Knowledge (XXG)

Plethystic exponential

Source đź“ť

868: 2176: 684: 455: 1955: 1746: 695: 1584: 1142: 529: 700: 534: 1859: 1012: 1441: 1950: 1221: 928: 253: 313: 941:
The plethystic exponential can be used to provide innumerous product-sum identities. This is a consequence of a product formula for plethystic exponentials themselves. If
490: 521: 344: 1895: 1372: 1345: 1314: 1287: 1248: 1039: 900: 352: 147: 187: 167: 1044: 1590: 863:{\displaystyle {\begin{aligned}{\text{PE}}&={\frac {1}{1-x^{n}}},n\in \mathbb {N} \\{\text{PE}}\left&=1+\sum _{n\geq 1}p(n)x^{n}\end{aligned}}} 1251: 106:, the plethystic exponential of a certain geometric/topologic invariant of a space, determines the corresponding invariant of its symmetric products. 49: 2171:{\displaystyle {\text{PE}}=\prod _{k=0}^{d}\left(1-t^{k}x\right)^{(-1)^{k+1}b_{k}(X)}=\sum _{n\geq 0}P_{\operatorname {Sym} ^{n}(X)}(-t)\,x^{n}} 1453: 2241: 1774: 679:{\displaystyle {\begin{aligned}{\text{PE}}&=1\\{\text{PE}}&={\text{PE}}{\text{PE}}\\{\text{PE}}&={\text{PE}}^{-1}\end{aligned}}} 2414: 1317: 45: 1144:
The analogous product expression also holds in the many variables case. One particularly interesting case is its relation to
53: 2299: 944: 2484: 92: 1377: 2190: 1916: 88: 1167: 84: 1769: 1444: 25: 2258: 36:, translates addition into multiplication. This exponential operator appears naturally in the theory of 2189:, proposed a programme for systematically counting single and multi-trace gauge invariant operators of 905: 195: 2436: 2311: 33: 261: 72: 41: 463: 2460: 2426: 2395: 2369: 2335: 2185:
In a series of articles, a group of theoretical physicists, including Bo Feng, Amihay Hanany and
495: 318: 37: 2452: 2387: 2327: 2280: 2237: 1864: 1145: 56:
homogeneous symmetric polynomials in many variables. Its name comes from the operation called
2444: 2379: 2319: 2270: 2229: 1350: 1323: 1292: 1265: 1226: 1017: 450:{\displaystyle {\text{PE}}(x)=\exp \left(\sum _{k=1}^{\infty }{\frac {f(x^{k})}{k}}\right)} 2354: 1153: 876: 2198: 933:
The plethystic exponential can be also defined for power series rings in many variables.
2448: 2440: 2315: 117: 2202: 172: 152: 2275: 2478: 2399: 2339: 2223: 68: 2464: 1902: 29: 1741:{\displaystyle \sum _{n=0}^{\infty }(-1)^{n}e_{n}\,t^{n}={\text{PE}}={\text{PE}}} 2355:"Plethystic Exponential Calculus and Characteristic Polynomials of Permutations" 2186: 1149: 61: 17: 492:
is the usual exponential function. It is readily verified that (writing simply
2323: 2233: 1761: 80: 2456: 2391: 2331: 2284: 2201:
singularities, this count is codified in the plethystic exponential of the
2383: 1579:{\displaystyle \sum _{n=0}^{\infty }h_{n}\,t^{n}={\text{PE}}={\text{PE}}} 1255: 103: 99: 57: 258:
the ideal consisting of power series without constant term. Then, given
2431: 2194: 1137:{\displaystyle {\text{PE}}(x)=\prod _{k=1}^{\infty }(1-x^{k})^{-a_{k}}} 76: 1447:, that can succinctly be written, using plethystic exponentials, as: 2374: 2225:
Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds
2304:
Mathematical Proceedings of the Cambridge Philosophical Society
2259:"The number of linear, directed, rooted, and connected graphs" 1854:{\displaystyle P_{X}(t)=\sum _{k=0}^{d}b_{k}(X)\,t^{k}} 2413:
Feng, Bo; Hanany, Amihay; He, Yang-Hui (2007-03-20).
1958: 1919: 1867: 1777: 1593: 1456: 1380: 1353: 1326: 1295: 1268: 1229: 1170: 1047: 1020: 1014:
denotes a formal power series with real coefficients
947: 908: 879: 698: 532: 498: 466: 355: 321: 264: 198: 175: 155: 120: 1007:{\displaystyle f(x)=\sum _{k=1}^{\infty }a_{k}x^{k}} 2415:"Counting gauge invariants: the plethystic program" 2170: 1944: 1889: 1853: 1740: 1578: 1435: 1366: 1339: 1308: 1281: 1242: 1215: 1136: 1033: 1006: 922: 894: 862: 678: 515: 484: 449: 338: 307: 247: 181: 161: 141: 2263:Transactions of the American Mathematical Society 1436:{\displaystyle p_{k}=x_{1}^{k}+\cdots +x_{n}^{k}} 149:be a ring of formal power series in the variable 2300:"The Poincare Polynomial of a Symmetric Product" 83:or power series, such as the number of integer 1751: 110:Definition, main properties and basic examples 8: 1945:{\displaystyle \operatorname {Sym} ^{n}(X)} 87:. It is also an important technique in the 2193:. In the case of quiver gauge theories of 1752:Macdonald's formula for symmetric products 1374:are related to the power sum polynomials: 169:, with coefficients in a commutative ring 2430: 2373: 2274: 2162: 2157: 2125: 2120: 2104: 2080: 2064: 2050: 2036: 2014: 2003: 1989: 1971: 1959: 1957: 1924: 1918: 1872: 1866: 1845: 1840: 1825: 1815: 1804: 1782: 1776: 1726: 1704: 1689: 1679: 1673: 1658: 1649: 1644: 1638: 1628: 1609: 1598: 1592: 1564: 1542: 1530: 1520: 1514: 1502: 1493: 1488: 1482: 1472: 1461: 1455: 1427: 1422: 1403: 1398: 1385: 1379: 1358: 1352: 1331: 1325: 1300: 1294: 1273: 1267: 1252:complete homogeneous symmetric polynomial 1234: 1228: 1216:{\displaystyle x_{1},x_{2},\ldots ,x_{n}} 1207: 1188: 1175: 1169: 1126: 1118: 1108: 1089: 1078: 1048: 1046: 1025: 1019: 998: 988: 978: 967: 946: 916: 915: 907: 878: 850: 822: 783: 774: 766: 765: 747: 731: 715: 703: 699: 697: 663: 648: 624: 606: 592: 565: 537: 533: 531: 499: 497: 465: 427: 414: 408: 397: 356: 354: 322: 320: 284: 263: 203: 197: 174: 154: 119: 1952:, is obtained from the series expansion: 1041:, then it is not difficult to show that: 95:, and many other combinatorial objects. 2214: 1905:. Then the PoincarĂ© polynomial of the 60:, defined in the context of so-called 7: 2181:The plethystic programme in physics 40:, as a concise relation between the 2228:. New York, NY: Springer New York. 75:for many well studied sequences of 1610: 1473: 1090: 979: 523:when the variable is understood): 409: 71:, the plethystic exponential is a 14: 2353:Florentino, Carlos (2021-10-07). 2276:10.1090/S0002-9947-1955-0068198-2 1160:Relation with symmetric functions 923:{\displaystyle n\in \mathbb {N} } 1318:elementary symmetric polynomials 248:{\displaystyle R^{0}]\subset R]} 2222:PĂłlya, G.; Read, R. C. (1987). 2419:Journal of High Energy Physics 2154: 2145: 2140: 2134: 2092: 2086: 2061: 2051: 1993: 1986: 1977: 1964: 1939: 1933: 1884: 1878: 1837: 1831: 1794: 1788: 1735: 1694: 1683: 1663: 1625: 1615: 1573: 1535: 1524: 1507: 1115: 1095: 1068: 1062: 1059: 1053: 957: 951: 889: 883: 843: 837: 721: 708: 660: 653: 638: 629: 617: 611: 603: 597: 582: 570: 548: 542: 510: 504: 479: 473: 433: 420: 376: 370: 367: 361: 333: 327: 308:{\displaystyle f(x)\in R^{0}]} 302: 299: 293: 290: 274: 268: 242: 239: 233: 230: 221: 218: 212: 209: 136: 133: 127: 124: 1: 2449:10.1088/1126-6708/2007/03/090 2191:supersymmetric gauge theories 315:, its plethystic exponential 2362:Discrete Mathematics Letters 2257:Harary, Frank (1955-02-01). 485:{\displaystyle \exp(\cdot )} 902:is number of partitions of 516:{\displaystyle {\text{PE}}} 339:{\displaystyle {\text{PE}}} 2501: 2324:10.1017/S0305004100040573 2298:Macdonald, I. G. (1962). 2234:10.1007/978-1-4612-4664-0 1254:, that is the sum of all 689:Some basic examples are: 89:enumerative combinatorics 1909:th symmetric product of 1890:{\displaystyle b_{k}(X)} 1164:Working with variables 2172: 2019: 1946: 1891: 1855: 1820: 1742: 1614: 1580: 1477: 1437: 1368: 1341: 1310: 1283: 1244: 1217: 1138: 1094: 1035: 1008: 983: 924: 896: 873:In this last example, 864: 680: 517: 486: 451: 413: 340: 309: 249: 183: 163: 143: 32:which, like the usual 22:plethystic exponential 2384:10.47443/dml.2021.094 2173: 1999: 1947: 1892: 1856: 1800: 1743: 1594: 1581: 1457: 1438: 1369: 1367:{\displaystyle e_{k}} 1342: 1340:{\displaystyle h_{k}} 1311: 1309:{\displaystyle e_{k}} 1284: 1282:{\displaystyle x_{i}} 1245: 1243:{\displaystyle h_{k}} 1218: 1139: 1074: 1036: 1034:{\displaystyle a_{k}} 1009: 963: 925: 897: 865: 681: 518: 487: 452: 393: 341: 310: 250: 184: 164: 144: 2205:of the singularity. 1956: 1917: 1865: 1775: 1591: 1454: 1378: 1351: 1324: 1293: 1266: 1227: 1168: 1045: 1018: 945: 906: 895:{\displaystyle p(n)} 877: 696: 530: 496: 464: 353: 319: 262: 196: 173: 153: 118: 34:exponential function 28:defined on (formal) 2485:Symmetric functions 2441:2007JHEP...03..090F 2316:1962PCPS...58..563M 1770:PoincarĂ© polynomial 1445:Newton's identities 1432: 1408: 937:Product-sum formula 73:generating function 38:symmetric functions 2168: 2115: 1942: 1887: 1851: 1738: 1576: 1433: 1418: 1394: 1364: 1337: 1306: 1279: 1240: 1213: 1146:integer partitions 1134: 1031: 1004: 920: 892: 860: 858: 833: 676: 674: 513: 482: 447: 336: 305: 245: 179: 159: 142:{\displaystyle R]} 139: 2243:978-1-4612-9105-3 2100: 1962: 1692: 1661: 1533: 1505: 1262:in the variables 1051: 818: 799: 777: 754: 706: 651: 627: 609: 595: 568: 540: 502: 440: 359: 325: 182:{\displaystyle R} 162:{\displaystyle x} 42:generating series 2492: 2469: 2468: 2434: 2410: 2404: 2403: 2377: 2359: 2350: 2344: 2343: 2295: 2289: 2288: 2278: 2254: 2248: 2247: 2219: 2177: 2175: 2174: 2169: 2167: 2166: 2144: 2143: 2130: 2129: 2114: 2096: 2095: 2085: 2084: 2075: 2074: 2049: 2045: 2041: 2040: 2018: 2013: 1976: 1975: 1963: 1960: 1951: 1949: 1948: 1943: 1929: 1928: 1896: 1894: 1893: 1888: 1877: 1876: 1860: 1858: 1857: 1852: 1850: 1849: 1830: 1829: 1819: 1814: 1787: 1786: 1747: 1745: 1744: 1739: 1731: 1730: 1709: 1708: 1693: 1690: 1678: 1677: 1662: 1659: 1654: 1653: 1643: 1642: 1633: 1632: 1613: 1608: 1585: 1583: 1582: 1577: 1569: 1568: 1547: 1546: 1534: 1531: 1519: 1518: 1506: 1503: 1498: 1497: 1487: 1486: 1476: 1471: 1442: 1440: 1439: 1434: 1431: 1426: 1407: 1402: 1390: 1389: 1373: 1371: 1370: 1365: 1363: 1362: 1346: 1344: 1343: 1338: 1336: 1335: 1315: 1313: 1312: 1307: 1305: 1304: 1288: 1286: 1285: 1280: 1278: 1277: 1249: 1247: 1246: 1241: 1239: 1238: 1222: 1220: 1219: 1214: 1212: 1211: 1193: 1192: 1180: 1179: 1143: 1141: 1140: 1135: 1133: 1132: 1131: 1130: 1113: 1112: 1093: 1088: 1052: 1049: 1040: 1038: 1037: 1032: 1030: 1029: 1013: 1011: 1010: 1005: 1003: 1002: 993: 992: 982: 977: 929: 927: 926: 921: 919: 901: 899: 898: 893: 869: 867: 866: 861: 859: 855: 854: 832: 804: 800: 798: 784: 778: 775: 769: 755: 753: 752: 751: 732: 720: 719: 707: 704: 685: 683: 682: 677: 675: 671: 670: 652: 649: 628: 625: 610: 607: 596: 593: 569: 566: 541: 538: 522: 520: 519: 514: 503: 500: 491: 489: 488: 483: 456: 454: 453: 448: 446: 442: 441: 436: 432: 431: 415: 412: 407: 360: 357: 345: 343: 342: 337: 326: 323: 314: 312: 311: 306: 289: 288: 254: 252: 251: 246: 208: 207: 188: 186: 185: 180: 168: 166: 165: 160: 148: 146: 145: 140: 2500: 2499: 2495: 2494: 2493: 2491: 2490: 2489: 2475: 2474: 2473: 2472: 2412: 2411: 2407: 2357: 2352: 2351: 2347: 2297: 2296: 2292: 2256: 2255: 2251: 2244: 2221: 2220: 2216: 2211: 2183: 2158: 2121: 2116: 2076: 2060: 2032: 2025: 2021: 2020: 1967: 1954: 1953: 1920: 1915: 1914: 1868: 1863: 1862: 1841: 1821: 1778: 1773: 1772: 1764:, of dimension 1754: 1722: 1700: 1669: 1645: 1634: 1624: 1589: 1588: 1560: 1538: 1510: 1489: 1478: 1452: 1451: 1381: 1376: 1375: 1354: 1349: 1348: 1327: 1322: 1321: 1296: 1291: 1290: 1269: 1264: 1263: 1258:of degree  1230: 1225: 1224: 1203: 1184: 1171: 1166: 1165: 1162: 1154:symmetric group 1122: 1114: 1104: 1043: 1042: 1021: 1016: 1015: 994: 984: 943: 942: 939: 904: 903: 875: 874: 857: 856: 846: 805: 788: 779: 771: 770: 743: 736: 724: 711: 694: 693: 673: 672: 659: 641: 621: 620: 585: 562: 561: 551: 528: 527: 494: 493: 462: 461: 423: 416: 392: 388: 351: 350: 317: 316: 280: 260: 259: 199: 194: 193: 171: 170: 151: 150: 116: 115: 112: 12: 11: 5: 2498: 2496: 2488: 2487: 2477: 2476: 2471: 2470: 2432:hep-th/0701063 2405: 2345: 2310:(4): 563–568. 2290: 2269:(2): 445–463. 2249: 2242: 2213: 2212: 2210: 2207: 2203:Hilbert series 2182: 2179: 2165: 2161: 2156: 2153: 2150: 2147: 2142: 2139: 2136: 2133: 2128: 2124: 2119: 2113: 2110: 2107: 2103: 2099: 2094: 2091: 2088: 2083: 2079: 2073: 2070: 2067: 2063: 2059: 2056: 2053: 2048: 2044: 2039: 2035: 2031: 2028: 2024: 2017: 2012: 2009: 2006: 2002: 1998: 1995: 1992: 1988: 1985: 1982: 1979: 1974: 1970: 1966: 1941: 1938: 1935: 1932: 1927: 1923: 1886: 1883: 1880: 1875: 1871: 1848: 1844: 1839: 1836: 1833: 1828: 1824: 1818: 1813: 1810: 1807: 1803: 1799: 1796: 1793: 1790: 1785: 1781: 1753: 1750: 1749: 1748: 1737: 1734: 1729: 1725: 1721: 1718: 1715: 1712: 1707: 1703: 1699: 1696: 1688: 1685: 1682: 1676: 1672: 1668: 1665: 1657: 1652: 1648: 1641: 1637: 1631: 1627: 1623: 1620: 1617: 1612: 1607: 1604: 1601: 1597: 1586: 1575: 1572: 1567: 1563: 1559: 1556: 1553: 1550: 1545: 1541: 1537: 1529: 1526: 1523: 1517: 1513: 1509: 1501: 1496: 1492: 1485: 1481: 1475: 1470: 1467: 1464: 1460: 1430: 1425: 1421: 1417: 1414: 1411: 1406: 1401: 1397: 1393: 1388: 1384: 1361: 1357: 1334: 1330: 1303: 1299: 1276: 1272: 1237: 1233: 1210: 1206: 1202: 1199: 1196: 1191: 1187: 1183: 1178: 1174: 1161: 1158: 1129: 1125: 1121: 1117: 1111: 1107: 1103: 1100: 1097: 1092: 1087: 1084: 1081: 1077: 1073: 1070: 1067: 1064: 1061: 1058: 1055: 1028: 1024: 1001: 997: 991: 987: 981: 976: 973: 970: 966: 962: 959: 956: 953: 950: 938: 935: 918: 914: 911: 891: 888: 885: 882: 871: 870: 853: 849: 845: 842: 839: 836: 831: 828: 825: 821: 817: 814: 811: 808: 806: 803: 797: 794: 791: 787: 782: 773: 772: 768: 764: 761: 758: 750: 746: 742: 739: 735: 730: 727: 725: 723: 718: 714: 710: 702: 701: 687: 686: 669: 666: 662: 658: 655: 647: 644: 642: 640: 637: 634: 631: 623: 622: 619: 616: 613: 605: 602: 599: 591: 588: 586: 584: 581: 578: 575: 572: 564: 563: 560: 557: 554: 552: 550: 547: 544: 536: 535: 512: 509: 506: 481: 478: 475: 472: 469: 458: 457: 445: 439: 435: 430: 426: 422: 419: 411: 406: 403: 400: 396: 391: 387: 384: 381: 378: 375: 372: 369: 366: 363: 335: 332: 329: 304: 301: 298: 295: 292: 287: 283: 279: 276: 273: 270: 267: 256: 255: 244: 241: 238: 235: 232: 229: 226: 223: 220: 217: 214: 211: 206: 202: 178: 158: 138: 135: 132: 129: 126: 123: 111: 108: 91:of unlabelled 13: 10: 9: 6: 4: 3: 2: 2497: 2486: 2483: 2482: 2480: 2466: 2462: 2458: 2454: 2450: 2446: 2442: 2438: 2433: 2428: 2424: 2420: 2416: 2409: 2406: 2401: 2397: 2393: 2389: 2385: 2381: 2376: 2371: 2367: 2363: 2356: 2349: 2346: 2341: 2337: 2333: 2329: 2325: 2321: 2317: 2313: 2309: 2305: 2301: 2294: 2291: 2286: 2282: 2277: 2272: 2268: 2264: 2260: 2253: 2250: 2245: 2239: 2235: 2231: 2227: 2226: 2218: 2215: 2208: 2206: 2204: 2200: 2196: 2192: 2188: 2180: 2178: 2163: 2159: 2151: 2148: 2137: 2131: 2126: 2122: 2117: 2111: 2108: 2105: 2101: 2097: 2089: 2081: 2077: 2071: 2068: 2065: 2057: 2054: 2046: 2042: 2037: 2033: 2029: 2026: 2022: 2015: 2010: 2007: 2004: 2000: 1996: 1990: 1983: 1980: 1972: 1968: 1936: 1930: 1925: 1921: 1912: 1908: 1904: 1900: 1881: 1873: 1869: 1846: 1842: 1834: 1826: 1822: 1816: 1811: 1808: 1805: 1801: 1797: 1791: 1783: 1779: 1771: 1767: 1763: 1759: 1732: 1727: 1723: 1719: 1716: 1713: 1710: 1705: 1701: 1697: 1686: 1680: 1674: 1670: 1666: 1655: 1650: 1646: 1639: 1635: 1629: 1621: 1618: 1605: 1602: 1599: 1595: 1587: 1570: 1565: 1561: 1557: 1554: 1551: 1548: 1543: 1539: 1527: 1521: 1515: 1511: 1499: 1494: 1490: 1483: 1479: 1468: 1465: 1462: 1458: 1450: 1449: 1448: 1446: 1428: 1423: 1419: 1415: 1412: 1409: 1404: 1399: 1395: 1391: 1386: 1382: 1359: 1355: 1332: 1328: 1319: 1301: 1297: 1274: 1270: 1261: 1257: 1253: 1235: 1231: 1208: 1204: 1200: 1197: 1194: 1189: 1185: 1181: 1176: 1172: 1159: 1157: 1155: 1151: 1147: 1127: 1123: 1119: 1109: 1105: 1101: 1098: 1085: 1082: 1079: 1075: 1071: 1065: 1056: 1026: 1022: 999: 995: 989: 985: 974: 971: 968: 964: 960: 954: 948: 936: 934: 931: 912: 909: 886: 880: 851: 847: 840: 834: 829: 826: 823: 819: 815: 812: 809: 807: 801: 795: 792: 789: 785: 780: 762: 759: 756: 748: 744: 740: 737: 733: 728: 726: 716: 712: 692: 691: 690: 667: 664: 656: 645: 643: 635: 632: 614: 600: 589: 587: 579: 576: 573: 558: 555: 553: 545: 526: 525: 524: 507: 476: 470: 467: 443: 437: 428: 424: 417: 404: 401: 398: 394: 389: 385: 382: 379: 373: 364: 349: 348: 347: 330: 296: 285: 281: 277: 271: 265: 236: 227: 224: 215: 204: 200: 192: 191: 190: 189:. Denote by 176: 156: 130: 121: 109: 107: 105: 101: 96: 94: 90: 86: 82: 78: 74: 70: 69:combinatorics 65: 63: 59: 55: 51: 47: 43: 39: 35: 31: 27: 24:is a certain 23: 19: 2422: 2418: 2408: 2365: 2361: 2348: 2307: 2303: 2293: 2266: 2262: 2252: 2224: 2217: 2184: 1910: 1906: 1903:Betti number 1898: 1765: 1760:be a finite 1757: 1755: 1320:. Then, the 1259: 1223:, denote by 1163: 940: 932: 872: 688: 459: 346:is given by 257: 113: 97: 66: 62:lambda rings 30:power series 21: 15: 2187:Yang-Hui He 1150:cycle index 1148:and to the 81:polynomials 18:mathematics 2425:(3): 090. 2375:2105.13049 2209:References 2199:Calabi–Yau 1913:, denoted 1762:CW complex 1289:, and by 85:partitions 54:power sums 46:elementary 2457:1029-8479 2400:237451072 2392:2664-2557 2368:: 22–29. 2340:121316624 2332:0305-0041 2285:0002-9947 2149:− 2132:⁡ 2109:≥ 2102:∑ 2055:− 2030:− 2001:∏ 1981:− 1931:⁡ 1802:∑ 1720:− 1717:⋯ 1714:− 1698:− 1667:− 1619:− 1611:∞ 1596:∑ 1555:⋯ 1474:∞ 1459:∑ 1413:⋯ 1256:monomials 1198:… 1120:− 1102:− 1091:∞ 1076:∏ 980:∞ 965:∑ 913:∈ 827:≥ 820:∑ 793:− 763:∈ 741:− 665:− 633:− 477:⋅ 471:⁡ 410:∞ 395:∑ 386:⁡ 278:∈ 225:⊂ 2479:Category 2197:probing 2195:D-branes 1347:and the 104:topology 100:geometry 77:integers 58:plethysm 50:complete 26:operator 2465:1908174 2437:Bibcode 2312:Bibcode 1897:is its 1768:, with 1152:of the 2463:  2455:  2398:  2390:  2338:  2330:  2283:  2240:  1861:where 460:where 93:graphs 20:, the 2461:S2CID 2427:arXiv 2396:S2CID 2370:arXiv 2358:(PDF) 2336:S2CID 2453:ISSN 2423:2007 2388:ISSN 2328:ISSN 2281:ISSN 2238:ISBN 1756:Let 1316:the 1250:the 114:Let 102:and 52:and 44:for 2445:doi 2380:doi 2320:doi 2271:doi 2230:doi 2123:Sym 1922:Sym 1901:th 1443:by 468:exp 383:exp 98:In 67:In 64:. 16:In 2481:: 2459:. 2451:. 2443:. 2435:. 2421:. 2417:. 2394:. 2386:. 2378:. 2364:. 2360:. 2334:. 2326:. 2318:. 2308:58 2306:. 2302:. 2279:. 2267:78 2265:. 2261:. 2236:. 1961:PE 1691:PE 1660:PE 1532:PE 1504:PE 1156:. 1050:PE 930:. 776:PE 705:PE 650:PE 626:PE 608:PE 594:PE 567:PE 539:PE 501:PE 358:PE 324:PE 79:, 48:, 2467:. 2447:: 2439:: 2429:: 2402:. 2382:: 2372:: 2366:8 2342:. 2322:: 2314:: 2287:. 2273:: 2246:. 2232:: 2164:n 2160:x 2155:) 2152:t 2146:( 2141:) 2138:X 2135:( 2127:n 2118:P 2112:0 2106:n 2098:= 2093:) 2090:X 2087:( 2082:k 2078:b 2072:1 2069:+ 2066:k 2062:) 2058:1 2052:( 2047:) 2043:x 2038:k 2034:t 2027:1 2023:( 2016:d 2011:0 2008:= 2005:k 1997:= 1994:] 1991:x 1987:) 1984:t 1978:( 1973:X 1969:P 1965:[ 1940:) 1937:X 1934:( 1926:n 1911:X 1907:n 1899:k 1885:) 1882:X 1879:( 1874:k 1870:b 1847:k 1843:t 1838:) 1835:X 1832:( 1827:k 1823:b 1817:d 1812:0 1809:= 1806:k 1798:= 1795:) 1792:t 1789:( 1784:X 1780:P 1766:d 1758:X 1736:] 1733:t 1728:n 1724:x 1711:t 1706:1 1702:x 1695:[ 1687:= 1684:] 1681:t 1675:1 1671:p 1664:[ 1656:= 1651:n 1647:t 1640:n 1636:e 1630:n 1626:) 1622:1 1616:( 1606:0 1603:= 1600:n 1574:] 1571:t 1566:n 1562:x 1558:+ 1552:+ 1549:t 1544:1 1540:x 1536:[ 1528:= 1525:] 1522:t 1516:1 1512:p 1508:[ 1500:= 1495:n 1491:t 1484:n 1480:h 1469:0 1466:= 1463:n 1429:k 1424:n 1420:x 1416:+ 1410:+ 1405:k 1400:1 1396:x 1392:= 1387:k 1383:p 1360:k 1356:e 1333:k 1329:h 1302:k 1298:e 1275:i 1271:x 1260:k 1236:k 1232:h 1209:n 1205:x 1201:, 1195:, 1190:2 1186:x 1182:, 1177:1 1173:x 1128:k 1124:a 1116:) 1110:k 1106:x 1099:1 1096:( 1086:1 1083:= 1080:k 1072:= 1069:) 1066:x 1063:( 1060:] 1057:f 1054:[ 1027:k 1023:a 1000:k 996:x 990:k 986:a 975:1 972:= 969:k 961:= 958:) 955:x 952:( 949:f 917:N 910:n 890:) 887:n 884:( 881:p 852:n 848:x 844:) 841:n 838:( 835:p 830:1 824:n 816:+ 813:1 810:= 802:] 796:x 790:1 786:x 781:[ 767:N 760:n 757:, 749:n 745:x 738:1 734:1 729:= 722:] 717:n 713:x 709:[ 668:1 661:] 657:f 654:[ 646:= 639:] 636:f 630:[ 618:] 615:g 612:[ 604:] 601:f 598:[ 590:= 583:] 580:g 577:+ 574:f 571:[ 559:1 556:= 549:] 546:0 543:[ 511:] 508:f 505:[ 480:) 474:( 444:) 438:k 434:) 429:k 425:x 421:( 418:f 405:1 402:= 399:k 390:( 380:= 377:) 374:x 371:( 368:] 365:f 362:[ 334:] 331:f 328:[ 303:] 300:] 297:x 294:[ 291:[ 286:0 282:R 275:) 272:x 269:( 266:f 243:] 240:] 237:x 234:[ 231:[ 228:R 222:] 219:] 216:x 213:[ 210:[ 205:0 201:R 177:R 157:x 137:] 134:] 131:x 128:[ 125:[ 122:R

Index

mathematics
operator
power series
exponential function
symmetric functions
generating series
elementary
complete
power sums
plethysm
lambda rings
combinatorics
generating function
integers
polynomials
partitions
enumerative combinatorics
graphs
geometry
topology
integer partitions
cycle index
symmetric group
complete homogeneous symmetric polynomial
monomials
elementary symmetric polynomials
Newton's identities
CW complex
Poincaré polynomial
Betti number

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑