouse model of Alzheimer's disease".
578:
Place cell firing rate decreases dramatically after ethanol exposure, causing reduced spatial sensitivity, which has been hypothesised to be the cause of impairments in spatial procession after alcohol exposure.
127: 565:
place-related responses have been found macaques while they navigated in a virtual reality. More recently, place cells may have been identified in the hippocampus of freely moving macaques and marmosets.
135:
This video shows a rat running around in a circular environment (black line) and any time a particular cell is active (red dots). The red dots cluster around one location, which is the place field of the
3780:
Ekstrom, Arne D.; Kahana, Michael J.; Caplan, Jeremy B.; Fields, Tony A.; Isham, Eve A.; Newman, Ehren L.; Fried, Itzhak (2003-09-11). "Cellular networks underlying human spatial navigation".
1989:
McNaughton, B. L.; Barnes, C. A.; O'Keefe, J. (1983-09-01). "The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats".
628:, exhibit decreased activity in aged subjects. The application of memantine leads to in increase in place field plasticity in aged rat subjects. Although memantine aids in the 661: 2968:
Smith, Paul F.; Darlington, Cynthia L.; Zheng, Yiwen (29 April 2009). "Move it or lose itβ€”Is stimulation of the vestibular system necessary for normal spatial memory?".
3629:
Geva-Sagiv, Maya; Las, Liora; Yovel, Yossi; Ulanovsky, Nachum (2015). "Spatial cognition in bats and rats: from sensory acquisition to multiscale maps and navigation".
1887:
Geva-Sagiv, Maya; Las, Liora; Yovel, Yossi; Ulanovsky, Nachum (2015). "Spatial cognition in bats and rats: from sensory acquisition to multiscale maps and navigation".
409:
Movement can also be an important spatial cue. Mice use their self-motion information to determine how far and in which direction they have travelled, a process called
377:
lesions of the vestibular system in patients may cause abnormal firing of hippocampal place cells as evidenced, in part, by difficulties with spatial tasks such as the
5057: 233:
An example of place cell remapping, with the location of the place field of cell 1 changing between environment, and cell 2 losing its place field in environment 2.
2735:
Save, Etienne; Ludek Nerad; Bruno Poucet (23 February 2000). "Contribution of multiple sensory information to place field stability in hippocampal place cells".
3073:
Wiener, S. I.; Korshunov, V. A.; Garcia, R.; Berthoz, A. (1995-11-01). "Inertial, substratal and landmark cue control of hippocampal CA1 place cell activity".
1556:
Behrens, Timothy E. J.; Muller, Timothy H.; Whittington, James C. R.; Mark, Shirley; Baram, Alon B.; Stachenfeld, Kimberly L.; Kurth-Nelson, Zeb (2018-10-24).
624:
which is known to improve spatial memory, and was therefore used in an attempt to restore place field plasticity in aged subjects. NMDA receptors, which are
1844:
Jeffery, Kathryn; Michael Anderson; Robin Hayman; Subhojit Chakraborty (2004). "A proposed architecture for the neural representation of spatial context".
4726:
Delpolyi, AR; Rankin, K; Mucke, L; Miller, BL; Gorno-Tempini, ML (4 September 2007). "Spatial cognition and the human navigation network in AD and MCI".
4331:
Geva-Sagiv, Maya; Romani, Sandro; Las, Liora; Ulanovsky, Nachum (2016). "Hippocampal global remapping for different sensory modalities in flying bats".
334:
inputs are examples of sensory inputs that are utilized by place cells. These types of sensory cues can include both metric and contextual information.
4565:
Hazama, Yutaro; Tamura, Ryoi (2019-05-14). "Effects of self-locomotion on the activity of place cells in the hippocampus of a freely behaving monkey".
4893:"Impairments in experience-dependent scaling and stability of hippocampal place fields limit spatial learning in a mouse model of Alzheimer's disease" 869:
O'Keefe, J.; Dostrovsky, J. (November 1971). "The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat".
4616:
Courellis, Hristos S.; Nummela, Samuel U.; Metke, Michael; Diehl, Geoffrey W.; Bussell, Robert; Cauwenberghs, Gert; Miller, Cory T. (2019-12-09).
3291:
Leutgeb, Stefan; Leutgeb, Jill K; Moser, May-Britt; Moser, Edvard I (2005-12-01). "Place cells, spatial maps and the population code for memory".
456:, a section of the hippocampus involved in memory formation and retrieval. Granule cells in the dentate gyrus process sensory information using 69:
either some of the place cells or in all place cells at once. It may be caused by a number of changes, such as in the odor of the environment.
4027:
Muir, Gary M.; Brown, Joel E.; Carey, John P.; Hirvonen, Timo P.; Santina, Charles C. Della; Minor, Lloyd B.; Taube, Jeffrey S. (2009-11-18).
4514:
Ono, Taketoshi; Nakamura, Kiyomi; Fukuda, Masaji; Tamura, Ryoi (1991-01-02). "Place recognition responses of neurons in monkey hippocampus".
3765: 2843: 84: 544:
two. Bats also have social place cells; this finding was published in Science at the same time as the report of social place cells in rats.
4675:
White, Aaron M.; Matthews, Douglas B.; Best, Phillip J. (2000). "Ethanol, memory, and hippocampal function: A review of recent findings".
3187:
Nakazawa, Kazu; Thomas McHugh; Matthew Wilson; Susumu Tonegawa (May 2004). "NMDA Receptors, Place Cells and Hippocampal Spatial Memory".
689: 1336:
Moser, Edvard I.; Kropff, Emilio; Moser, May-Britt (2008). "Place Cells, Grid Cells, and the Brain's Spatial Representation System".
1270:
Bostock, Elizabeth; Muller, Robert U.; Kubie, John L. (1991). "Experience-dependent modifications of hippocampal place cell firing".
4688: 4476: 4272:
Yartsev, Michael M.; Ulanovsky, Nachum (2013-04-19). "Representation of Three-Dimensional Space in the Hippocampus of Flying Bats".
2748: 1397: 76:. They contain information about the spatial context a memory took place in. And they seem to perform consolidation by exhibiting 605: 88: 3748:
Las, Liora; Ulanovsky, Nachum (2014), Derdikman, Dori; Knierim, James J. (eds.), "Hippocampal Neurophysiology Across Species",
2833: 2778:
Poucet, Bruno; Save, Etienne; Lenck-Santini, Pierre-Pascal (2011). "Sensory and Memory Properties of Hippocampal Place Cells".
841: 222:
at a high frequency inside the place field, but outside of the place field they remain relatively inactive. Place fields are
37: 4192:
Ulanovsky, Nachum; Moss, Cynthia F. (2007). "Hippocampal cellular and network activity in freely moving echolocating bats".
632:
process of spatial information in aged rat subjects, it does not help with the retrieval of this information later in time.
452:
Pattern separation is the ability to differentiate one memory from other stored memories. Pattern separation begins in the
213:
Place cells fire in a specific region of an environment, known as a place field. Place fields are roughly analogous to the
283:
occur particularly in impoverished environments, whereas in more complicated environments directionality is enhanced. The
4029:"Disruption of the Head Direction Cell Signal after Occlusion of the Semicircular Canals in the Freely Moving Chinchilla" 5095: 382: 61:. Place cells are thought to act collectively as a cognitive representation of a specific location in space, known as a 1384:
O'Keefe, John (3 September 1999). "Do hippocampal pyramidal cells signal non-spatial as well as spatial information?".
1154:"Dynamic Interactions between Local Surface Cues, Distal Landmarks, and Intrinsic Circuitry in Hippocampal Place Cells" 527:
Rats furthermore have social place cells, cells which encode the position of other rats. This finding was published in
1117:
Lew, Adena R. (7 February 2011). "Looking beyond the boundaries: Time to put landmarks back on the cognitive map?".
707:"Instability in the Place Field Location of Hippocampal Place Cells after Lesions Centered on the Perirhinal Cortex" 5105: 4247: 321:(DG) and the different hippocampal subfields (CA1 and CA3). Inset shows the wiring between these different areas. 113: 2629:
Jeffery, Kathryn (5 July 2007). "Integration of the Sensory Inputs to Place Cells: What, Where, Why, and How?".
2321:
O'Keefe, J; Recce, M. L. (1993). "Phase relationship between hippocampal place units and the EEG theta rhythm".
289: 4771:"Place cell firing correlates with memory deficits and amyloid plaque burden in Tg2576 Alzheimer mouse model" 5079: 1499: 4463:
Rolls, Edmund T. (1999). "Spatial view cells and the representation of place in the primate hippocampus".
3797: 3138: 1218: 592: 223: 3913:"Comparing Mouse and Rat Hippocampal Place Cell Activities and Firing Sequences in the Same Environments" 5051: 1099: 798: 310: 32: 2584:"Local remapping of place cell firing in the Tolman detour task: Place cell firing and detour behavior" 57:
that becomes active when an animal enters a particular place in its environment, which is known as the
3849:
Wilson, M. A.; McNaughton, B. L. (1993-08-20). "Dynamics of the hippocampal ensemble code for space".
3129:
Smith, David; Sheri Mizumori (10 June 2006). "Hippocampal Place Cells, Context, and Episodic Memory".
4782: 4395: 4281: 4097: 3858: 3789: 3469: 2921: 1789: 1675: 1443: 925: 765:
Jeffery, Kathryn (2007). "Integration of Sensory Inputs to Place Cells: what, where, why, and how?".
656: 480: 457: 3802: 3143: 2105:"The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells" 1223: 816: 617: 4981: 4873: 4751: 4708: 4598: 4547: 4496: 4364: 4313: 4225: 4174: 3890: 3831: 3717: 3662: 3552: 3324: 3212: 3164: 3106: 3014:
Jacob, Pierre-Yves; Poucet, Bruno; Liberge, Martine; Save, Etienne; Sargolini, Francesca (2014).
2993: 2811: 2760: 2654: 2611: 2346: 2082: 2022: 1971: 1920: 1869: 1538: 1409: 1361: 1303: 1252: 1091: 1056: 999: 790: 645: 625: 561: 540: 469: 374: 77: 4891:
Zhao, Rong; Fowler, Stephanie W.; Chiang, Angie C. A.; Ji, Daoyun; Jankowsky, Joanna L. (2014).
4440:"Researchers identify 'social place cells' in the brain that respond to the locations of others" 3972:"Functional imaging of hippocampal place cells at cellular resolution during virtual navigation" 3970:
Dombeck, Daniel A.; Harvey, Christopher D.; Tian, Lin; Looger, Loren L.; Tank, David W. (2010).
2486:"Functional imaging of hippocampal place cells at cellular resolution during virtual navigation" 2484:
Dombeck, Daniel A.; Harvey, Christopher D.; Tian, Lin; Looger, Loren L.; Tank, David W. (2010).
1017:
Eichenbaum, Howard; Dudchenko, Paul; Wood, Emma; Shapiro, Matthew; Tanila, Heikki (1999-06-01).
199:
Place cells are found in the hippocampus, a structure in the medial temporal lobe of the brain.
5039: 4973: 4965: 4930: 4912: 4865: 4857: 4818: 4800: 4743: 4700: 4692: 4657: 4639: 4590: 4582: 4539: 4531: 4488: 4480: 4421: 4413: 4356: 4348: 4305: 4297: 4217: 4209: 4166: 4158: 4123: 4115: 4066: 4048: 4009: 3991: 3952: 3934: 3882: 3874: 3823: 3815: 3761: 3709: 3701: 3654: 3646: 3611: 3593: 3544: 3503: 3485: 3438: 3420: 3381: 3363: 3316: 3308: 3270: 3204: 3156: 3098: 3090: 3055: 3037: 2985: 2947: 2890: 2839: 2803: 2795: 2752: 2714: 2696: 2646: 2603: 2564: 2523: 2505: 2466: 2448: 2406: 2388: 2338: 2298: 2257: 2239: 2193: 2175: 2134: 2074: 2066: 2014: 2006: 1963: 1955: 1912: 1904: 1861: 1817: 1758: 1709: 1691: 1664:"A non-spatial account of place and grid cells based on clustering models of concept learning" 1644: 1626: 1587: 1579: 1530: 1522: 1477: 1459: 1401: 1353: 1295: 1287: 1244: 1236: 1191: 1173: 1134: 1048: 1040: 991: 983: 943: 894: 886: 782: 736: 685: 629: 528: 370: 327: 314: 305: 140:
In 1976, O'Keefe performed a follow-up study, demonstrating the presence of what they called
5100: 5029: 5019: 4957: 4920: 4904: 4849: 4808: 4790: 4735: 4684: 4647: 4629: 4574: 4523: 4472: 4403: 4340: 4289: 4201: 4150: 4105: 4056: 4040: 3999: 3983: 3942: 3924: 3866: 3807: 3753: 3693: 3638: 3601: 3583: 3534: 3493: 3477: 3428: 3412: 3371: 3355: 3300: 3260: 3250: 3196: 3148: 3082: 3045: 3027: 2977: 2937: 2929: 2880: 2872: 2787: 2744: 2704: 2686: 2638: 2595: 2554: 2513: 2497: 2456: 2440: 2396: 2380: 2330: 2288: 2247: 2231: 2183: 2165: 2124: 2116: 2056: 1998: 1947: 1896: 1853: 1807: 1797: 1748: 1740: 1699: 1683: 1634: 1618: 1569: 1514: 1467: 1451: 1393: 1345: 1279: 1228: 1181: 1165: 1126: 1083: 1030: 975: 933: 878: 774: 726: 718: 553: 476: 410: 402: 398: 331: 271: 261: 4769:
Cacucci, Francesca; Yi, Ming; Wills, Thomas J.; Chapman, Paul; O'Keefe, John (2008-06-03).
3401:"The hippocampal sharp wave–ripple in memory retrieval for immediate use and consolidation" 1349: 342:
Spatial cues such as geometric boundaries or orienting landmarks are important examples of
557: 426: 393: 378: 284: 214: 96: 73: 4786: 4439: 4399: 4285: 4101: 3862: 3793: 3473: 2925: 2583: 1793: 1679: 1447: 929: 5034: 5007: 4925: 4892: 4813: 4770: 4739: 4652: 4617: 4061: 4028: 4004: 3971: 3947: 3912: 3606: 3571: 3498: 3457: 3433: 3400: 3376: 3343: 3265: 3238: 3086: 3050: 3015: 2942: 2909: 2885: 2860: 2709: 2674: 2518: 2485: 2461: 2444: 2428: 2401: 2368: 2252: 2235: 2219: 2188: 2153: 2129: 2120: 2104: 1753: 1728: 1704: 1663: 1639: 1606: 1472: 1431: 1186: 1169: 1153: 966:
O'Keefe, John (1976-01-01). "Place units in the hippocampus of the freely moving rat".
731: 722: 706: 588: 189: 50: 2559: 2542: 1035: 1018: 5089: 4527: 2599: 1951: 1812: 1777: 1542: 1095: 979: 882: 621: 453: 447: 318: 156:
There has been much debate as to whether hippocampal place cells function depends on
150: 117: 62: 4755: 4712: 4602: 4551: 4368: 4317: 3894: 3721: 3666: 3556: 3110: 2997: 2861:"Spatial Olfactory Learning Contributes to Place Field Formation in the Hippocampus" 2791: 2764: 2615: 2086: 1924: 1873: 1857: 1365: 1307: 1074:
O'Keefe, John; Nadel, Lynn (1 December 1979). "The Hippocampus as a Cognitive Map".
405:
of distance and direction travelled from a start point to estimate current position.
4985: 4877: 4500: 4229: 4178: 4044: 3835: 3328: 3216: 2815: 2658: 2350: 2026: 1975: 1413: 1256: 1060: 1019:"The Hippocampus, Memory, and Place Cells: Is It Spatial Memory or a Memory Space?" 1003: 794: 229: 92: 4948:
Burke, Sara N.; Barnes, Carol A. (2006). "Neural plasticity in the ageing brain".
3168: 4634: 4578: 3757: 3539: 3522: 3239:"The mechanisms for pattern completion and pattern separation in the hippocampus" 1574: 1557: 1103: 802: 54: 3304: 2933: 2675:"Dynamic control of hippocampal spatial coding resolution by local visual cues" 2384: 2061: 2044: 1727:
O'Keefe, J; Burgess, N; Donnett, J. G.; Jeffery, K. J.; Maguire, E. A. (1998).
1687: 1622: 1209:
Etienne, Ariane S.; Jeffery, Kathryn J. (2004). "Path integration in mammals".
503: 3416: 3359: 1087: 521: 484: 267: 5024: 4969: 4916: 4861: 4804: 4696: 4643: 4586: 4535: 4484: 4417: 4382:
Omer, David B.; Maimon, Shir R.; Las, Liora; Ulanovsky, Nachum (2018-01-12).
4352: 4301: 4213: 4162: 4119: 4052: 3995: 3938: 3929: 3911:
Mou, Xiang; Cheng, Jingheng; Yu, Yan S. W.; Kee, Sara E.; Ji, Daoyun (2018).
3878: 3819: 3705: 3650: 3597: 3489: 3424: 3367: 3312: 3255: 3094: 3041: 3032: 2799: 2700: 2509: 2452: 2392: 2302: 2243: 2179: 2170: 2152:
Latuske, Patrick; Kornienko, Olga; Kohler, Laura; Allen, Kevin (2018-01-04).
2070: 2010: 1959: 1908: 1695: 1630: 1583: 1526: 1498:
Stachenfeld, Kimberly L.; Botvinick, Matthew M.; Gershman, Samuel J. (2017).
1463: 1291: 1240: 1177: 1044: 987: 890: 4795: 4408: 4383: 4293: 4110: 4085: 3870: 2876: 842:"Scientific Background: The Brain's Navigational Place and Grid Cell System" 651: 613: 414: 185: 172: 100: 5043: 4977: 4934: 4869: 4822: 4747: 4704: 4661: 4594: 4492: 4425: 4360: 4309: 4221: 4170: 4127: 4070: 4013: 3956: 3827: 3713: 3658: 3615: 3548: 3507: 3458:"Preplay of future place cell sequences by hippocampal cellular assemblies" 3442: 3385: 3320: 3274: 3208: 3160: 3059: 2989: 2951: 2894: 2807: 2756: 2718: 2650: 2607: 2568: 2527: 2410: 2334: 2261: 2197: 2078: 1916: 1865: 1744: 1713: 1648: 1591: 1534: 1481: 1405: 1357: 1283: 1248: 1195: 1138: 1052: 947: 786: 740: 17: 5074: 4543: 3886: 3588: 3102: 2470: 2342: 2138: 2018: 1821: 1802: 1762: 1432:"Mapping of a non-spatial dimension by the hippocampal/entorhinal circuit" 1299: 995: 898: 145:
field. Additionally, O'Keefe described six special cells, which he called
5008:"Neural protein synthesis during aging: effects on plasticity and memory" 3523:"Generative Predictive Codes by Multiplexed Hippocampal Neuronal Tuplets" 1967: 488: 219: 157: 4154: 3811: 3481: 3016:"Vestibular control of entorhinal cortex activity in spatial navigation" 2691: 2275:
Deadwyler, Sam A.; Breese, Charles R.; Hampson, Robert E. (1989-09-01).
1455: 195: 4908: 4853: 4689:
10.1002/(SICI)1098-1063(2000)10:1<88::AID-HIPO10>3.0.CO;2-L
4477:
10.1002/(SICI)1098-1063(1999)9:4<467::AID-HIPO13>3.0.CO;2-F
3697: 3152: 2981: 2642: 2543:"Experience-Dependent Asymmetric Shape of Hippocampal Receptive Fields" 2293: 2276: 2002: 1938:
O'Keefe, John (1979-01-01). "A review of the hippocampal place cells".
1232: 778: 2749:
10.1002/(SICI)1098-1063(2000)10:1<64::AID-HIPO7>3.0.CO;2-Y
2541:
Mehta, Mayank R.; Quirk, Michael C.; Wilson, Matthew A. (March 2000).
1733:
Philosophical Transactions of the Royal Society B: Biological Sciences
1398:
10.1002/(SICI)1098-1063(1999)9:4<352::AID-HIPO3>3.0.CO;2-1
2220:"Heterogeneous Modulation of Place Cell Firing by Changes in Context" 1558:"What Is a Cognitive Map? Organizing Knowledge for Flexible Behavior" 1130: 175:
and place cells work together to determine the position of the animal
4961: 4344: 3987: 3642: 3200: 2501: 2043:
Colgin, Laura Lee; Moser, Edvard I.; Moser, May-Britt (2008-09-01).
1900: 1518: 938: 913: 4205: 4084:
Danjo, Teruko; Toyoizumi, Taro; Fujisawa, Shigeyoshi (2018-01-12).
3342:Γ“lafsdΓ³ttir, H. Freyja; Bush, Daniel; Barry, Caswell (2018-01-08). 3572:"Reactivation, Replay, and Preplay: How It Might All Fit Together" 520:
In addition to rats and mice, place cells have also been found in
502: 392: 304: 228: 194: 168: 167: 123: 31: 2429:"On the directional firing properties of hippocampal place cells" 591:
and navigation are thought to be one of the early indications of
4618:"Spatial encoding in primate hippocampus during free navigation" 116:, with which they could record the activity of individual cells 3521:
Liu, Kefei; Sibille, Jeremie; Dragoi, George (September 2018).
2427:
Muller, R. U.; Bostock, E.; Taube, J. S.; Kubie, J. L. (1994).
1729:"Place cells, navigational accuracy, and the human hippocampus" 36:
Spatial firing patterns of eight place cells recorded from the
4086:"Spatial representations of self and other in the hippocampus" 531:
at the same time as the report of social place cells in bats.
330:
before reaching the hippocampal place cells. Visuospatial and
1430:
Aronov, Dmitriy; Nevers, Rhino; Tank, David W. (2017-03-29).
2369:"Models of Place and Grid Cell Firing and Theta Rhythmicity" 1776:
Bures J, Fenton AA, Kaminsky Y, Zinyuk L (7 January 1997).
612:
This plasticity can be rescued in aged rats by giving them
5006:
Schimanski, Lesley, A.; Barnes, Carol A. (6 August 2010).
2582:
Alvernhe, Alice; Save, Etienne; Poucet, Bruno (May 2011).
1605:
Bush, Daniel; Barry, Caswell; Burgess, Neil (2014-03-01).
184:
It has been proposed that place cells are derivatives of
2859:
Zhang, Sijie; Denise Manahan-Vaughn (5 September 2013).
2218:
Anderson, Michael I.; Jeffery, Kathryn J. (2003-10-01).
552:
Place-related responses have been found in cells of the
266:
The firing of place cells is timed in relation to local
4141:
Bray, Natasha (2018). "An 'other' kind of place cell".
3344:"The Role of Hippocampal Replay in Memory and Planning" 2963: 2961: 1839: 1837: 1835: 1833: 1831: 27:
Place-activated hippocampus cells found in some mammals
4834: 4832: 3124: 3122: 3120: 1607:"What do grid cells contribute to place cell firing?" 112:
environment. To test this hypothesis, they developed
72:
Place cells are thought to play an important role in
3678: 3676: 2908:
Radvansky, Brad; Daniel Dombeck (26 February 2018).
2045:"Understanding memory through hippocampal remapping" 3750:
Space, Time and Memory in the Hippocampal Formation
662:
List of distinct cell types in the adult human body
648:, primate hippocampal counterpart for visual field. 5001: 4999: 4997: 4995: 3570:Buhry, Laure; Azizi, Amir H.; Cheng, Sen (2011). 3456:Dragoi, George; Tonegawa, Susumu (January 2011). 2277:"Control of place-cell activity in an open field" 2154:"Hippocampal Remapping and Its Entorhinal Origin" 914:"Nobel prize for decoding brain's sense of place" 760: 758: 756: 754: 752: 750: 560:, however, whether these are true place cells or 3232: 3230: 3228: 3226: 817:"The Nobel Prize in Physiology or Medicine 2014" 4775:Proceedings of the National Academy of Sciences 1782:Proceedings of the National Academy of Sciences 1662:Mok, Robert M.; Love, Bradley C. (2019-12-12). 2910:"An olfactory virtual reality system for mice" 3295:. Motor systems / Neurobiology of behaviour. 2367:Burgess, Neil; O’Keefe, John (October 2011). 2316: 2314: 2312: 1379: 1377: 1375: 912:Abbott, Alison; Callaway, Ewen (2014-10-09). 8: 5056:: CS1 maint: multiple names: authors list ( 4384:"Social place-cells in the bat hippocampus" 2730: 2728: 705:Muir, Gary; David K. Bilkey (1 June 2001). 5033: 5023: 4924: 4812: 4794: 4651: 4633: 4407: 4109: 4060: 4003: 3946: 3928: 3801: 3605: 3587: 3538: 3497: 3432: 3375: 3264: 3254: 3142: 3049: 3031: 2941: 2884: 2708: 2690: 2558: 2517: 2460: 2400: 2292: 2251: 2187: 2169: 2128: 2060: 1811: 1801: 1752: 1703: 1638: 1573: 1471: 1222: 1185: 1034: 937: 730: 91:for the discovery of place cells, and to 3399:Joo, Hannah R.; Frank, Loren M. (2018). 1846:Neuroscience & Biobehavioral Reviews 672: 5049: 4248:"The Bat Man: Neuroscience on the Fly" 4241: 4239: 3906: 3904: 3743: 3741: 3739: 3737: 3735: 3733: 3731: 3286: 3284: 3182: 3180: 3178: 3009: 3007: 2827: 2825: 1493: 1491: 1350:10.1146/annurev.neuro.31.061307.090723 425:Place cells play an important role in 3752:, Springer Vienna, pp. 431–461, 3020:Frontiers in Integrative Neuroscience 2835:The Neurobiology of Spatial Behaviour 2422: 2420: 2362: 2360: 2213: 2211: 2209: 2207: 2098: 2096: 2038: 2036: 1500:"The hippocampus as a predictive map" 1425: 1423: 1331: 1329: 1327: 1325: 1323: 1321: 1319: 1317: 85:Nobel Prize in Physiology or Medicine 7: 3075:The European Journal of Neuroscience 2158:Frontiers in Behavioral Neuroscience 2103:Muller, R. U.; Kubie, J. L. (1987). 961: 959: 957: 864: 862: 840:Kiehn, Ole; Forssberg, Hans (2014). 569:Disturbances to place cell function 397:Grid and place cells contribute to 4740:10.1212/01.wnl.0000271376.19515.c6 3917:Frontiers in Cellular Neuroscience 3087:10.1111/j.1460-9568.1995.tb00642.x 2445:10.1523/JNEUROSCI.14-12-07235.1994 2236:10.1523/JNEUROSCI.23-26-08827.2003 2121:10.1523/JNEUROSCI.07-07-01951.1987 1778:"Place cells and place navigation" 1170:10.1523/JNEUROSCI.22-14-06254.2002 723:10.1523/JNEUROSCI.21-11-04016.2001 682:The Hippocampus as a Cognitive Map 25: 4246:Abbott, Alison (September 2018). 3243:Frontiers in Systems Neuroscience 507:A rat with an electrode implanted 464:Reactivation, replay, and preplay 347:inputs can also supply important 58: 5073: 2600:10.1111/j.1460-9568.2011.07653.x 2588:European Journal of Neuroscience 1152:Knierim, James J. (2002-07-15). 5012:Frontiers in Aging Neuroscience 3293:Current Opinion in Neurobiology 2792:10.1515/REVNEURO.2000.11.2-3.95 2373:Current Opinion in Neurobiology 1858:10.1016/j.neubiorev.2003.12.002 4045:10.1523/JNEUROSCI.3450-09.2009 1: 2560:10.1016/S0896-6273(00)81072-7 1338:Annual Review of Neuroscience 1076:Behavioral and Brain Sciences 1036:10.1016/S0896-6273(00)80773-4 539:Place cells were reported in 4635:10.1371/journal.pbio.3000546 4579:10.1016/j.neulet.2019.02.009 4528:10.1016/0304-3940(91)90683-K 3758:10.1007/978-3-7091-1292-2_16 3540:10.1016/j.neuron.2018.07.047 2832:Jeffery, Kathryn J. (2003). 2780:Reviews in the Neurosciences 1952:10.1016/0301-0082(79)90005-4 1575:10.1016/j.neuron.2018.10.002 980:10.1016/0014-4886(76)90055-8 883:10.1016/0006-8993(71)90358-1 383:Morris water navigation task 4950:Nature Reviews Neuroscience 4143:Nature Reviews Neuroscience 3631:Nature Reviews Neuroscience 3405:Nature Reviews Neuroscience 3189:Nature Reviews Neuroscience 2838:. Oxford University Press. 2109:The Journal of Neuroscience 1991:Experimental Brain Research 1889:Nature Reviews Neuroscience 711:The Journal of Neuroscience 448:Dentate gyrus Β§ Memory 401:, a process which sums the 5122: 3305:10.1016/j.conb.2005.10.002 2934:10.1038/s41467-018-03262-4 2385:10.1016/j.conb.2011.07.002 2062:10.1016/j.tins.2008.06.008 1688:10.1038/s41467-019-13760-8 1623:10.1016/j.tins.2013.12.003 467: 445: 259: 180:Relationship to grid cells 114:chronic electrode implants 3417:10.1038/s41583-018-0077-1 3360:10.1016/j.cub.2017.10.073 3237:Rolls, Edmund T. (2013). 1088:10.1017/s0140525x00063949 5025:10.3389/fnagi.2010.00026 3930:10.3389/fncel.2018.00332 3256:10.3389/fnsys.2013.00074 3033:10.3389/fnint.2014.00038 2171:10.3389/fnbeh.2017.00253 1940:Progress in Neurobiology 290:successor representation 243:two types of remapping: 4796:10.1073/pnas.0802908105 4409:10.1126/science.aao3474 4294:10.1126/science.1235338 4111:10.1126/science.aao3898 4033:Journal of Neuroscience 3871:10.1126/science.8351520 2433:Journal of Neuroscience 2224:Journal of Neuroscience 2049:Trends in Neurosciences 1611:Trends in Neurosciences 1158:Journal of Neuroscience 582: 2335:10.1002/hipo.450030307 1745:10.1098/rstb.1998.0287 1284:10.1002/hipo.450010207 1119:Psychological Bulletin 968:Experimental Neurology 847:. Karolinska Institute 680:O'Keefe, John (1978). 508: 406: 322: 234: 200: 176: 137: 42: 2914:Nature Communications 2877:10.1093/cercor/bht239 1803:10.1073/pnas.94.1.343 1668:Nature Communications 506: 396: 311:hippocampal formation 308: 232: 198: 171: 134: 99:for the discovery of 35: 5082:at Wikimedia Commons 4567:Neuroscience Letters 4516:Neuroscience Letters 657:Head direction cells 481:memory consolidation 458:competitive learning 153:of the environment. 5096:Hippocampus (brain) 4787:2008PNAS..105.7863C 4400:2018Sci...359..218O 4333:Nature Neuroscience 4286:2013Sci...340..367Y 4252:Scientific American 4194:Nature Neuroscience 4155:10.1038/nrn.2018.12 4102:2018Sci...359..213D 4039:(46): 14521–14533. 3976:Nature Neuroscience 3863:1993Sci...261.1055W 3857:(5124): 1055–1058. 3812:10.1038/nature01964 3794:2003Natur.425..184E 3589:10.1155/2011/203462 3533:(6): 1329–1341.e6. 3482:10.1038/nature09633 3474:2011Natur.469..397D 2926:2018NatCo...9..839R 2692:10.7554/eLife.44487 2490:Nature Neuroscience 1794:1997PNAS...94..343B 1680:2019NatCo..10.5685M 1507:Nature Neuroscience 1456:10.1038/nature21692 1448:2017Natur.543..719A 930:2014Natur.514..153A 684:. Clarendon Press. 626:glutamate receptors 593:Alzheimer's disease 583:Alzheimer's disease 541:Egyptian fruit bats 338:Visuospatial inputs 270:, a process termed 4909:10.1002/hipo.22283 4854:10.1002/hipo.22697 3698:10.1002/hipo.20108 3153:10.1002/hipo.20208 2982:10.1002/hipo.20588 2643:10.1002/hipo.20322 2294:10.1007/BF03337772 2003:10.1007/BF00237147 1233:10.1002/hipo.10173 779:10.1002/hipo.20322 646:Spatial view cells 574:Effects of alcohol 562:spatial view cells 509: 470:Hippocampal replay 442:Pattern separation 433:Pattern completion 407: 323: 235: 201: 177: 138: 43: 5106:Spatial cognition 5078:Media related to 4781:(22): 7863–7868. 4734:(10): 1986–1997. 4394:(6372): 218–224. 4280:(6130): 367–372. 4254:. Nature Magazine 4096:(6372): 213–218. 3982:(11): 1433–1440. 3788:(6954): 184–188. 3767:978-3-7091-1292-2 3576:Neural Plasticity 3468:(7330): 397–401. 3081:(11): 2206–2219. 2845:978-0-19-851524-1 2496:(11): 1433–1440. 2439:(12): 7235–7251. 2230:(26): 8827–8835. 1739:(1373): 1333–40. 1513:(11): 1643–1653. 1442:(7647): 719–722. 1164:(14): 6254–6264. 717:(11): 4016–4025. 371:vestibular system 369:Stimuli from the 365:Vestibular inputs 328:entorhinal cortex 315:entorhinal cortex 132: 16:(Redirected from 5113: 5077: 5062: 5061: 5055: 5047: 5037: 5027: 5003: 4990: 4989: 4945: 4939: 4938: 4928: 4888: 4882: 4881: 4836: 4827: 4826: 4816: 4798: 4766: 4760: 4759: 4723: 4717: 4716: 4672: 4666: 4665: 4655: 4637: 4628:(12): e3000546. 4613: 4607: 4606: 4562: 4556: 4555: 4511: 4505: 4504: 4460: 4454: 4453: 4451: 4450: 4436: 4430: 4429: 4411: 4379: 4373: 4372: 4328: 4322: 4321: 4269: 4263: 4262: 4260: 4259: 4243: 4234: 4233: 4189: 4183: 4182: 4138: 4132: 4131: 4113: 4081: 4075: 4074: 4064: 4024: 4018: 4017: 4007: 3967: 3961: 3960: 3950: 3932: 3908: 3899: 3898: 3846: 3840: 3839: 3805: 3777: 3771: 3770: 3745: 3726: 3725: 3680: 3671: 3670: 3626: 3620: 3619: 3609: 3591: 3567: 3561: 3560: 3542: 3518: 3512: 3511: 3501: 3453: 3447: 3446: 3436: 3396: 3390: 3389: 3379: 3339: 3333: 3332: 3288: 3279: 3278: 3268: 3258: 3234: 3221: 3220: 3184: 3173: 3172: 3146: 3126: 3115: 3114: 3070: 3064: 3063: 3053: 3035: 3011: 3002: 3001: 2965: 2956: 2955: 2945: 2905: 2899: 2898: 2888: 2856: 2850: 2849: 2829: 2820: 2819: 2775: 2769: 2768: 2732: 2723: 2722: 2712: 2694: 2669: 2663: 2662: 2626: 2620: 2619: 2594:(9): 1696–1705. 2579: 2573: 2572: 2562: 2538: 2532: 2531: 2521: 2481: 2475: 2474: 2464: 2424: 2415: 2414: 2404: 2364: 2355: 2354: 2318: 2307: 2306: 2296: 2272: 2266: 2265: 2255: 2215: 2202: 2201: 2191: 2173: 2149: 2143: 2142: 2132: 2100: 2091: 2090: 2064: 2040: 2031: 2030: 1986: 1980: 1979: 1935: 1929: 1928: 1884: 1878: 1877: 1841: 1826: 1825: 1815: 1805: 1773: 1767: 1766: 1756: 1724: 1718: 1717: 1707: 1659: 1653: 1652: 1642: 1602: 1596: 1595: 1577: 1553: 1547: 1546: 1504: 1495: 1486: 1485: 1475: 1427: 1418: 1417: 1381: 1370: 1369: 1333: 1312: 1311: 1267: 1261: 1260: 1226: 1206: 1200: 1199: 1189: 1149: 1143: 1142: 1131:10.1037/a0022315 1114: 1108: 1107: 1071: 1065: 1064: 1038: 1014: 1008: 1007: 963: 952: 951: 941: 909: 903: 902: 866: 857: 856: 854: 852: 846: 837: 831: 830: 828: 827: 813: 807: 806: 762: 745: 744: 734: 702: 696: 695: 677: 620:that blocks the 554:Japanese macaque 477:memory retrieval 411:path integration 399:path integration 356:Olfactory inputs 313:, including the 272:phase precession 262:Phase precession 256:Phase precession 215:receptive fields 190:Hebbian learning 133: 51:pyramidal neuron 21: 5121: 5120: 5116: 5115: 5114: 5112: 5111: 5110: 5086: 5085: 5070: 5065: 5048: 5005: 5004: 4993: 4962:10.1038/nrn1809 4947: 4946: 4942: 4890: 4889: 4885: 4838: 4837: 4830: 4768: 4767: 4763: 4725: 4724: 4720: 4674: 4673: 4669: 4615: 4614: 4610: 4564: 4563: 4559: 4513: 4512: 4508: 4462: 4461: 4457: 4448: 4446: 4438: 4437: 4433: 4381: 4380: 4376: 4345:10.1038/nn.4310 4330: 4329: 4325: 4271: 4270: 4266: 4257: 4255: 4245: 4244: 4237: 4191: 4190: 4186: 4140: 4139: 4135: 4083: 4082: 4078: 4026: 4025: 4021: 3988:10.1038/nn.2648 3969: 3968: 3964: 3910: 3909: 3902: 3848: 3847: 3843: 3803:10.1.1.408.4443 3779: 3778: 3774: 3768: 3747: 3746: 3729: 3682: 3681: 3674: 3643:10.1038/nrn3888 3628: 3627: 3623: 3569: 3568: 3564: 3520: 3519: 3515: 3455: 3454: 3450: 3411:(12): 744–757. 3398: 3397: 3393: 3348:Current Biology 3341: 3340: 3336: 3290: 3289: 3282: 3236: 3235: 3224: 3201:10.1038/nrn1385 3186: 3185: 3176: 3144:10.1.1.141.1450 3128: 3127: 3118: 3072: 3071: 3067: 3013: 3012: 3005: 2967: 2966: 2959: 2907: 2906: 2902: 2865:Cerebral Cortex 2858: 2857: 2853: 2846: 2831: 2830: 2823: 2786:(2–3): 95–112. 2777: 2776: 2772: 2734: 2733: 2726: 2671: 2670: 2666: 2628: 2627: 2623: 2581: 2580: 2576: 2540: 2539: 2535: 2502:10.1038/nn.2648 2483: 2482: 2478: 2426: 2425: 2418: 2366: 2365: 2358: 2320: 2319: 2310: 2274: 2273: 2269: 2217: 2216: 2205: 2151: 2150: 2146: 2102: 2101: 2094: 2042: 2041: 2034: 1988: 1987: 1983: 1937: 1936: 1932: 1901:10.1038/nrn3888 1886: 1885: 1881: 1843: 1842: 1829: 1775: 1774: 1770: 1726: 1725: 1721: 1661: 1660: 1656: 1604: 1603: 1599: 1555: 1554: 1550: 1519:10.1038/nn.4650 1502: 1497: 1496: 1489: 1429: 1428: 1421: 1383: 1382: 1373: 1335: 1334: 1315: 1269: 1268: 1264: 1224:10.1.1.463.1315 1208: 1207: 1203: 1151: 1150: 1146: 1116: 1115: 1111: 1073: 1072: 1068: 1016: 1015: 1011: 965: 964: 955: 939:10.1038/514153a 911: 910: 906: 868: 867: 860: 850: 848: 844: 839: 838: 834: 825: 823: 815: 814: 810: 764: 763: 748: 704: 703: 699: 692: 679: 678: 674: 670: 642: 601: 585: 576: 571: 558:common marmoset 550: 537: 514: 497: 472: 466: 450: 444: 435: 427:episodic memory 423: 421:Episodic memory 391: 389:Movement inputs 379:radial arm maze 367: 358: 340: 309:Anatomy of the 299: 285:radial arm maze 280: 264: 258: 240: 211: 206: 182: 124: 118:extracellularly 109: 97:May-Britt Moser 87:was awarded to 74:episodic memory 28: 23: 22: 15: 12: 11: 5: 5119: 5117: 5109: 5108: 5103: 5098: 5088: 5087: 5084: 5083: 5069: 5068:External links 5066: 5064: 5063: 4991: 4940: 4903:(8): 963–978. 4883: 4848:(4): 378–392. 4828: 4761: 4718: 4667: 4608: 4557: 4522:(1): 194–198. 4506: 4471:(4): 467–480. 4455: 4431: 4374: 4339:(7): 952–958. 4323: 4264: 4235: 4206:10.1038/nn1829 4200:(2): 224–233. 4184: 4133: 4076: 4019: 3962: 3900: 3841: 3772: 3766: 3727: 3692:(8): 991–996. 3672: 3621: 3562: 3513: 3448: 3391: 3354:(1): R37–R50. 3334: 3299:(6): 738–746. 3280: 3222: 3195:(5): 368–369. 3174: 3137:(9): 716–729. 3116: 3065: 3003: 2957: 2900: 2871:(2): 423–432. 2851: 2844: 2821: 2770: 2724: 2664: 2637:(9): 775–785. 2621: 2574: 2553:(3): 707–715. 2533: 2476: 2416: 2379:(5): 734–744. 2356: 2308: 2287:(3): 221–227. 2267: 2203: 2144: 2115:(7): 1951–68. 2092: 2055:(9): 469–477. 2032: 1981: 1946:(4): 419–439. 1930: 1879: 1852:(2): 201–218. 1827: 1788:(1): 343–350. 1768: 1719: 1654: 1617:(3): 136–145. 1597: 1568:(2): 490–509. 1548: 1487: 1419: 1392:(4): 352–364. 1371: 1313: 1278:(2): 193–205. 1262: 1217:(2): 180–192. 1201: 1144: 1125:(3): 484–507. 1109: 1082:(4): 487–533. 1066: 1029:(2): 209–226. 1009: 953: 904: 877:(1): 171–175. 871:Brain Research 858: 832: 821:Nobelprize.org 808: 773:(9): 775–785. 746: 697: 691:978-0198572060 690: 671: 669: 666: 665: 664: 659: 654: 649: 641: 638: 622:NMDA receptors 600: 597: 589:spatial memory 587:Problems with 584: 581: 575: 572: 570: 567: 549: 546: 536: 533: 513: 510: 496: 493: 468:Main article: 465: 462: 443: 440: 434: 431: 422: 419: 390: 387: 366: 363: 357: 354: 339: 336: 298: 295: 279: 278:Directionality 276: 260:Main article: 257: 254: 247:remapping and 239: 236: 210: 207: 205: 202: 181: 178: 147:misplace units 108: 105: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 5118: 5107: 5104: 5102: 5099: 5097: 5094: 5093: 5091: 5081: 5076: 5072: 5071: 5067: 5059: 5053: 5045: 5041: 5036: 5031: 5026: 5021: 5017: 5013: 5009: 5002: 5000: 4998: 4996: 4992: 4987: 4983: 4979: 4975: 4971: 4967: 4963: 4959: 4955: 4951: 4944: 4941: 4936: 4932: 4927: 4922: 4918: 4914: 4910: 4906: 4902: 4898: 4894: 4887: 4884: 4879: 4875: 4871: 4867: 4863: 4859: 4855: 4851: 4847: 4843: 4835: 4833: 4829: 4824: 4820: 4815: 4810: 4806: 4802: 4797: 4792: 4788: 4784: 4780: 4776: 4772: 4765: 4762: 4757: 4753: 4749: 4745: 4741: 4737: 4733: 4729: 4722: 4719: 4714: 4710: 4706: 4702: 4698: 4694: 4690: 4686: 4682: 4678: 4671: 4668: 4663: 4659: 4654: 4649: 4645: 4641: 4636: 4631: 4627: 4623: 4619: 4612: 4609: 4604: 4600: 4596: 4592: 4588: 4584: 4580: 4576: 4572: 4568: 4561: 4558: 4553: 4549: 4545: 4541: 4537: 4533: 4529: 4525: 4521: 4517: 4510: 4507: 4502: 4498: 4494: 4490: 4486: 4482: 4478: 4474: 4470: 4466: 4459: 4456: 4445: 4441: 4435: 4432: 4427: 4423: 4419: 4415: 4410: 4405: 4401: 4397: 4393: 4389: 4385: 4378: 4375: 4370: 4366: 4362: 4358: 4354: 4350: 4346: 4342: 4338: 4334: 4327: 4324: 4319: 4315: 4311: 4307: 4303: 4299: 4295: 4291: 4287: 4283: 4279: 4275: 4268: 4265: 4253: 4249: 4242: 4240: 4236: 4231: 4227: 4223: 4219: 4215: 4211: 4207: 4203: 4199: 4195: 4188: 4185: 4180: 4176: 4172: 4168: 4164: 4160: 4156: 4152: 4148: 4144: 4137: 4134: 4129: 4125: 4121: 4117: 4112: 4107: 4103: 4099: 4095: 4091: 4087: 4080: 4077: 4072: 4068: 4063: 4058: 4054: 4050: 4046: 4042: 4038: 4034: 4030: 4023: 4020: 4015: 4011: 4006: 4001: 3997: 3993: 3989: 3985: 3981: 3977: 3973: 3966: 3963: 3958: 3954: 3949: 3944: 3940: 3936: 3931: 3926: 3922: 3918: 3914: 3907: 3905: 3901: 3896: 3892: 3888: 3884: 3880: 3876: 3872: 3868: 3864: 3860: 3856: 3852: 3845: 3842: 3837: 3833: 3829: 3825: 3821: 3817: 3813: 3809: 3804: 3799: 3795: 3791: 3787: 3783: 3776: 3773: 3769: 3763: 3759: 3755: 3751: 3744: 3742: 3740: 3738: 3736: 3734: 3732: 3728: 3723: 3719: 3715: 3711: 3707: 3703: 3699: 3695: 3691: 3687: 3679: 3677: 3673: 3668: 3664: 3660: 3656: 3652: 3648: 3644: 3640: 3637:(2): 94–108. 3636: 3632: 3625: 3622: 3617: 3613: 3608: 3603: 3599: 3595: 3590: 3585: 3581: 3577: 3573: 3566: 3563: 3558: 3554: 3550: 3546: 3541: 3536: 3532: 3528: 3524: 3517: 3514: 3509: 3505: 3500: 3495: 3491: 3487: 3483: 3479: 3475: 3471: 3467: 3463: 3459: 3452: 3449: 3444: 3440: 3435: 3430: 3426: 3422: 3418: 3414: 3410: 3406: 3402: 3395: 3392: 3387: 3383: 3378: 3373: 3369: 3365: 3361: 3357: 3353: 3349: 3345: 3338: 3335: 3330: 3326: 3322: 3318: 3314: 3310: 3306: 3302: 3298: 3294: 3287: 3285: 3281: 3276: 3272: 3267: 3262: 3257: 3252: 3248: 3244: 3240: 3233: 3231: 3229: 3227: 3223: 3218: 3214: 3210: 3206: 3202: 3198: 3194: 3190: 3183: 3181: 3179: 3175: 3170: 3166: 3162: 3158: 3154: 3150: 3145: 3140: 3136: 3132: 3125: 3123: 3121: 3117: 3112: 3108: 3104: 3100: 3096: 3092: 3088: 3084: 3080: 3076: 3069: 3066: 3061: 3057: 3052: 3047: 3043: 3039: 3034: 3029: 3025: 3021: 3017: 3010: 3008: 3004: 2999: 2995: 2991: 2987: 2983: 2979: 2975: 2971: 2964: 2962: 2958: 2953: 2949: 2944: 2939: 2935: 2931: 2927: 2923: 2919: 2915: 2911: 2904: 2901: 2896: 2892: 2887: 2882: 2878: 2874: 2870: 2866: 2862: 2855: 2852: 2847: 2841: 2837: 2836: 2828: 2826: 2822: 2817: 2813: 2809: 2805: 2801: 2797: 2793: 2789: 2785: 2781: 2774: 2771: 2766: 2762: 2758: 2754: 2750: 2746: 2742: 2738: 2731: 2729: 2725: 2720: 2716: 2711: 2706: 2702: 2698: 2693: 2688: 2684: 2680: 2676: 2668: 2665: 2660: 2656: 2652: 2648: 2644: 2640: 2636: 2632: 2625: 2622: 2617: 2613: 2609: 2605: 2601: 2597: 2593: 2589: 2585: 2578: 2575: 2570: 2566: 2561: 2556: 2552: 2548: 2544: 2537: 2534: 2529: 2525: 2520: 2515: 2511: 2507: 2503: 2499: 2495: 2491: 2487: 2480: 2477: 2472: 2468: 2463: 2458: 2454: 2450: 2446: 2442: 2438: 2434: 2430: 2423: 2421: 2417: 2412: 2408: 2403: 2398: 2394: 2390: 2386: 2382: 2378: 2374: 2370: 2363: 2361: 2357: 2352: 2348: 2344: 2340: 2336: 2332: 2329:(3): 317–30. 2328: 2324: 2317: 2315: 2313: 2309: 2304: 2300: 2295: 2290: 2286: 2282: 2281:Psychobiology 2278: 2271: 2268: 2263: 2259: 2254: 2249: 2245: 2241: 2237: 2233: 2229: 2225: 2221: 2214: 2212: 2210: 2208: 2204: 2199: 2195: 2190: 2185: 2181: 2177: 2172: 2167: 2163: 2159: 2155: 2148: 2145: 2140: 2136: 2131: 2126: 2122: 2118: 2114: 2110: 2106: 2099: 2097: 2093: 2088: 2084: 2080: 2076: 2072: 2068: 2063: 2058: 2054: 2050: 2046: 2039: 2037: 2033: 2028: 2024: 2020: 2016: 2012: 2008: 2004: 2000: 1996: 1992: 1985: 1982: 1977: 1973: 1969: 1965: 1961: 1957: 1953: 1949: 1945: 1941: 1934: 1931: 1926: 1922: 1918: 1914: 1910: 1906: 1902: 1898: 1895:(2): 94–108. 1894: 1890: 1883: 1880: 1875: 1871: 1867: 1863: 1859: 1855: 1851: 1847: 1840: 1838: 1836: 1834: 1832: 1828: 1823: 1819: 1814: 1809: 1804: 1799: 1795: 1791: 1787: 1783: 1779: 1772: 1769: 1764: 1760: 1755: 1750: 1746: 1742: 1738: 1734: 1730: 1723: 1720: 1715: 1711: 1706: 1701: 1697: 1693: 1689: 1685: 1681: 1677: 1673: 1669: 1665: 1658: 1655: 1650: 1646: 1641: 1636: 1632: 1628: 1624: 1620: 1616: 1612: 1608: 1601: 1598: 1593: 1589: 1585: 1581: 1576: 1571: 1567: 1563: 1559: 1552: 1549: 1544: 1540: 1536: 1532: 1528: 1524: 1520: 1516: 1512: 1508: 1501: 1494: 1492: 1488: 1483: 1479: 1474: 1469: 1465: 1461: 1457: 1453: 1449: 1445: 1441: 1437: 1433: 1426: 1424: 1420: 1415: 1411: 1407: 1403: 1399: 1395: 1391: 1387: 1380: 1378: 1376: 1372: 1367: 1363: 1359: 1355: 1351: 1347: 1343: 1339: 1332: 1330: 1328: 1326: 1324: 1322: 1320: 1318: 1314: 1309: 1305: 1301: 1297: 1293: 1289: 1285: 1281: 1277: 1273: 1266: 1263: 1258: 1254: 1250: 1246: 1242: 1238: 1234: 1230: 1225: 1220: 1216: 1212: 1205: 1202: 1197: 1193: 1188: 1183: 1179: 1175: 1171: 1167: 1163: 1159: 1155: 1148: 1145: 1140: 1136: 1132: 1128: 1124: 1120: 1113: 1110: 1105: 1101: 1097: 1093: 1089: 1085: 1081: 1077: 1070: 1067: 1062: 1058: 1054: 1050: 1046: 1042: 1037: 1032: 1028: 1024: 1020: 1013: 1010: 1005: 1001: 997: 993: 989: 985: 981: 977: 974:(1): 78–109. 973: 969: 962: 960: 958: 954: 949: 945: 940: 935: 931: 927: 924:(7521): 153. 923: 919: 915: 908: 905: 900: 896: 892: 888: 884: 880: 876: 872: 865: 863: 859: 843: 836: 833: 822: 818: 812: 809: 804: 800: 796: 792: 788: 784: 780: 776: 772: 768: 761: 759: 757: 755: 753: 751: 747: 742: 738: 733: 728: 724: 720: 716: 712: 708: 701: 698: 693: 687: 683: 676: 673: 667: 663: 660: 658: 655: 653: 650: 647: 644: 643: 639: 637: 633: 631: 627: 623: 619: 615: 610: 607: 598: 596: 594: 590: 580: 573: 568: 566: 563: 559: 555: 547: 545: 542: 534: 532: 530: 525: 523: 518: 511: 505: 501: 495:Model animals 494: 492: 490: 486: 482: 478: 471: 463: 461: 459: 455: 454:dentate gyrus 449: 441: 439: 432: 430: 428: 420: 418: 416: 412: 404: 400: 395: 388: 386: 384: 380: 376: 372: 364: 362: 355: 353: 350: 345: 337: 335: 333: 329: 320: 319:dentate gyrus 316: 312: 307: 303: 297:Sensory input 296: 294: 291: 286: 277: 275: 273: 269: 263: 255: 253: 250: 246: 237: 231: 227: 225: 221: 216: 208: 203: 197: 193: 191: 187: 179: 174: 170: 166: 162: 159: 154: 152: 151:cognitive map 148: 143: 122: 119: 115: 106: 104: 102: 98: 94: 90: 86: 81: 79: 75: 70: 66: 64: 63:cognitive map 60: 56: 52: 49:is a kind of 48: 39: 34: 30: 19: 5052:cite journal 5015: 5011: 4956:(1): 30–40. 4953: 4949: 4943: 4900: 4896: 4886: 4845: 4841: 4778: 4774: 4764: 4731: 4727: 4721: 4683:(1): 88–93. 4680: 4676: 4670: 4625: 4622:PLOS Biology 4621: 4611: 4570: 4566: 4560: 4519: 4515: 4509: 4468: 4464: 4458: 4447:. Retrieved 4443: 4434: 4391: 4387: 4377: 4336: 4332: 4326: 4277: 4273: 4267: 4256:. Retrieved 4251: 4197: 4193: 4187: 4146: 4142: 4136: 4093: 4089: 4079: 4036: 4032: 4022: 3979: 3975: 3965: 3920: 3916: 3854: 3850: 3844: 3785: 3781: 3775: 3749: 3689: 3685: 3634: 3630: 3624: 3579: 3575: 3565: 3530: 3526: 3516: 3465: 3461: 3451: 3408: 3404: 3394: 3351: 3347: 3337: 3296: 3292: 3246: 3242: 3192: 3188: 3134: 3130: 3078: 3074: 3068: 3023: 3019: 2976:(1): 36–43. 2973: 2969: 2917: 2913: 2903: 2868: 2864: 2854: 2834: 2783: 2779: 2773: 2743:(1): 64–76. 2740: 2736: 2682: 2678: 2667: 2634: 2630: 2624: 2591: 2587: 2577: 2550: 2546: 2536: 2493: 2489: 2479: 2436: 2432: 2376: 2372: 2326: 2322: 2284: 2280: 2270: 2227: 2223: 2161: 2157: 2147: 2112: 2108: 2052: 2048: 1997:(1): 41–49. 1994: 1990: 1984: 1943: 1939: 1933: 1892: 1888: 1882: 1849: 1845: 1785: 1781: 1771: 1736: 1732: 1722: 1671: 1667: 1657: 1614: 1610: 1600: 1565: 1561: 1551: 1510: 1506: 1439: 1435: 1389: 1385: 1344:(1): 69–89. 1341: 1337: 1275: 1271: 1265: 1214: 1210: 1204: 1161: 1157: 1147: 1122: 1118: 1112: 1079: 1075: 1069: 1026: 1022: 1012: 971: 967: 921: 917: 907: 874: 870: 851:September 7, 849:. Retrieved 835: 824:. Retrieved 820: 811: 770: 766: 714: 710: 700: 681: 675: 634: 611: 602: 586: 577: 551: 538: 526: 519: 515: 498: 473: 451: 436: 424: 408: 368: 359: 348: 343: 341: 324: 300: 281: 265: 248: 244: 241: 212: 209:Place fields 183: 163: 155: 146: 142:place units. 141: 139: 110: 89:John O'Keefe 82: 71: 67: 46: 44: 29: 5080:Place cells 4897:Hippocampus 4842:Hippocampus 4677:Hippocampus 4465:Hippocampus 3686:Hippocampus 3131:Hippocampus 2970:Hippocampus 2737:Hippocampus 2631:Hippocampus 2323:Hippocampus 1674:(1): 5685. 1386:Hippocampus 1272:Hippocampus 1211:Hippocampus 918:Nature News 767:Hippocampus 522:chinchillas 268:theta waves 224:allocentric 59:place field 55:hippocampus 18:Place cells 5090:Categories 4449:2020-01-03 4258:2020-01-03 4149:(3): 122. 3582:: 203462. 2920:(1): 839. 2685:: e44487. 826:2014-10-06 668:References 652:Grid cells 618:antagonist 485:prediction 446:See also: 415:grid cells 349:contextual 317:(EC), the 204:Properties 186:grid cells 173:Grid cells 107:Background 101:grid cells 47:place cell 41:potential. 4970:1471-0048 4917:1098-1063 4862:1098-1063 4805:0027-8424 4728:Neurology 4697:1098-1063 4644:1545-7885 4587:0304-3940 4573:: 32–37. 4536:0304-3940 4485:1098-1063 4418:0036-8075 4353:1546-1726 4302:0036-8075 4214:1546-1726 4163:1471-0048 4120:0036-8075 4053:0270-6474 3996:1546-1726 3939:1662-5102 3879:0036-8075 3820:1476-4687 3798:CiteSeerX 3706:1098-1063 3651:1471-0048 3598:2090-5904 3490:0028-0836 3425:1471-0048 3368:0960-9822 3313:0959-4388 3139:CiteSeerX 3095:0953-816X 3042:1662-5145 2800:2191-0200 2701:2050-084X 2510:1546-1726 2453:0270-6474 2393:0959-4388 2303:0889-6313 2244:0270-6474 2180:1662-5153 2071:0166-2236 2011:1432-1106 1960:0301-0082 1909:1471-0048 1696:2041-1723 1631:0166-2236 1584:0896-6273 1543:205441266 1527:1546-1726 1464:0028-0836 1292:1098-1063 1241:1098-1063 1219:CiteSeerX 1178:0270-6474 1104:616519952 1096:144038992 1045:0896-6273 988:0014-4886 891:0006-8993 803:621877128 614:memantine 375:Bilateral 332:olfactory 238:Remapping 158:landmarks 83:The 2014 5044:20802800 4978:16371948 4935:24752989 4870:28032686 4823:18505838 4756:23800745 4748:17785667 4713:12921247 4705:10706220 4662:31815940 4603:72332794 4595:30738872 4552:27398046 4493:10495028 4444:phys.org 4426:29326274 4369:23242606 4361:27239936 4318:21953971 4310:23599496 4222:17220886 4171:29386614 4128:29326273 4071:19923286 4014:20890294 3957:30297987 3895:15611758 3828:12968182 3722:35411577 3714:16108028 3667:18397443 3659:25601780 3616:21918724 3557:52092903 3549:30146305 3508:21179088 3443:30356103 3386:29316421 3321:16263261 3275:24198767 3209:15100719 3161:16897724 3111:10675209 3060:24926239 2998:10344864 2990:19405142 2952:29483530 2895:24008582 2808:10718148 2765:34908637 2757:10706218 2719:30822270 2651:17615579 2616:41211033 2608:21395871 2569:10774737 2528:20890294 2411:21820895 2262:14523083 2198:29354038 2087:17019065 2079:18687478 1925:18397443 1917:25601780 1874:36456584 1866:15172764 1714:31831749 1649:24485517 1592:30359611 1535:28967910 1482:28358077 1406:10495018 1366:16036900 1358:18284371 1308:31246290 1249:15098724 1196:12122084 1139:21299273 1100:ProQuest 1053:10399928 948:25297415 799:ProQuest 787:17615579 741:11356888 640:See also 630:encoding 548:Primates 489:learning 381:and the 5101:Neurons 5035:2928699 4986:1784238 4926:4456091 4878:2904174 4814:2396558 4783:Bibcode 4653:6922474 4544:2020375 4501:7685147 4396:Bibcode 4388:Science 4282:Bibcode 4274:Science 4230:9181649 4179:3267792 4098:Bibcode 4090:Science 4062:2821030 4005:2967725 3948:6160568 3923:: 332. 3887:8351520 3859:Bibcode 3851:Science 3836:1673654 3790:Bibcode 3607:3171894 3499:3104398 3470:Bibcode 3434:6794196 3377:5847173 3329:9770011 3266:3812781 3217:7728258 3103:8563970 3051:4046575 2943:5827522 2922:Bibcode 2886:4380081 2816:1952601 2710:6397000 2659:3141473 2519:2967725 2471:7996172 2462:6576887 2402:3223517 2351:6539236 2343:8353611 2253:6740394 2189:5758554 2164:: 253. 2139:3612226 2130:6568940 2027:6193356 2019:6628596 1976:8022838 1822:8990211 1790:Bibcode 1763:9770226 1754:1692339 1705:6908717 1676:Bibcode 1640:3945817 1473:5492514 1444:Bibcode 1414:1961703 1300:1669293 1257:1646974 1187:6757929 1061:8518920 1004:1113367 996:1261644 926:Bibcode 899:5124915 795:3141473 732:6762702 529:Science 512:Rodents 403:vectors 249:partial 53:in the 5042:  5032:  4984:  4976:  4968:  4933:  4923:  4915:  4876:  4868:  4860:  4821:  4811:  4803:  4754:  4746:  4711:  4703:  4695:  4660:  4650:  4642:  4601:  4593:  4585:  4550:  4542:  4534:  4499:  4491:  4483:  4424:  4416:  4367:  4359:  4351:  4316:  4308:  4300:  4228:  4220:  4212:  4177:  4169:  4161:  4126:  4118:  4069:  4059:  4051:  4012:  4002:  3994:  3955:  3945:  3937:  3893:  3885:  3877:  3834:  3826:  3818:  3800:  3782:Nature 3764:  3720:  3712:  3704:  3665:  3657:  3649:  3614:  3604:  3596:  3555:  3547:  3527:Neuron 3506:  3496:  3488:  3462:Nature 3441:  3431:  3423:  3384:  3374:  3366:  3327:  3319:  3311:  3273:  3263:  3249:: 74. 3215:  3207:  3169:720574 3167:  3159:  3141:  3109:  3101:  3093:  3058:  3048:  3040:  3026:: 38. 2996:  2988:  2950:  2940:  2893:  2883:  2842:  2814:  2806:  2798:  2763:  2755:  2717:  2707:  2699:  2657:  2649:  2614:  2606:  2567:  2547:Neuron 2526:  2516:  2508:  2469:  2459:  2451:  2409:  2399:  2391:  2349:  2341:  2301:  2260:  2250:  2242:  2196:  2186:  2178:  2137:  2127:  2085:  2077:  2069:  2025:  2017:  2009:  1974:  1968:396576 1966:  1958:  1923:  1915:  1907:  1872:  1864:  1820:  1810:  1761:  1751:  1712:  1702:  1694:  1647:  1637:  1629:  1590:  1582:  1562:Neuron 1541:  1533:  1525:  1480:  1470:  1462:  1436:Nature 1412:  1404:  1364:  1356:  1306:  1298:  1290:  1255:  1247:  1239:  1221:  1194:  1184:  1176:  1137:  1102:  1094:  1059:  1051:  1043:  1023:Neuron 1002:  994:  986:  946:  897:  889:  801:  793:  785:  739:  729:  688:  344:metric 245:global 220:bursts 93:Edvard 78:replay 5018:: 1. 4982:S2CID 4874:S2CID 4752:S2CID 4709:S2CID 4599:S2CID 4548:S2CID 4497:S2CID 4365:S2CID 4314:S2CID 4226:S2CID 4175:S2CID 3891:S2CID 3832:S2CID 3718:S2CID 3663:S2CID 3553:S2CID 3325:S2CID 3213:S2CID 3165:S2CID 3107:S2CID 2994:S2CID 2812:S2CID 2761:S2CID 2679:eLife 2655:S2CID 2612:S2CID 2347:S2CID 2083:S2CID 2023:S2CID 1972:S2CID 1921:S2CID 1870:S2CID 1813:19339 1539:S2CID 1503:(PDF) 1410:S2CID 1362:S2CID 1304:S2CID 1253:S2CID 1092:S2CID 1057:S2CID 1000:S2CID 845:(PDF) 791:S2CID 616:, an 599:Aging 136:cell. 5058:link 5040:PMID 4974:PMID 4966:ISSN 4931:PMID 4913:ISSN 4866:PMID 4858:ISSN 4819:PMID 4801:ISSN 4744:PMID 4701:PMID 4693:ISSN 4658:PMID 4640:ISSN 4591:PMID 4583:ISSN 4540:PMID 4532:ISSN 4489:PMID 4481:ISSN 4422:PMID 4414:ISSN 4357:PMID 4349:ISSN 4306:PMID 4298:ISSN 4218:PMID 4210:ISSN 4167:PMID 4159:ISSN 4124:PMID 4116:ISSN 4067:PMID 4049:ISSN 4010:PMID 3992:ISSN 3953:PMID 3935:ISSN 3883:PMID 3875:ISSN 3824:PMID 3816:ISSN 3762:ISBN 3710:PMID 3702:ISSN 3655:PMID 3647:ISSN 3612:PMID 3594:ISSN 3580:2011 3545:PMID 3504:PMID 3486:ISSN 3439:PMID 3421:ISSN 3382:PMID 3364:ISSN 3317:PMID 3309:ISSN 3271:PMID 3205:PMID 3157:PMID 3099:PMID 3091:ISSN 3056:PMID 3038:ISSN 2986:PMID 2948:PMID 2891:PMID 2840:ISBN 2804:PMID 2796:ISSN 2753:PMID 2715:PMID 2697:ISSN 2647:PMID 2604:PMID 2565:PMID 2524:PMID 2506:ISSN 2467:PMID 2449:ISSN 2407:PMID 2389:ISSN 2339:PMID 2299:ISSN 2258:PMID 2240:ISSN 2194:PMID 2176:ISSN 2135:PMID 2075:PMID 2067:ISSN 2015:PMID 2007:ISSN 1964:PMID 1956:ISSN 1913:PMID 1905:ISSN 1862:PMID 1818:PMID 1759:PMID 1710:PMID 1692:ISSN 1645:PMID 1627:ISSN 1588:PMID 1580:ISSN 1531:PMID 1523:ISSN 1478:PMID 1460:ISSN 1402:PMID 1354:PMID 1296:PMID 1288:ISSN 1245:PMID 1237:ISSN 1192:PMID 1174:ISSN 1135:PMID 1049:PMID 1041:ISSN 992:PMID 984:ISSN 944:PMID 895:PMID 887:ISSN 853:2018 783:PMID 737:PMID 686:ISBN 556:and 535:Bats 487:and 479:and 95:and 5030:PMC 5020:doi 4958:doi 4921:PMC 4905:doi 4850:doi 4809:PMC 4791:doi 4779:105 4736:doi 4685:doi 4648:PMC 4630:doi 4575:doi 4571:701 4524:doi 4520:121 4473:doi 4404:doi 4392:359 4341:doi 4290:doi 4278:340 4202:doi 4151:doi 4106:doi 4094:359 4057:PMC 4041:doi 4000:PMC 3984:doi 3943:PMC 3925:doi 3867:doi 3855:261 3808:doi 3786:425 3754:doi 3694:doi 3639:doi 3602:PMC 3584:doi 3535:doi 3494:PMC 3478:doi 3466:469 3429:PMC 3413:doi 3372:PMC 3356:doi 3301:doi 3261:PMC 3251:doi 3197:doi 3149:doi 3083:doi 3046:PMC 3028:doi 2978:doi 2938:PMC 2930:doi 2881:PMC 2873:doi 2788:doi 2745:doi 2705:PMC 2687:doi 2639:doi 2596:doi 2555:doi 2514:PMC 2498:doi 2457:PMC 2441:doi 2397:PMC 2381:doi 2331:doi 2289:doi 2248:PMC 2232:doi 2184:PMC 2166:doi 2125:PMC 2117:doi 2057:doi 1999:doi 1948:doi 1897:doi 1854:doi 1808:PMC 1798:doi 1749:PMC 1741:doi 1737:353 1700:PMC 1684:doi 1635:PMC 1619:doi 1570:doi 1566:100 1515:doi 1468:PMC 1452:doi 1440:543 1394:doi 1346:doi 1280:doi 1229:doi 1182:PMC 1166:doi 1127:doi 1123:137 1084:doi 1031:doi 976:doi 934:doi 922:514 879:doi 775:doi 727:PMC 719:doi 606:CA3 38:CA1 5092:: 5054:}} 5050:{{ 5038:. 5028:. 5014:. 5010:. 4994:^ 4980:. 4972:. 4964:. 4952:. 4929:. 4919:. 4911:. 4901:24 4899:. 4895:. 4872:. 4864:. 4856:. 4846:27 4844:. 4831:^ 4817:. 4807:. 4799:. 4789:. 4777:. 4773:. 4750:. 4742:. 4732:69 4730:. 4707:. 4699:. 4691:. 4681:10 4679:. 4656:. 4646:. 4638:. 4626:17 4624:. 4620:. 4597:. 4589:. 4581:. 4569:. 4546:. 4538:. 4530:. 4518:. 4495:. 4487:. 4479:. 4467:. 4442:. 4420:. 4412:. 4402:. 4390:. 4386:. 4363:. 4355:. 4347:. 4337:19 4335:. 4312:. 4304:. 4296:. 4288:. 4276:. 4250:. 4238:^ 4224:. 4216:. 4208:. 4198:10 4196:. 4173:. 4165:. 4157:. 4147:19 4145:. 4122:. 4114:. 4104:. 4092:. 4088:. 4065:. 4055:. 4047:. 4037:29 4035:. 4031:. 4008:. 3998:. 3990:. 3980:13 3978:. 3974:. 3951:. 3941:. 3933:. 3921:12 3919:. 3915:. 3903:^ 3889:. 3881:. 3873:. 3865:. 3853:. 3830:. 3822:. 3814:. 3806:. 3796:. 3784:. 3760:, 3730:^ 3716:. 3708:. 3700:. 3690:15 3688:. 3675:^ 3661:. 3653:. 3645:. 3635:16 3633:. 3610:. 3600:. 3592:. 3578:. 3574:. 3551:. 3543:. 3531:99 3529:. 3525:. 3502:. 3492:. 3484:. 3476:. 3464:. 3460:. 3437:. 3427:. 3419:. 3409:19 3407:. 3403:. 3380:. 3370:. 3362:. 3352:28 3350:. 3346:. 3323:. 3315:. 3307:. 3297:15 3283:^ 3269:. 3259:. 3245:. 3241:. 3225:^ 3211:. 3203:. 3191:. 3177:^ 3163:. 3155:. 3147:. 3135:16 3133:. 3119:^ 3105:. 3097:. 3089:. 3077:. 3054:. 3044:. 3036:. 3022:. 3018:. 3006:^ 2992:. 2984:. 2974:20 2972:. 2960:^ 2946:. 2936:. 2928:. 2916:. 2912:. 2889:. 2879:. 2869:25 2867:. 2863:. 2824:^ 2810:. 2802:. 2794:. 2784:11 2782:. 2759:. 2751:. 2741:10 2739:. 2727:^ 2713:. 2703:. 2695:. 2681:. 2677:. 2653:. 2645:. 2635:17 2633:. 2610:. 2602:. 2592:33 2590:. 2586:. 2563:. 2551:25 2549:. 2545:. 2522:. 2512:. 2504:. 2494:13 2492:. 2488:. 2465:. 2455:. 2447:. 2437:14 2435:. 2431:. 2419:^ 2405:. 2395:. 2387:. 2377:21 2375:. 2371:. 2359:^ 2345:. 2337:. 2325:. 2311:^ 2297:. 2285:17 2283:. 2279:. 2256:. 2246:. 2238:. 2228:23 2226:. 2222:. 2206:^ 2192:. 2182:. 2174:. 2162:11 2160:. 2156:. 2133:. 2123:. 2111:. 2107:. 2095:^ 2081:. 2073:. 2065:. 2053:31 2051:. 2047:. 2035:^ 2021:. 2013:. 2005:. 1995:52 1993:. 1970:. 1962:. 1954:. 1944:13 1942:. 1919:. 1911:. 1903:. 1893:16 1891:. 1868:. 1860:. 1850:28 1848:. 1830:^ 1816:. 1806:. 1796:. 1786:94 1784:. 1780:. 1757:. 1747:. 1735:. 1731:. 1708:. 1698:. 1690:. 1682:. 1672:10 1670:. 1666:. 1643:. 1633:. 1625:. 1615:37 1613:. 1609:. 1586:. 1578:. 1564:. 1560:. 1537:. 1529:. 1521:. 1511:20 1509:. 1505:. 1490:^ 1476:. 1466:. 1458:. 1450:. 1438:. 1434:. 1422:^ 1408:. 1400:. 1388:. 1374:^ 1360:. 1352:. 1342:31 1340:. 1316:^ 1302:. 1294:. 1286:. 1274:. 1251:. 1243:. 1235:. 1227:. 1215:14 1213:. 1190:. 1180:. 1172:. 1162:22 1160:. 1156:. 1133:. 1121:. 1098:. 1090:. 1078:. 1055:. 1047:. 1039:. 1027:23 1025:. 1021:. 998:. 990:. 982:. 972:51 970:. 956:^ 942:. 932:. 920:. 916:. 893:. 885:. 875:34 873:. 861:^ 819:. 797:. 789:. 781:. 771:17 769:. 749:^ 735:. 725:. 715:21 713:. 709:. 524:. 491:. 385:. 103:. 45:A 5060:) 5046:. 5022:: 5016:2 4988:. 4960:: 4954:7 4937:. 4907:: 4880:. 4852:: 4825:. 4793:: 4785:: 4758:. 4738:: 4715:. 4687:: 4664:. 4632:: 4605:. 4577:: 4554:. 4526:: 4503:. 4475:: 4469:9 4452:. 4428:. 4406:: 4398:: 4371:. 4343:: 4320:. 4292:: 4284:: 4261:. 4232:. 4204:: 4181:. 4153:: 4130:. 4108:: 4100:: 4073:. 4043:: 4016:. 3986:: 3959:. 3927:: 3897:. 3869:: 3861:: 3838:. 3810:: 3792:: 3756:: 3724:. 3696:: 3669:. 3641:: 3618:. 3586:: 3559:. 3537:: 3510:. 3480:: 3472:: 3445:. 3415:: 3388:. 3358:: 3331:. 3303:: 3277:. 3253:: 3247:7 3219:. 3199:: 3193:5 3171:. 3151:: 3113:. 3085:: 3079:7 3062:. 3030:: 3024:8 3000:. 2980:: 2954:. 2932:: 2924:: 2918:9 2897:. 2875:: 2848:. 2818:. 2790:: 2767:. 2747:: 2721:. 2689:: 2683:8 2661:. 2641:: 2618:. 2598:: 2571:. 2557:: 2530:. 2500:: 2473:. 2443:: 2413:. 2383:: 2353:. 2333:: 2327:3 2305:. 2291:: 2264:. 2234:: 2200:. 2168:: 2141:. 2119:: 2113:7 2089:. 2059:: 2029:. 2001:: 1978:. 1950:: 1927:. 1899:: 1876:. 1856:: 1824:. 1800:: 1792:: 1765:. 1743:: 1716:. 1686:: 1678:: 1651:. 1621:: 1594:. 1572:: 1545:. 1517:: 1484:. 1454:: 1446:: 1416:. 1396:: 1390:9 1368:. 1348:: 1310:. 1282:: 1276:1 1259:. 1231:: 1198:. 1168:: 1141:. 1129:: 1106:. 1086:: 1080:2 1063:. 1033:: 1006:. 978:: 950:. 936:: 928:: 901:. 881:: 855:. 829:. 805:. 777:: 743:. 721:: 694:. 20:)

Index

Place cells

CA1
pyramidal neuron
hippocampus
place field
cognitive map
episodic memory
replay
Nobel Prize in Physiology or Medicine
John O'Keefe
Edvard
May-Britt Moser
grid cells
chronic electrode implants
extracellularly
cognitive map
landmarks

Grid cells
grid cells
Hebbian learning

receptive fields
bursts
allocentric

Phase precession
theta waves
phase precession

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑