Knowledge (XXG)

Plasticity (physics)

Source 📝

1449:(the xz shear strain along the xz-GB plane must be equivalent for A and B). In addition, this GB constraint requires that five independent slip systems be activated per crystallite constituting the GB. Notably, because independent slip systems are defined as slip planes on which dislocation migrations cannot be reproduced by any combination of dislocation migrations along other slip system’s planes, the number of geometrical slip systems for a given crystal system - which by definition can be constructed by slip system combinations - is typically greater than that of independent slip systems. Significantly, there is a maximum of five independent slip systems for each of the seven crystal systems, however, not all seven crystal systems acquire this upper limit. In fact, even within a given crystal system, the composition and Bravais lattice diversifies the number of independent slip systems (see the table below). In cases for which crystallites of a polycrystal do not obtain five independent slip systems, the GB condition cannot be met, and thus the time-independent deformation of individual crystallites results in cracks and voids at the GBs of the polycrystal, and soon fracture is realized. Hence, for a given composition and structure, a single crystal with less than five independent slip systems is stronger (exhibiting a greater extent of plasticity) than its polycrystalline form. 1338:) is low, representative of a small amount of applied shear stress necessary to induce a large amount of shear strain. Facile dislocation glide and corresponding flow is attributed to dislocation migration along parallel slip planes only (i.e. one slip system). Moderate impedance to dislocation migration along parallel slip planes is exhibited according to the weak stress field interactions between these dislocations, which heightens with smaller interplanar spacing. Overall, these migrating dislocations within a single slip system act as weak obstacles to flow, and a modest rise in stress is observed in comparison to the yield stress. During the linear hardening stage 2 of flow, the work hardening rate becomes high as considerable stress is required to overcome the stress field interactions of dislocations migrating on non-parallel slip planes (i.e. multiple slip systems), acting as strong obstacles to flow. Much stress is required to drive continual dislocation migration for small strains. The shear flow stress is directly proportional to the square root of the dislocation density (τ 1346:), irrespective of the evolution of dislocation configurations, displaying the reliance of hardening on the number of dislocations present. Regarding this evolution of dislocation configurations, at small strains the dislocation arrangement is a random 3D array of intersecting lines. Moderate strains correspond to cellular dislocation structures of heterogeneous dislocation distribution with large dislocation density at the cell boundaries, and small dislocation density within the cell interior. At even larger strains the cellular dislocation structure reduces in size until a minimum size is achieved. Finally, the work hardening rate becomes low again in the exhaustion/saturation of hardening stage 3 of plastic flow, as small shear stresses produce large shear strains. Notably, instances when multiple slip systems are oriented favorably with respect to the applied stress, the τ 1526:~d ). Therefore, the flow stress of a polycrystal, and hence the polycrystal’s strength, increases with small grain size. The reason for this is that smaller grains have a relatively smaller number of slip planes to be activated, corresponding to a fewer number of dislocations migrating to the GBs, and therefore less stress induced on adjacent grains due to dislocation pile up. In addition, for a given volume of polycrystal, smaller grains present more strong obstacle grain boundaries. These two factors provide an understanding as to why the onset of macroscopic flow in fine-grained polycrystals occurs at larger applied stresses than in coarse-grained polycrystals. 981: 1218: 1505:
governing single crystal time-independent yielding. Eventually, the activated slip planes within the grain interiors will permit dislocation migration to the GB where many dislocations then pile up as geometrically necessary dislocations. This pile up corresponds to strain gradients across individual grains as the dislocation density near the GB is greater than that in the grain interior, imposing a stress on the adjacent grain in contact. When considering the AB bicrystal as a whole, the most favorably oriented slip system in A will not be the that in B, and hence τ
1323: 1633: 132: 1400:
cannot pass from one grain to another across the grain boundary. The following sections explore specific GB requirements for extensive plastic deformation of polycrystals prior to fracture, as well as the influence of microscopic yielding within individual crystallites on macroscopic yielding of the polycrystal. The critical resolved shear stress for polycrystals is defined by Schmid’s law as well (τ
1757: 1540: 38: 1107:
modeling the foam as beams is only valid if the ratio of the density of the foam to the density of the matter is less than 0.3. This is because beams yield axially instead of bending. In closed cell foams, the yield strength is increased if the material is under tension because of the membrane that spans the face of the cells.
1106:
These materials plastically deform when the bending moment exceeds the fully plastic moment. This applies to open cell foams where the bending moment is exerted on the cell walls. The foams can be made of any material with a plastic yield point which includes rigid polymers and metals. This method of
1314:, however plastic flow will still occur due to thermally activated high temperature time-dependent plastic deformation mechanisms such as Nabarro–Herring (NH) and Coble diffusional flow through the lattice and along the single crystal surfaces, respectively, as well as dislocation climb-glide creep. 997:
Most metals show more plasticity when hot than when cold. Lead shows sufficient plasticity at room temperature, while cast iron does not possess sufficient plasticity for any forging operation even when hot. This property is of importance in forming, shaping and extruding operations on metals. Most
993:
Plasticity in a crystal of pure metal is primarily caused by two modes of deformation in the crystal lattice: slip and twinning. Slip is a shear deformation which moves the atoms through many interatomic distances relative to their initial positions. Twinning is the plastic deformation which takes
1517:
between grains A and B is achieved, according to the GB constraint. Thus, for a given composition and structure, a polycrystal with five independent slip systems is stronger (greater extent of plasticity) than its single crystalline form. Correspondingly, the work hardening rate will be higher for
1424:
The GB constraint for polycrystals can be explained by considering a grain boundary in the xz plane between two single crystals A and B of identical composition, structure, and slip systems, but misoriented with respect to each other. To ensure that voids do not form between individually deforming
1083:
materials, the discussion of "dislocations" is inapplicable, since the entire material lacks long range order. These materials can still undergo plastic deformation. Since amorphous materials, like polymers, are not well-ordered, they contain a large amount of free volume, or wasted space. Pulling
1504:
Although the two crystallites A and B discussed in the above section have identical slip systems, they are misoriented with respect to each other, and therefore misoriented with respect to the applied force. Thus, microscopic yielding within a crystallite interior may occur according to the rules
1399:
Plasticity in polycrystals differs substantially from that in single crystals due to the presence of grain boundary (GB) planar defects, which act as very strong obstacles to plastic flow by impeding dislocation migration along the entire length of the activated slip plane(s). Hence, dislocations
1350:
for these systems may be similar and yielding may occur according to dislocation migration along multiple slip systems with non-parallel slip planes, displaying a stage 1 work-hardening rate typically characteristic of stage 2. Lastly, distinction between time-independent plastic deformation in
1012:
Crystalline materials contain uniform planes of atoms organized with long-range order. Planes may slip past each other along their close-packed directions, as is shown on the slip systems page. The result is a permanent change of shape within the crystal and plastic deformation. The presence of
934:
applied to a sample will cause it to behave in an elastic manner. Each increment of load is accompanied by a proportional increment in extension. When the load is removed, the piece returns to its original size. However, once the load exceeds a threshold – the yield strength â€“ the
1139:
Inelastic deformations of rocks and concrete are primarily caused by the formation of microcracks and sliding motions relative to these cracks. At high temperatures and pressures, plastic behavior can also be affected by the motion of dislocations in individual grains in the microstructure.
941:, however, is an approximation and its quality depends on the time frame considered and loading speed. If, as indicated in the graph opposite, the deformation includes elastic deformation, it is also often referred to as "elasto-plastic deformation" or "elastic-plastic deformation". 2019:
Again, a visual representation of the yield surface may be constructed using the above equation, which takes the shape of an ellipse. Inside the surface, materials undergo elastic deformation. Reaching the surface means the material undergoes plastic deformations.
1188:
is the Schmid factor. The Schmid factor comprises two variables λ and φ, defining the angle between the slip plane direction and the tensile force applied, and the angle between the slip plane normal and the tensile force applied, respectively. Notably, because
1045:
The presence of other defects within a crystal may entangle dislocations or otherwise prevent them from gliding. When this happens, plasticity is localized to particular regions in the material. For crystals, these regions of localized plasticity are called
952:, may need increasingly higher stresses to deform further. Generally, plastic deformation is also dependent on the deformation speed, i.e. higher stresses usually have to be applied to increase the rate of deformation. Such materials are said to deform 856:, a non-reversible change of shape in response to applied forces. For example, a solid piece of metal being bent or pounded into a new shape displays plasticity as permanent changes occur within the material itself. In engineering, the transition from 1747:
may be constructed, which provides a visual representation of this concept. Inside of the yield surface, deformation is elastic. On the surface, deformation is plastic. It is impossible for a material to have stress states outside its yield surface.
1355:
Comparison between the time-independent plastic deformation of body centered cubic transition metals and face centered cubic metals, highlighting the critical resolved shear stress, work hardening rate, and necking strain during tensile testing.
1559:(of order d-1 in d dimensions) is a function of the strain tensor. Although this description is accurate when a small part of matter is subjected to increasing loading (such as strain loading), this theory cannot account for irreversibility. 1298:
remains so until region 3 is defined. Notably, in region 2 moderate temperature time-dependent plastic deformation (creep) mechanisms such as solute-drag should be considered. Furthermore, in the high temperature region 3
1650:
criteria are commonly used to determine whether a material has yielded. However, these criteria have proved inadequate for a large range of materials and several other yield criteria are also in widespread use.
1782:
under uniaxial loading, subtracting out hydrostatic stresses, and states that all effective stresses greater than that which causes material failure in uniaxial loading will result in plastic deformation.
1659:
The Tresca criterion is based on the notion that when a material fails, it does so in shear, which is a relatively good assumption when considering metals. Given the principal stress state, we can use
1646:
If the stress exceeds a critical value, as was mentioned above, the material will undergo plastic, or irreversible, deformation. This critical stress can be tensile or compressive. The Tresca and the
1260:*) shear stresses, arising from the stress required to move dislocations in the presence of other dislocations, and the resistance of point defect obstacles to dislocation migration, respectively. At 1717: 1416:
is the weighted Schmid factor. The weighted Schmid factor reflects the least favorably oriented slip system among the most favorably oriented slip systems of the grains constituting the GB.
1161:), initiating dislocation migration along parallel slip planes of a single slip system, thereby defining the transition from elastic to plastic deformation behavior in crystalline materials. 2014: 267: 1624:, uses a set of non-linear, non-integrable equations to describe the set of changes on strain and stress with respect to a previous state and a small increase of deformation. 1121:
Soils, particularly clays, display a significant amount of inelasticity under load. The causes of plasticity in soils can be quite complex and are strongly dependent on the
984:
Plasticity under a spherical nanoindenter in (111) copper. All particles in ideal lattice positions are omitted and the color code refers to the von Mises stress field.
98: 1774:
The Huber–von Mises criterion is based on the Tresca criterion but takes into account the assumption that hydrostatic stresses do not contribute to material failure.
74: 1290:* â†’ 0, representing the elimination of point defect impedance to dislocation migration. Thus the temperature-independent critical resolved shear stress τ 2339: 1518:
the polycrystal than the single crystal, as more stress is required in the polycrystal to produce strains. Importantly, just as with single crystal flow stress, τ
816: 944:
Perfect plasticity is a property of materials to undergo irreversible deformation without any increase in stresses or loads. Plastic materials that have been
1247:
which is required to initiate dislocation glide and equivalently plastic flow. In region 1, the critical resolved shear stress has two components: athermal (
2619: 895:. Such defects are relatively rare in most crystalline materials, but are numerous in some and part of their crystal structure; in such cases, 1125:, chemical composition, and water content. Plastic behavior in soils is caused primarily by the rearrangement of clusters of adjacent grains. 2544: 2308: 2214: 2161: 2107: 2082: 1225:
There are three characteristic regions of the critical resolved shear stress as a function of temperature. In the low temperature region 1 (
2605: 2582: 2563: 2525: 2494: 2400: 2246:
Maaß, Robert; Derlet, Peter M. (January 2018). "Micro-plasticity and recent insights from intermittent and small-scale plasticity".
2189: 2136: 809: 1616:, roughly simultaneously, realized that the plastic deformation of ductile materials could be explained in terms of the theory of 2650: 1760:
The von Mises yield surfaces in principal stress coordinates circumscribes a cylinder around the hydrostatic axis. Also shown is
935:
extension increases more rapidly than in the elastic region; now when the load is removed, some degree of extension will remain.
1669: 782: 1330:
During the easy glide stage 1, the work hardening rate, defined by the change in shear stress with respect to shear strain (
483: 320: 1217: 1084:
these materials in tension opens up these regions and can give materials a hazy appearance. This haziness is the result of
2640: 1116: 1453:
The number of independent slip systems for a given composition (primary material class) and structure (Bravais lattice).
802: 523: 409: 478: 387: 1789: 270: 1567: 2044: 1769: 1663:
to solve for the maximum shear stresses our material will experience and conclude that the material will fail if
1647: 1150:
Time-independent plastic flow in both single crystals and polycrystals is defined by a critical/maximum resolved
853: 394: 223: 148: 2645: 1007: 904: 689: 684: 299: 473: 466: 136: 41: 2442: 2039: 1775: 752: 747: 416: 1513:. Paramount is the fact that macroscopic yielding of the bicrystal is prolonged until the higher value of τ 1621: 1613: 1599: 1583: 304: 2124: 896: 727: 345: 167: 110: 2420: 2362: 2265: 1556: 1134: 1063: 857: 565: 382: 350: 294: 2593: 2029: 1641: 1544: 1221:
The three characteristic regions of the critical resolved shear stress as a function of temperature
1098:. The material may go from an ordered appearance to a "crazy" pattern of strain and stretch marks. 1022: 938: 861: 767: 615: 508: 214: 153: 45: 2480: 2333: 2281: 2255: 2049: 1095: 1030: 787: 421: 377: 372: 105: 77: 53: 2054: 1033:
such as Nitinol wire also exhibit a reversible form of plasticity which is more properly called
1551:
There are several mathematical descriptions of plasticity. One is deformation theory (see e.g.
1322: 83: 2615: 2601: 2578: 2559: 2540: 2521: 2490: 2484: 2416: 2396: 2304: 2210: 2185: 2157: 2132: 2103: 2078: 834: 404: 355: 49: 59: 2513: 2370: 2273: 2034: 1779: 1660: 1059: 1034: 916: 742: 717: 630: 605: 600: 555: 161: 140: 1632: 1609: 1351:
body-centered cubic transition metals and face centered cubic metals is summarized below.
953: 931: 732: 656: 570: 501: 435: 337: 887:. However, the physical mechanisms that cause plastic deformation can vary widely. At a 620: 490: 2457: 2366: 2269: 1547:
showing elastic and plastic deformation regimes for the deformation theory of plasticity
1213:
Critical resolved shear stress dependence on temperature, strain rate, and point defects
2229:
Ziegenhain, Gerolf; and Urbassek, Herbert M.; "Reversible Plasticity in fcc metals" in
1579: 1571: 1552: 1369:
Critical resolved shear stress = high (relatively) & strongly temperature-dependent
1122: 945: 876: 737: 595: 560: 461: 367: 121: 1522:~ρ, but is also inversely proportional to the square root of average grain diameter (τ 980: 131: 2634: 2285: 1744: 1372:
Critical resolved shear stress = low (relatively) & weakly temperature-dependent
777: 610: 115: 2353:
Groves, Geoffrey W.; Kelly, Anthony (1963). "Independent Slip Systems in Crystals".
1761: 1617: 1151: 969: 949: 762: 757: 722: 454: 2277: 1778:
was the first who proposed the criterion of shear energy. Von Mises solves for an
1169:
The critical resolved shear stress for single crystals is defined by Schmid’s law
903:
materials such as rock, concrete and bone, plasticity is caused predominantly by
2388: 2177: 1605: 1237: 900: 892: 888: 772: 675: 2234: 919:, plasticity is mainly a consequence of bubble or cell rearrangements, notably 30:"Plastic material" redirects here. For the material used in manufacturing, see 2374: 1047: 1026: 994:
place along two planes due to a set of forces applied to a given metal piece.
920: 908: 694: 590: 1756: 1587: 1539: 1080: 965: 666: 661: 495: 27:
Non-reversible deformation of a solid material in response to applied forces
17: 1326:
The three stages of time-independent plastic deformation of single crystals
1025:
metals is reversible, as long as there is no material transport in form of
1563: 880: 849: 645: 550: 530: 516: 37: 2445:(1904). "WƂaƛciwa praca odksztaƂcenia jako miara wytezenia materiaƂu". 1575: 1091: 1086: 927: 830: 399: 31: 2100:
Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability
540: 1743:
is the stress under which the material fails in uniaxial loading. A
1441:(the z-axial strain at the GB must be equivalent for A and B), and Δ 2260: 1144:
Time-independent yielding and plastic flow in crystalline materials
1755: 1631: 1538: 1321: 1216: 979: 912: 868: 846: 444: 1562:
Ductile materials can sustain large plastic deformations without
2425:
Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen
1433:(the x-axial strain at the GB must be equivalent for A and B), Δ 884: 872: 867:
Plastic deformation is observed in most materials, particularly
1058:
Microplasticity is a local phenomenon in metals. It occurs for
2303:(Second ed.). Long Grove, Illinois: Waveland Press, Inc. 580: 2421:"Mechanik der festen Körper im plastisch-deformablen Zustand" 1500:
Implications of the grain boundary constraint in polycrystals
1165:
Time-independent yielding and plastic flow in single crystals
998:
metals are rendered plastic by heating and hence shaped hot.
964:
The plasticity of a material is directly proportional to the
1425:
grains, the GB constraint for the bicrystal is as follows: Δ
1021:
On the nanoscale the primary plastic deformation in simple
1395:
Time-independent yielding and plastic flow in polycrystals
2458:"Specific Work of Strain as a Measure of Material Effort" 2180:; Ma, Guo-Wei; Qiang, Hong-Fu; Zhang, Yong-Qiang (2006). 1066:
domain while some local areas are in the plastic domain.
2326:
Deformation and Fatigue of Hexagonal Close Packed Metals
891:
scale, plasticity in metals is usually a consequence of
1712:{\displaystyle \sigma _{1}-\sigma _{3}\geq \sigma _{0}} 1566:. However, even ductile metals will fracture when the 1286:) is defined, where the thermal shear stress component 2537:
Plasticity: Mathematical Theory and Numerical Analysis
1812: 1318:
Stages of time-independent plastic flow, post yielding
2520:. Vol. 7. Oxford: Elsevier. pp. 7068–7071. 2516:(2001). "Plastic Deformation of Cellular Materials". 1792: 1672: 1636:
Comparison of Tresca criterion to Von Mises criterion
226: 86: 62: 1469:
Metal: 5, ceramic (covalent): 5, ceramic (ionic): 2
1461:Primary material class: # Independent slip systems 2008: 1711: 1094:are formed within the material in regions of high 261: 92: 68: 2518:Encyclopedia of Materials: Science and Technology 1590:of a worked piece, so that shaping can continue. 1013:dislocations increases the likelihood of planes. 1184:is the yield strength of the single crystal and 2009:{\displaystyle \sigma _{v}^{2}={\tfrac {1}{2}}} 1412:is the yield strength of the polycrystal and 1377:Work hardening rate = temperature-independent 810: 8: 1570:becomes large enough—this is as a result of 1380:Work hardening rate = temperature-dependent 1008:Slip (materials science) § Slip systems 1574:of the material, which causes it to become 262:{\displaystyle J=-D{\frac {d\varphi }{dx}}} 2338:: CS1 maint: location missing publisher ( 1620:. The mathematical theory of plasticity, 1388:Necking strain decreases with temperature 1268:*, the moderate temperature region 2 (0.25 1062:values where the metal is globally in the 817: 803: 650: 440: 283: 205: 2259: 1994: 1989: 1976: 1971: 1958: 1953: 1934: 1924: 1911: 1895: 1885: 1872: 1856: 1846: 1833: 1811: 1802: 1797: 1791: 1703: 1690: 1677: 1671: 1420:Grain boundary constraint in polycrystals 1385:Necking strain increases with temperature 860:behavior to plastic behavior is known as 239: 225: 85: 61: 2626:. Massachusetts Institute of Technology. 2556:Fundamentals of the Theory of Plasticity 1451: 1353: 130: 36: 2573:Khan, Akhtar S.; Huang, Sujian (1995). 2065: 911:. In cellular materials such as liquid 674: 629: 579: 539: 443: 312: 286: 213: 2489:. New York: McGraw-Hill. p. 369. 2331: 2427:. Mathematisch-Physikalische Klasse. 2393:The Mathematical Theory of Plasticity 1361:Body-centered cubic transition metals 1310:) έ can be low, contributing to low τ 7: 2539:(2nd ed.). New York: Springer. 2535:Han, Weimin; Reddy, B. Daya (2013). 2554:Kachanov, Lazar' Markovich (2004). 2620:"Mechanical Behavior of Materials" 2154:Limit Analysis and Soil Plasticity 1736:is the minimum normal stress, and 25: 2207:Plasticity in Reinforced Concrete 2486:History of Strength of Materials 2301:Mechanical Behavior of Materials 2129:Inelastic analysis of structures 2575:Continuum Theory of Plasticity 2231:Philosophical Magazine Letters 2102:. Cambridge University Press. 2003: 2000: 1946: 1931: 1904: 1892: 1865: 1853: 1826: 1823: 1729:is the maximum normal stress, 948:by prior deformation, such as 1: 2278:10.1016/j.actamat.2017.06.023 2235:DOI 10.1080/09500830903272900 1493:Metal: 2, ceramic (mixed): 2 1240:must be high to achieve high 1117:critical state soil mechanics 154:Yield strength (yield point) 2395:. Oxford University Press. 1764:'s hexagonal yield surface. 1364:Face-centered cubic metals 2667: 2598:Computational Inelasticity 1767: 1639: 1597: 1132: 1114: 1005: 29: 2375:10.1080/14786436308213843 2324:Partridge, Peter (1969). 2299:Courtney, Thomas (2005). 2045:Deformation (engineering) 1770:Von Mises yield criterion 1752:Huber–von Mises criterion 1530:Mathematical descriptions 93:{\displaystyle \epsilon } 76:, shown as a function of 2443:Huber, Maksymilian Tytus 2073:Lubliner, Jacob (2008). 321:Clausius–Duhem (entropy) 271:Fick's laws of diffusion 2651:Deformation (mechanics) 2624:MIT Course Number 3.032 2328:. University of Surrey. 2233:, 89(11):717-723, 2009 2131:. John Wiley and Sons. 2098:Bigoni, Davide (2012). 2040:Deformation (mechanics) 960:Contributing properties 479:Navier–Stokes equations 417:Material failure theory 69:{\displaystyle \sigma } 2481:Timoshenko, Stephen P. 2355:Philosophical Magazine 2209:. J. Ross Publishing. 2205:Chen, Wai-Fah (2007). 2182:Generalized Plasticity 2156:. J. Ross Publishing. 2152:Chen, Wai-Fah (2008). 2010: 1765: 1713: 1637: 1622:flow plasticity theory 1614:Geoffrey Ingram Taylor 1600:Flow plasticity theory 1594:Flow plasticity theory 1548: 1543:An idealized uniaxial 1327: 1222: 985: 845:) is the ability of a 263: 203: 128: 94: 70: 2616:Van Vliet, Krystyn J. 2462:Archives of Mechanics 2447:Czasopismo Techniczne 2011: 1759: 1714: 1635: 1542: 1325: 1220: 1017:Reversible plasticity 983: 897:plastic crystallinity 852:to undergo permanent 474:Bernoulli's principle 467:Archimedes' principle 264: 134: 111:Proportionality limit 100:): 95: 71: 40: 2641:Plasticity (physics) 2594:Hughes, Thomas J. R. 1790: 1670: 1557:Cauchy stress tensor 1135:rock mass plasticity 566:Cohesion (chemistry) 388:Infinitesimal strain 224: 84: 60: 2367:1963PMag....8..877G 2270:2018AcMat.143..338M 2030:Yield (engineering) 1999: 1981: 1963: 1807: 1642:Yield (engineering) 1545:stress-strain curve 1485:Ceramic (ionic): 3 1474:Body centered cubic 1466:Face centered cubic 1454: 1357: 1279: < 0.7 1070:Amorphous materials 1031:Shape-memory alloys 1023:face-centered cubic 976:Physical mechanisms 939:Elastic deformation 843:plastic deformation 484:Poiseuille equation 215:Continuum mechanics 209:Part of a series on 137:stress–strain curve 42:Stress–strain curve 2417:von Mises, Richard 2006: 1985: 1967: 1949: 1821: 1793: 1766: 1709: 1638: 1549: 1535:Deformation theory 1452: 1354: 1328: 1223: 1129:Rocks and concrete 1102:Cellular materials 1096:hydrostatic stress 986: 917:biological tissues 690:Magnetorheological 685:Electrorheological 422:Fracture mechanics 259: 204: 129: 106:True elastic limit 90: 66: 2546:978-1-4614-5939-2 2514:Ashby, Michael F. 2310:978-1-57766-425-3 2216:978-1-932159-74-5 2163:978-1-932159-73-8 2125:BaĆŸant, Zdeněk P. 2109:978-1-107-02541-7 2084:978-0-486-46290-5 2075:Plasticity theory 1820: 1497: 1496: 1392: 1391: 972:of the material. 954:visco-plastically 835:materials science 827: 826: 702: 701: 636: 635: 405:Contact mechanics 328: 327: 257: 177:Apparent stress ( 149:Ultimate strength 50:nonferrous alloys 16:(Redirected from 2658: 2627: 2611: 2588: 2569: 2550: 2531: 2501: 2500: 2476: 2470: 2469: 2468:: 173–190. 2004. 2454: 2439: 2433: 2432: 2413: 2407: 2406: 2385: 2379: 2378: 2350: 2344: 2343: 2337: 2329: 2321: 2315: 2314: 2296: 2290: 2289: 2263: 2243: 2237: 2227: 2221: 2220: 2202: 2196: 2195: 2174: 2168: 2167: 2149: 2143: 2142: 2123:JirĂĄsek, Milan; 2120: 2114: 2113: 2095: 2089: 2088: 2070: 2035:Atterberg limits 2015: 2013: 2012: 2007: 1998: 1993: 1980: 1975: 1962: 1957: 1939: 1938: 1929: 1928: 1916: 1915: 1900: 1899: 1890: 1889: 1877: 1876: 1861: 1860: 1851: 1850: 1838: 1837: 1822: 1813: 1806: 1801: 1780:effective stress 1718: 1716: 1715: 1710: 1708: 1707: 1695: 1694: 1682: 1681: 1655:Tresca criterion 1586:can restore the 1455: 1358: 1303: â‰„ 0.7 1275: <  1035:pseudoelasticity 819: 812: 805: 651: 616:Gay-Lussac's law 606:Combined gas law 556:Capillary action 441: 284: 268: 266: 265: 260: 258: 256: 248: 240: 206: 162:Strain hardening 141:structural steel 99: 97: 96: 91: 75: 73: 72: 67: 44:showing typical 21: 2666: 2665: 2661: 2660: 2659: 2657: 2656: 2655: 2646:Solid mechanics 2631: 2630: 2614: 2608: 2592:Simo, Juan C.; 2591: 2585: 2572: 2566: 2558:. Dover Books. 2553: 2547: 2534: 2528: 2512: 2509: 2507:Further reading 2504: 2497: 2479: 2477: 2473: 2456: 2441: 2440: 2436: 2415: 2414: 2410: 2403: 2387: 2386: 2382: 2361:(89): 877–887. 2352: 2351: 2347: 2330: 2323: 2322: 2318: 2311: 2298: 2297: 2293: 2248:Acta Materialia 2245: 2244: 2240: 2228: 2224: 2217: 2204: 2203: 2199: 2192: 2176: 2175: 2171: 2164: 2151: 2150: 2146: 2139: 2122: 2121: 2117: 2110: 2097: 2096: 2092: 2085: 2072: 2071: 2067: 2063: 2055:Poisson's ratio 2026: 1930: 1920: 1907: 1891: 1881: 1868: 1852: 1842: 1829: 1788: 1787: 1772: 1754: 1742: 1735: 1728: 1699: 1686: 1673: 1668: 1667: 1657: 1644: 1630: 1610:Michael Polanyi 1602: 1596: 1537: 1532: 1525: 1521: 1516: 1512: 1508: 1502: 1458:Bravais lattice 1448: 1444: 1440: 1436: 1432: 1428: 1422: 1411: 1407: 1403: 1397: 1349: 1341: 1320: 1313: 1309: 1297: 1293: 1285: 1274: 1256:) and thermal ( 1255: 1246: 1235: 1215: 1208: 1201: 1183: 1179: 1175: 1167: 1160: 1146: 1137: 1131: 1119: 1113: 1104: 1077: 1072: 1056: 1054:Microplasticity 1043: 1019: 1010: 1004: 991: 978: 962: 932:tensile loading 899:can result. In 841:(also known as 823: 794: 793: 792: 712: 704: 703: 657:Viscoelasticity 648: 638: 637: 625: 575: 571:Surface tension 535: 438: 436:Fluid mechanics 428: 427: 426: 340: 338:Solid mechanics 330: 329: 281: 273: 249: 241: 222: 221: 202: 191:Actual stress ( 187: 173: 144: 127: 126: 82: 81: 58: 57: 35: 28: 23: 22: 15: 12: 11: 5: 2664: 2662: 2654: 2653: 2648: 2643: 2633: 2632: 2629: 2628: 2612: 2606: 2589: 2583: 2570: 2564: 2551: 2545: 2532: 2526: 2508: 2505: 2503: 2502: 2495: 2471: 2455:Translated as 2434: 2408: 2401: 2380: 2345: 2316: 2309: 2291: 2238: 2222: 2215: 2197: 2190: 2169: 2162: 2144: 2137: 2115: 2108: 2090: 2083: 2064: 2062: 2059: 2058: 2057: 2052: 2047: 2042: 2037: 2032: 2025: 2022: 2017: 2016: 2005: 2002: 1997: 1992: 1988: 1984: 1979: 1974: 1970: 1966: 1961: 1956: 1952: 1948: 1945: 1942: 1937: 1933: 1927: 1923: 1919: 1914: 1910: 1906: 1903: 1898: 1894: 1888: 1884: 1880: 1875: 1871: 1867: 1864: 1859: 1855: 1849: 1845: 1841: 1836: 1832: 1828: 1825: 1819: 1816: 1810: 1805: 1800: 1796: 1768:Main article: 1753: 1750: 1740: 1733: 1726: 1720: 1719: 1706: 1702: 1698: 1693: 1689: 1685: 1680: 1676: 1656: 1653: 1640:Main article: 1629: 1628:Yield criteria 1626: 1598:Main article: 1595: 1592: 1580:Heat treatment 1572:work hardening 1536: 1533: 1531: 1528: 1523: 1519: 1514: 1510: 1506: 1501: 1498: 1495: 1494: 1491: 1487: 1486: 1483: 1479: 1478: 1475: 1471: 1470: 1467: 1463: 1462: 1459: 1446: 1442: 1438: 1434: 1430: 1426: 1421: 1418: 1409: 1405: 1401: 1396: 1393: 1390: 1389: 1386: 1382: 1381: 1378: 1374: 1373: 1370: 1366: 1365: 1362: 1347: 1339: 1319: 1316: 1311: 1307: 1295: 1291: 1283: 1272: 1251: 1244: 1233: 1214: 1211: 1206: 1197: 1181: 1177: 1173: 1166: 1163: 1158: 1145: 1142: 1133:Main article: 1130: 1127: 1123:microstructure 1115:Main article: 1112: 1111:Soils and sand 1109: 1103: 1100: 1076: 1073: 1071: 1068: 1055: 1052: 1042: 1039: 1018: 1015: 1006:Main article: 1003: 1000: 990: 987: 977: 974: 961: 958: 825: 824: 822: 821: 814: 807: 799: 796: 795: 791: 790: 785: 780: 775: 770: 765: 760: 755: 750: 745: 740: 735: 730: 725: 720: 714: 713: 710: 709: 706: 705: 700: 699: 698: 697: 692: 687: 679: 678: 672: 671: 670: 669: 664: 659: 649: 644: 643: 640: 639: 634: 633: 627: 626: 624: 623: 618: 613: 608: 603: 598: 593: 587: 584: 583: 577: 576: 574: 573: 568: 563: 561:Chromatography 558: 553: 547: 544: 543: 537: 536: 534: 533: 514: 513: 512: 493: 481: 476: 464: 451: 448: 447: 439: 434: 433: 430: 429: 425: 424: 419: 414: 413: 412: 402: 397: 392: 391: 390: 385: 375: 370: 365: 360: 359: 358: 348: 342: 341: 336: 335: 332: 331: 326: 325: 324: 323: 315: 314: 310: 309: 308: 307: 302: 297: 289: 288: 282: 279: 278: 275: 274: 269: 255: 252: 247: 244: 238: 235: 232: 229: 218: 217: 211: 210: 201: 200: 189: 185: 174: 172: 171: 165: 159: 156: 151: 145: 125: 124: 122:yield strength 118: 113: 108: 102: 101: 89: 65: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2663: 2652: 2649: 2647: 2644: 2642: 2639: 2638: 2636: 2625: 2621: 2617: 2613: 2609: 2607:0-387-97520-9 2603: 2599: 2595: 2590: 2586: 2584:0-471-31043-3 2580: 2576: 2571: 2567: 2565:0-486-43583-0 2561: 2557: 2552: 2548: 2542: 2538: 2533: 2529: 2527:0-08-043152-6 2523: 2519: 2515: 2511: 2510: 2506: 2498: 2496:9780486611877 2492: 2488: 2487: 2482: 2475: 2472: 2467: 2463: 2459: 2452: 2448: 2444: 2438: 2435: 2431:(1): 582–592. 2430: 2426: 2422: 2418: 2412: 2409: 2404: 2402:0-19-850367-9 2398: 2394: 2390: 2384: 2381: 2376: 2372: 2368: 2364: 2360: 2356: 2349: 2346: 2341: 2335: 2327: 2320: 2317: 2312: 2306: 2302: 2295: 2292: 2287: 2283: 2279: 2275: 2271: 2267: 2262: 2257: 2253: 2249: 2242: 2239: 2236: 2232: 2226: 2223: 2218: 2212: 2208: 2201: 2198: 2193: 2191:3-540-25127-8 2187: 2183: 2179: 2173: 2170: 2165: 2159: 2155: 2148: 2145: 2140: 2138:0-471-98716-6 2134: 2130: 2126: 2119: 2116: 2111: 2105: 2101: 2094: 2091: 2086: 2080: 2076: 2069: 2066: 2060: 2056: 2053: 2051: 2048: 2046: 2043: 2041: 2038: 2036: 2033: 2031: 2028: 2027: 2023: 2021: 1995: 1990: 1986: 1982: 1977: 1972: 1968: 1964: 1959: 1954: 1950: 1943: 1940: 1935: 1925: 1921: 1917: 1912: 1908: 1901: 1896: 1886: 1882: 1878: 1873: 1869: 1862: 1857: 1847: 1843: 1839: 1834: 1830: 1817: 1814: 1808: 1803: 1798: 1794: 1786: 1785: 1784: 1781: 1777: 1771: 1763: 1758: 1751: 1749: 1746: 1745:yield surface 1739: 1732: 1725: 1704: 1700: 1696: 1691: 1687: 1683: 1678: 1674: 1666: 1665: 1664: 1662: 1661:Mohr's circle 1654: 1652: 1649: 1643: 1634: 1627: 1625: 1623: 1619: 1615: 1611: 1607: 1601: 1593: 1591: 1589: 1585: 1581: 1577: 1573: 1569: 1565: 1560: 1558: 1554: 1546: 1541: 1534: 1529: 1527: 1499: 1492: 1489: 1488: 1484: 1481: 1480: 1476: 1473: 1472: 1468: 1465: 1464: 1460: 1457: 1456: 1450: 1419: 1417: 1415: 1394: 1387: 1384: 1383: 1379: 1376: 1375: 1371: 1368: 1367: 1363: 1360: 1359: 1352: 1345: 1337: 1333: 1324: 1317: 1315: 1306: 1302: 1289: 1282: 1278: 1271: 1267: 1263: 1259: 1254: 1250: 1243: 1239: 1232: 1228: 1219: 1212: 1210: 1205: 1200: 1196: 1192: 1187: 1172: 1164: 1162: 1157: 1153: 1148: 1143: 1141: 1136: 1128: 1126: 1124: 1118: 1110: 1108: 1101: 1099: 1097: 1093: 1089: 1088: 1082: 1074: 1069: 1067: 1065: 1061: 1053: 1051: 1049: 1041:Shear banding 1040: 1038: 1036: 1032: 1028: 1024: 1016: 1014: 1009: 1001: 999: 995: 988: 982: 975: 973: 971: 967: 959: 957: 955: 951: 947: 942: 940: 936: 933: 929: 924: 922: 918: 914: 910: 906: 902: 898: 894: 890: 886: 882: 878: 874: 870: 865: 863: 859: 855: 851: 848: 844: 840: 836: 832: 820: 815: 813: 808: 806: 801: 800: 798: 797: 789: 786: 784: 781: 779: 776: 774: 771: 769: 766: 764: 761: 759: 756: 754: 751: 749: 746: 744: 741: 739: 736: 734: 731: 729: 726: 724: 721: 719: 716: 715: 708: 707: 696: 693: 691: 688: 686: 683: 682: 681: 680: 677: 673: 668: 665: 663: 660: 658: 655: 654: 653: 652: 647: 642: 641: 632: 628: 622: 619: 617: 614: 612: 609: 607: 604: 602: 601:Charles's law 599: 597: 594: 592: 589: 588: 586: 585: 582: 578: 572: 569: 567: 564: 562: 559: 557: 554: 552: 549: 548: 546: 545: 542: 538: 532: 529: 525: 522: 518: 515: 510: 509:non-Newtonian 507: 503: 499: 498: 497: 494: 492: 489: 485: 482: 480: 477: 475: 472: 468: 465: 463: 460: 456: 453: 452: 450: 449: 446: 442: 437: 432: 431: 423: 420: 418: 415: 411: 408: 407: 406: 403: 401: 398: 396: 395:Compatibility 393: 389: 386: 384: 383:Finite strain 381: 380: 379: 376: 374: 371: 369: 366: 364: 361: 357: 354: 353: 352: 349: 347: 344: 343: 339: 334: 333: 322: 319: 318: 317: 316: 311: 306: 303: 301: 298: 296: 293: 292: 291: 290: 287:Conservations 285: 277: 276: 272: 253: 250: 245: 242: 236: 233: 230: 227: 220: 219: 216: 212: 208: 207: 198: 194: 190: 184: 180: 176: 175: 169: 166: 163: 160: 157: 155: 152: 150: 147: 146: 142: 138: 133: 123: 119: 117: 116:Elastic limit 114: 112: 109: 107: 104: 103: 87: 79: 63: 55: 51: 48:behavior for 47: 43: 39: 33: 19: 2623: 2600:. Springer. 2597: 2574: 2555: 2536: 2517: 2485: 2474: 2465: 2461: 2450: 2446: 2437: 2428: 2424: 2411: 2392: 2389:Hill, Rodney 2383: 2358: 2354: 2348: 2325: 2319: 2300: 2294: 2251: 2247: 2241: 2230: 2225: 2206: 2200: 2184:. Springer. 2181: 2178:Yu, Mao-Hong 2172: 2153: 2147: 2128: 2118: 2099: 2093: 2074: 2068: 2018: 1773: 1737: 1730: 1723: 1721: 1658: 1645: 1618:dislocations 1603: 1561: 1555:) where the 1550: 1503: 1482:Simple cubic 1423: 1413: 1408:/áč), where σ 1398: 1343: 1335: 1331: 1329: 1304: 1300: 1287: 1280: 1276: 1269: 1265: 1261: 1257: 1252: 1248: 1241: 1230: 1226: 1224: 1203: 1198: 1194: 1190: 1185: 1170: 1168: 1155: 1152:shear stress 1149: 1147: 1138: 1120: 1105: 1085: 1078: 1057: 1044: 1020: 1011: 1002:Slip systems 996: 992: 970:malleability 963: 950:cold forming 943: 937: 925: 921:T1 processes 893:dislocations 866: 842: 838: 828: 676:Smart fluids 621:Graham's law 527: 520: 505: 491:Pascal's law 487: 470: 458: 362: 313:Inequalities 196: 192: 182: 178: 18:Plastic flow 2254:: 338–363. 2050:Plastometer 1776:M. T. Huber 1606:Egon Orowan 1553:Hooke's law 1238:strain rate 1180:/m, where σ 1048:shear bands 909:microcracks 889:crystalline 854:deformation 695:Ferrofluids 596:Boyle's law 368:Hooke's law 346:Deformation 139:typical of 2635:Categories 2261:1704.07297 2061:References 1027:cross-slip 839:plasticity 748:Gay-Lussac 711:Scientists 611:Fick's law 591:Atmosphere 410:frictional 363:Plasticity 351:Elasticity 2577:. Wiley. 2334:cite book 2286:119387816 2077:. Dover. 1987:σ 1969:σ 1951:σ 1922:σ 1918:− 1909:σ 1883:σ 1879:− 1870:σ 1844:σ 1840:− 1831:σ 1795:σ 1701:σ 1697:≥ 1688:σ 1684:− 1675:σ 1648:von Mises 1604:In 1934, 1588:ductility 1584:annealing 1490:Hexagonal 1477:Metal: 5 1081:amorphous 989:In metals 966:ductility 926:For many 788:Truesdell 718:Bernoulli 667:Rheometer 662:Rheometry 502:Newtonian 496:Viscosity 246:φ 234:− 88:ϵ 64:σ 2618:(2006). 2596:(1998). 2483:(1953). 2419:(1913). 2391:(1998). 2127:(2002). 2024:See also 1582:such as 1564:fracture 1193:> 1, 1090:, where 946:hardened 930:metals, 881:concrete 862:yielding 850:material 646:Rheology 551:Adhesion 531:Pressure 517:Buoyancy 462:Dynamics 300:Momentum 2453:. LwĂłw. 2363:Bibcode 2266:Bibcode 1576:brittle 1264:=  1236:), the 1092:fibrils 1087:crazing 1075:Crazing 1064:elastic 928:ductile 901:brittle 858:elastic 831:physics 733:Charles 541:Liquids 455:Statics 400:Bending 168:Necking 158:Rupture 120:Offset 80:,  56:,  32:Plastic 2604:  2581:  2562:  2543:  2524:  2493:  2399:  2307:  2284:  2213:  2188:  2160:  2135:  2106:  2081:  1762:Tresca 1722:where 1568:strain 1229:≀ 0.25 1060:stress 883:, and 869:metals 783:Stokes 778:Pascal 768:Navier 763:Newton 753:Graham 728:Cauchy 631:Plasma 526:  524:Mixing 519:  504:  486:  469:  457:  445:Fluids 378:Strain 373:Stress 356:linear 305:Energy 170:region 164:region 78:strain 54:stress 2282:S2CID 2256:arXiv 1202:> 913:foams 885:foams 877:rocks 873:soils 847:solid 758:Hooke 738:Euler 723:Boyle 581:Gases 46:yield 2602:ISBN 2579:ISBN 2560:ISBN 2541:ISBN 2522:ISBN 2491:ISBN 2478:See 2429:1913 2397:ISBN 2340:link 2305:ISBN 2211:ISBN 2186:ISBN 2158:ISBN 2133:ISBN 2104:ISBN 2079:ISBN 1612:and 1524:flow 1520:flow 1515:CRSS 1511:CRSS 1507:CRSS 1402:CRSS 1348:CRSS 1340:flow 1312:CRSS 1292:CRSS 1245:CRSS 1207:CRSS 1174:CRSS 1159:CRSS 968:and 905:slip 833:and 773:Noll 743:Fick 295:Mass 280:Laws 2371:doi 2274:doi 2252:143 1578:. 1509:≠ τ 1445:= Δ 1437:= Δ 1429:= Δ 1294:= τ 1079:In 915:or 907:at 829:In 2637:: 2622:. 2466:56 2464:. 2460:. 2451:22 2449:. 2423:. 2369:. 2357:. 2336:}} 2332:{{ 2280:. 2272:. 2264:. 2250:. 1991:12 1973:31 1955:23 1926:33 1913:11 1887:33 1874:22 1848:22 1835:11 1608:, 1447:xz 1443:xz 1439:zz 1435:zz 1431:xx 1427:xx 1404:=σ 1336:dÎł 1332:dτ 1209:. 1176:=σ 1050:. 1037:. 1029:. 956:. 923:. 879:, 875:, 871:, 864:. 837:, 135:A 2610:. 2587:. 2568:. 2549:. 2530:. 2499:. 2405:. 2377:. 2373:: 2365:: 2359:8 2342:) 2313:. 2288:. 2276:: 2268:: 2258:: 2219:. 2194:. 2166:. 2141:. 2112:. 2087:. 2004:] 2001:) 1996:2 1983:+ 1978:2 1965:+ 1960:2 1947:( 1944:6 1941:+ 1936:2 1932:) 1905:( 1902:+ 1897:2 1893:) 1866:( 1863:+ 1858:2 1854:) 1827:( 1824:[ 1818:2 1815:1 1809:= 1804:2 1799:v 1741:0 1738:σ 1734:3 1731:σ 1727:1 1724:σ 1705:0 1692:3 1679:1 1414:áč 1410:y 1406:y 1344:ρ 1342:~ 1334:/ 1308:m 1305:T 1301:T 1299:( 1296:a 1288:τ 1284:m 1281:T 1277:T 1273:m 1270:T 1266:T 1262:T 1258:τ 1253:a 1249:τ 1242:τ 1234:m 1231:T 1227:T 1204:τ 1199:y 1195:σ 1191:m 1186:m 1182:y 1178:y 1171:τ 1156:τ 1154:( 818:e 811:t 804:v 528:· 521:· 511:) 506:· 500:( 488:· 471:· 459:· 254:x 251:d 243:d 237:D 231:= 228:J 199:) 197:A 195:/ 193:F 188:) 186:0 183:A 181:/ 179:F 143:: 52:( 34:. 20:)

Index

Plastic flow
Plastic

Stress–strain curve
yield
nonferrous alloys
stress
strain
True elastic limit
Proportionality limit
Elastic limit
yield strength

stress–strain curve
structural steel
Ultimate strength
Yield strength (yield point)
Strain hardening
Necking
Continuum mechanics
Fick's laws of diffusion
Mass
Momentum
Energy
Clausius–Duhem (entropy)
Solid mechanics
Deformation
Elasticity
linear
Plasticity

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑