Knowledge

Astrophysical plasma

Source πŸ“

28: 342: 175:
because such astrophysical plasmas could be directly related to the plasmas studied in laboratories. Many of these phenomena seemingly exhibit an array of complex
143:. Other forms of astrophysical plasmas can be influenced by preexisting weak magnetic fields, whose interactions may only be determined directly by 572: 539: 327: 221:
It seems to be a natural consequence of our points of view to assume that the whole of space is filled with electrons and flying electric
281: 282:"Study sheds light on turbulence in astrophysical plasmas: Theoretical analysis uncovers new mechanisms in plasma turbulence" 139:, resulting in a variety of dynamic astrophysical phenomena. These phenomena are sometimes observed in spectra due to the 104:
are observed in some stellar astrophysical phenomena, but they are inconsequential in very low-density gaseous media.
735: 415: 378:; Boldyrev, S.; Forest, C.; Sarff, P. (2009). "Understanding of the role of magnetic fields: Galactic perspective". 767: 198: 638:
Berkowitz, Rachel (April 2018). "Lab experiments mimic the origin and growth of astrophysical magnetic fields".
68:
and forms a plasma. This process breaks matter into its constituent particles which includes negatively charged
762: 144: 172: 757: 752: 81: 156: 108: 77: 682: 647: 610: 484: 397: 307: 176: 148: 528:
Nagy, Andrew F.; Balogh, AndrΓ©; Thomas E. Cravens; Mendillo, Michael; Mueller-Woodarg, Ingo (2008).
152: 715: 510: 474: 387: 375: 210: 194: 27: 568: 535: 502: 323: 690: 655: 618: 492: 356: 315: 214: 42: 233:
Birkeland assumed that most of the mass in the universe should be found in "empty" space.
136: 709: 587:
NASA Study Using Cluster Reveals New Insights Into Solar Wind, NASA, Greenbelt, 2012, p.1
686: 651: 614: 488: 401: 311: 557: 226: 101: 89: 53:
and is commonly observed in space. The accepted view of scientists is that much of the
746: 514: 140: 124: 31: 352: 50: 46: 17: 564: 347: 319: 184: 97: 93: 180: 160: 120: 116: 76:. These electrically charged particles are susceptible to influences by local 65: 506: 351:, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) " 360: 253: 623: 598: 497: 462: 419: 191: 69: 58: 714:. New York and Christiania (now Oslo): H. Aschehoug & Co. p.  659: 54: 694: 673:
Peebles, P. J. E. (1968). "Recombination of the Primeval Plasma".
479: 392: 440: 229:
through its evolution throws off electric corpuscles into space.
85: 64:
When matter becomes sufficiently hot and energetic, it becomes
222: 112: 73: 441:"The Solar Physics and Space Plasma Research Centre (SPRC)" 302:
Chiuderi, C.; Velli, M. (2015). "Particle Orbit Theory".
380:
Astro2010: The Astronomy and Astrophysics Decadal Survey
34:
is a large, low-density cloud of partially ionized gas.
197:, the entire universe was in a plasma state prior to 135:
Plasmas in stars can both generate and interact with
559:
An Introduction to the Ionosphere and Magnetosphere
597:Cade III, William B.; Christina Chan-Park (2015). 556: 254:"Sneak Preview of Survey Telescope Treasure Trove" 107:Astrophysical plasma is often differentiated from 711:The Norwegian Aurora Polaris Expedition 1902–1903 736:US / Russia Collaboration in Plasma Astrophysics 219: 370: 368: 147:or other indirect methods. In particular, the 111:, which typically refers to the plasma of the 461:Owens, Mathew J.; Forsyth, Robert J. (2003). 276: 274: 8: 131:Observing and studying astrophysical plasma 622: 496: 478: 391: 225:of all kinds. We have assumed that each 26: 245: 7: 213:predicted that space is filled with 306:. UNITEXT for Physics. p. 17. 348:Compendium of Chemical Terminology 25: 555:Ratcliffe, John Ashworth (1972). 463:"The Heliospheric Magnetic Field" 209:Norwegian explorer and physicist 88:, and weak fields which exist in 127:of the Earth and other planets. 720:out-of-print, full text online. 599:"The Origin of "Space Weather"" 467:Living Reviews in Solar Physics 1: 304:Basics of Plasma Astrophysics 171:Scientists are interested in 708:Birkeland, Kristian (1908). 418:. 2006-11-26. Archived from 163:consist of diffuse plasmas. 320:10.1007/978-88-470-5280-2_2 49:. It is studied as part of 784: 534:. Springer. pp. 1–2. 167:Possible related phenomena 284:. MIT News. December 2017 416:"Space Physics Textbook" 361:10.1351/goldbook.I03183 82:strong fields generated 72:and positively charged 231: 173:active galactic nuclei 78:electromagnetic fields 61:exists in this state. 35: 675:Astrophysical Journal 157:interplanetary medium 30: 624:10.1002/2014SW001141 531:Comparative Aeronomy 498:10.12942/lrsp-2013-5 422:on December 18, 2008 217:. He wrote in 1913: 149:intergalactic medium 90:star forming regions 39:Astrophysical plasma 687:1968ApJ...153....1P 652:2018PhT....71d..20B 615:2015SpWea..13...99C 489:2013LRSP...10....5O 402:2009astro2010S.175L 312:2015bps..book.....C 179:behaviors, such as 177:magnetohydrodynamic 153:interstellar medium 18:Plasma astrophysics 211:Kristian Birkeland 100:space. Similarly, 36: 768:Stellar phenomena 660:10.1063/PT.3.3891 574:978-0-521-08341-6 541:978-0-387-87824-9 329:978-88-470-5280-2 258:ESO Press Release 16:(Redirected from 775: 721: 719: 705: 699: 698: 670: 664: 663: 635: 629: 628: 626: 594: 588: 585: 579: 578: 562: 552: 546: 545: 525: 519: 518: 500: 482: 458: 452: 451: 449: 448: 437: 431: 430: 428: 427: 412: 406: 405: 395: 372: 363: 340: 334: 333: 299: 293: 292: 290: 289: 278: 269: 268: 266: 264: 250: 80:. This includes 21: 783: 782: 778: 777: 776: 774: 773: 772: 763:Solar phenomena 743: 742: 730: 725: 724: 707: 706: 702: 672: 671: 667: 637: 636: 632: 596: 595: 591: 586: 582: 575: 554: 553: 549: 542: 527: 526: 522: 460: 459: 455: 446: 444: 439: 438: 434: 425: 423: 414: 413: 409: 374: 373: 366: 341: 337: 330: 301: 300: 296: 287: 285: 280: 279: 272: 262: 260: 252: 251: 247: 242: 236: 207: 169: 137:magnetic fields 133: 102:electric fields 45:outside of the 23: 22: 15: 12: 11: 5: 781: 779: 771: 770: 765: 760: 755: 745: 744: 741: 740: 729: 728:External links 726: 723: 722: 700: 695:10.1086/149628 665: 630: 589: 580: 573: 547: 540: 520: 453: 432: 407: 364: 335: 328: 294: 270: 244: 243: 241: 238: 227:stellar system 206: 203: 168: 165: 132: 129: 125:magnetospheres 96:space, and in 57:matter in the 24: 14: 13: 10: 9: 6: 4: 3: 2: 780: 769: 766: 764: 761: 759: 758:Space physics 756: 754: 753:Space plasmas 751: 750: 748: 738: 737: 732: 731: 727: 717: 713: 712: 704: 701: 696: 692: 688: 684: 680: 676: 669: 666: 661: 657: 653: 649: 645: 641: 640:Physics Today 634: 631: 625: 620: 616: 612: 608: 604: 603:Space Weather 600: 593: 590: 584: 581: 576: 570: 566: 561: 560: 551: 548: 543: 537: 533: 530: 524: 521: 516: 512: 508: 504: 499: 494: 490: 486: 481: 476: 472: 468: 464: 457: 454: 442: 436: 433: 421: 417: 411: 408: 403: 399: 394: 389: 385: 381: 377: 371: 369: 365: 362: 358: 354: 350: 349: 344: 339: 336: 331: 325: 321: 317: 313: 309: 305: 298: 295: 283: 277: 275: 271: 259: 255: 249: 246: 239: 237: 234: 230: 228: 224: 218: 216: 212: 205:Early history 204: 202: 200: 199:recombination 196: 193: 188: 186: 185:instabilities 182: 178: 174: 166: 164: 162: 158: 154: 150: 146: 142: 141:Zeeman effect 138: 130: 128: 126: 122: 118: 114: 110: 105: 103: 99: 98:intergalactic 95: 91: 87: 83: 79: 75: 71: 67: 62: 60: 56: 52: 48: 44: 40: 33: 32:Lagoon Nebula 29: 19: 734: 710: 703: 678: 674: 668: 646:(4): 20–22. 643: 639: 633: 606: 602: 592: 583: 558: 550: 532: 529: 523: 470: 466: 456: 445:. Retrieved 435: 424:. Retrieved 420:the original 410: 383: 379: 376:Lazarian, A. 346: 338: 303: 297: 286:. Retrieved 261:. Retrieved 257: 248: 235: 232: 220: 208: 189: 170: 134: 109:space plasma 106: 94:interstellar 63: 51:astrophysics 47:Solar System 38: 37: 565:CUP Archive 161:solar winds 145:polarimetry 121:ionospheres 747:Categories 447:2018-02-23 443:. MIT News 426:2018-02-23 353:Ionization 288:2018-02-20 263:23 January 240:References 181:turbulence 119:, and the 117:solar wind 609:(2): 99. 515:122870891 507:2367-3648 480:1002.2934 393:0902.3618 195:cosmology 70:electrons 473:(1): 5. 192:Big Bang 59:universe 55:baryonic 683:Bibcode 648:Bibcode 611:Bibcode 485:Bibcode 398:Bibcode 386:: 175. 308:Bibcode 66:ionized 571:  538:  513:  505:  326:  215:plasma 155:, the 151:, the 115:, the 43:plasma 681:: 1. 511:S2CID 475:arXiv 388:arXiv 343:IUPAC 92:, in 86:stars 569:ISBN 536:ISBN 503:ISSN 384:2010 324:ISBN 265:2014 223:ions 183:and 159:and 123:and 74:ions 716:720 691:doi 679:153 656:doi 619:doi 493:doi 357:doi 355:". 316:doi 190:In 187:. 113:Sun 84:by 41:is 749:: 689:. 677:. 654:. 644:71 642:. 617:. 607:13 605:. 601:. 567:. 563:. 509:. 501:. 491:. 483:. 471:10 469:. 465:. 396:. 382:. 367:^ 345:, 322:. 314:. 273:^ 256:. 201:. 739:" 733:" 718:. 697:. 693:: 685:: 662:. 658:: 650:: 627:. 621:: 613:: 577:. 544:. 517:. 495:: 487:: 477:: 450:. 429:. 404:. 400:: 390:: 359:: 332:. 318:: 310:: 291:. 267:. 20:)

Index

Plasma astrophysics

Lagoon Nebula
plasma
Solar System
astrophysics
baryonic
universe
ionized
electrons
ions
electromagnetic fields
strong fields generated
stars
star forming regions
interstellar
intergalactic
electric fields
space plasma
Sun
solar wind
ionospheres
magnetospheres
magnetic fields
Zeeman effect
polarimetry
intergalactic medium
interstellar medium
interplanetary medium
solar winds

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑