Knowledge

Plutonium–gallium alloy

Source 📝

281:, then optionally to nitride, and then to oxide. Gallium is then mostly removed from the solid oxide mixture by heating at 1100 °C in a 94% argon 6% hydrogen atmosphere, reducing gallium content from 1% to 0.02%. Further dilution of plutonium oxide during the MOX fuel manufacture brings gallium content to levels considered negligible. A wet route of gallium removal, using 117:δ phase Pu–Ga is still thermodynamically unstable, so there are concerns about its aging behavior. There are substantial differences of density (and therefore volume) between the various phases. The transition between δ-phase and α-phase plutonium occurs at a low temperature of 115 °C and can be reached by accident. Prevention of the 69:. The δ phase is the least dense and most easily machinable. It is formed at temperatures of 310–452 °C at ambient pressure (1 atmosphere), and is thermodynamically unstable at lower temperatures. However, plutonium can be stabilized in the δ phase by alloying it with a small amount of another metal. The preferred alloy is 3.0–3.5 150:
electrons, and can be disrupted by increased temperature or by presence of suitable atoms in the lattice which reduce the available number of 5f electrons and weaken their bonds. The alloy is denser in molten state than in solid state, which poses an advantage for casting as the tendency to form
162:
is required at the temperature just below the δ–ε phase transition, so gallium atoms can diffuse through the grains and create homogeneous structure. The time to achieve homogenization of gallium increases with increasing grain size of the alloy and decreases with increasing temperature. The
245:
Plutonium alloys can be produced by adding a metal to molten plutonium. However, if the alloying metal is sufficiently reductive, plutonium can be added in the form of oxides or halides. The δ phase plutonium–gallium and plutonium–aluminium alloys are produced by adding
125:
However, the phase change is useful during the operation of a nuclear weapon. As the reaction starts, it generates enormous pressures, in the range of hundreds of gigapascals. Under these conditions, δ phase Pu–Ga transforms to α phase, which is 25% denser and thus more
174:
of plutonium then allows rough identification of its origin, manufacturing method, type of the reactor used in its production, and rough history of the irradiation, and matching to other samples, which is of importance in investigation of
113:
More modern pits are produced by casting. Subcritical testing showed that wrought and cast plutonium performance is the same. As only the ε-δ transition occurs during cooling, casting Pu-Ga is easier than casting pure plutonium.
297:
During the Manhattan Project (1942-1945), the maximum amount of diluent atoms for plutonium to not affect the explosion efficiency was calculated to be 5 mol.%. Two stabilizing elements were considered,
121:
and the associated mechanical deformations and consequent structural damage and/or loss of symmetry is of critical importance. Under 4 mol.% gallium the pressure-induced phase change is irreversible.
306:. However, only aluminium produced satisfactory alloys. But the aluminium tendency to react with α-particles and emit neutrons limited its maximum content to 0.5 mol.%; the next element from the 206:
Ga (ζ'-phase) within α phase, with the corresponding dimensional and density change and buildup of internal strains. The decay of plutonium however produces energetic particles (
163:
structure of stabilized plutonium at room temperature is the same as unstabilized at δ-phase temperature, with the difference of gallium atoms substituting plutonium in the
97:
good castability; since plutonium has the rare property that the molten state is denser than the solid state, the tendency to form bubbles and internal defects is decreased.
176: 1206: 218:
with only a modest amount of ζ' phase present, which explains the alloy's unexpectedly slow, graceful aging. The alpha particles are trapped as interstitial
805: 1489: 233:, which has significantly faster decay rate, to the alloy increases the aging damage rate by 16 times, assisting with plutonium aging research. The 758: 624: 146:. Addition of gallium causes the bonds to become more even, increasing the stability of the δ phase. The α phase bonds are mediated by the 222:
atoms in the lattice, coalescing into tiny (about 1 nm diameter) helium-filled bubbles in the metal and causing negligible levels of
138:
Plutonium in its α phase has a low internal symmetry, caused by uneven bonding between the atoms, more resembling (and behaving like) a
524: 106:
Stabilized δ-phase Pu–Ga is ductile, and can be rolled into sheets and machined by conventional methods. It is suitable for shaping by
1199: 400: 333: 310:
of elements, gallium, was tried and found to be satisfactory. The early atomic bomb design secrets passed to the Soviets by spy
798: 250:
to molten gallium or aluminium, which has the advantage of avoiding dealing directly with the highly reactive plutonium metal.
314:
included the gallium trick for stabilizing phases of plutonium, and thus the first Soviet atomic bomb used this alloy also.
588: 1484: 1192: 640: 425: 53:, the component of a nuclear weapon where the fission chain reaction is started. This alloy was developed during the 170:
The presence of gallium in plutonium signifies its origin from weapon plants or decommissioned nuclear weapons. The
791: 502: 1494: 1417: 1279: 828: 1479: 1409: 1354: 1297: 1289: 1266: 1127: 1120: 266: 247: 158:
and gallium-poor grain boundaries. To stabilize the lattice and reverse and prevent segregation of gallium,
66: 1455: 1436: 1305: 1103: 993: 188: 159: 1342: 1313: 1079: 972: 896: 1370: 1067: 1021: 1001: 956: 891: 562: 50: 766: 1362: 1215: 980: 964: 886: 274: 223: 215: 164: 694:"Method for plutonium-gallium separation by anodic dissolution of a solid plutonium-gallium alloy" 358: 202:
During aging of the stabilized δ alloy, gallium segregates from the lattice, forming regions of Pu
1250: 1245: 1055: 1050: 870: 478: 455: 171: 1337: 1321: 1284: 1271: 1237: 1229: 1045: 1037: 814: 620: 614: 278: 88: 54: 1147: 931: 851: 570: 528: 118: 1159: 1091: 1009: 988: 912: 865: 860: 447: 286: 404: 337: 262:, the majority of gallium has to be removed as its high content could interfere with the 566: 207: 147: 17: 226:; the size of bubbles appears to be limited, though their number increases with time. 110:
at about 400 °C. This method was used for forming the first nuclear weapon pits.
1473: 230: 127: 70: 734: 714: 282: 107: 574: 154:
Gallium tends to segregate in plutonium, causing "coring"—gallium-rich centers of
1382: 693: 311: 307: 211: 155: 592: 647: 94:
low susceptibility to corrosion (4% of the corrosion rate of pure plutonium),
944: 379: 303: 270: 234: 42: 672: 263: 259: 214:
nuclei) that cause local disruption of the ζ' phase, and establishing a
936: 613:
Moody, Kenton James; Hutcheon, Ian D.; Grant, Patrick M. (2005-02-28).
479:"Modelling the Lattice Parameter of Plutonium Aluminium Solid Solution" 299: 139: 74: 46: 1184: 273:) and with migration of fission products in the fuel pellets. In the 219: 783: 550: 715:"First Nuclear Weapons: Nuclear Weapons Frequently Asked Questions" 237:
supercomputer aided with simulations of plutonium aging processes.
143: 38: 646:. Amarillo National Resource Center for Plutonium. Archived from 525:"Plutonium: Aging Mechanisms and Weapon Pit Lifetime Assessment" 277:, the pits are converted to oxide by converting the material to 1188: 787: 527:. The Minerals, Metals & Materials Society. Archived from 673:"Gallium in Weapons-Grade Plutonium and MOX Fuel Fabrication" 759:"The drama of plutonium - Nuclear Engineering International" 426:"Scientists tackle long-standing questions about plutonium" 380:"Optical Pyrometry on the Armando Subcritical Experiment" 336:. Nuclear Engineering International. 2005. Archived from 551:"Reversible expansion of gallium-stabilized δ-plutonium" 1448: 1429: 1402: 1330: 1259: 1222: 1119: 924: 905: 879: 844: 821: 289:is another way to separate gallium and plutonium. 591:. Science and Technology Reviews. Archived from 258:For reprocessing of surplus warhead pits into 1200: 799: 641:"Gallium Interactions with Zircaloy Cladding" 549:Wolfer, W. G.; Oudot, B.; Baclet, N. (2006). 8: 151:bubbles and internal defects is decreased. 1207: 1193: 1185: 1116: 806: 792: 784: 589:"U.S. Weapons Plutonium Ages Gracefully" 187:There are several plutonium and gallium 322: 328: 326: 80:Pu–Ga has many practical advantages: 7: 523:Martz, Joseph C.; Schwartz, Adam J. 359:"Italian Stallions & Plutonium" 84:stable between −75 and 475 °C, 403:. centurychina.com. Archived from 67:several different solid allotropes 25: 27:Alloy used in nuclear weapon pits 671:Toevs, James W.; Beard, Carl A. 382:. Los Alamos National Laboratory 1490:Low thermal expansion materials 501:Edwards, Rob (19 August 1995). 1: 735:"Dr Smith goes to Los Alamos" 575:10.1016/j.jnucmat.2006.08.020 446:Hecker, Siegfried S. (2000). 1121:Organogallium(III) compounds 555:Journal of Nuclear Materials 1511: 448:"Plutonium and Its Alloys" 428:. innovations-report. 2006 254:Reprocessing into MOX fuel 616:Nuclear forensic analysis 334:"The drama of plutonium" 229:Addition of 7.5 wt.% of 248:plutonium(III) fluoride 189:intermetallic compounds 65:Metallic plutonium has 31:Plutonium–gallium alloy 18:Plutonium-gallium alloy 740:. RESONANCE. June 2006 503:"Fissile Fingerprints" 102:Use in nuclear weapons 285:, is also possible. 1485:Plutonium compounds 1216:Plutonium compounds 763:www.neimagazine.com 567:2006JNuM..359..185W 293:Development history 216:dynamic equilibrium 51:nuclear weapon pits 769:on 9 November 2021 456:Los Alamos Science 407:on January 7, 2010 172:isotopic signature 1467: 1466: 1182: 1181: 1178: 1177: 815:Gallium compounds 626:978-0-8493-1513-8 279:plutonium hydride 269:(gallium attacks 177:nuclear smuggling 134:Effect of gallium 89:thermal expansion 55:Manhattan Project 16:(Redirected from 1502: 1209: 1202: 1195: 1186: 1117: 808: 801: 794: 785: 779: 778: 776: 774: 765:. Archived from 755: 749: 748: 746: 745: 739: 731: 725: 724: 722: 721: 711: 705: 704: 702: 701: 690: 684: 683: 681: 680: 668: 662: 661: 659: 658: 652: 645: 637: 631: 630: 610: 604: 603: 601: 600: 585: 579: 578: 546: 540: 539: 537: 536: 520: 514: 513: 511: 510: 498: 492: 491: 489: 488: 483: 477:Darby, Richard. 474: 468: 467: 465: 464: 452: 443: 437: 436: 434: 433: 422: 416: 415: 413: 412: 401:"Plutonium (Pu)" 397: 391: 390: 388: 387: 376: 370: 369: 367: 366: 355: 349: 348: 346: 345: 330: 119:phase transition 21: 1510: 1509: 1505: 1504: 1503: 1501: 1500: 1499: 1495:Nuclear weapons 1470: 1469: 1468: 1463: 1459: 1449:Plutonium(VIII) 1444: 1440: 1425: 1421: 1413: 1398: 1394: 1390: 1386: 1378: 1374: 1366: 1358: 1350: 1346: 1326: 1317: 1309: 1301: 1293: 1275: 1255: 1241: 1233: 1218: 1213: 1183: 1174: 1171: 1167: 1163: 1155: 1151: 1143: 1139: 1135: 1131: 1115: 1111: 1107: 1099: 1095: 1087: 1083: 1075: 1071: 1063: 1059: 1041: 1033: 1029: 1025: 1017: 1013: 1005: 997: 984: 976: 968: 960: 952: 948: 940: 920: 916: 901: 875: 855: 840: 836: 832: 817: 812: 782: 772: 770: 757: 756: 752: 743: 741: 737: 733: 732: 728: 719: 717: 713: 712: 708: 699: 697: 692: 691: 687: 678: 676: 670: 669: 665: 656: 654: 650: 643: 639: 638: 634: 627: 612: 611: 607: 598: 596: 587: 586: 582: 548: 547: 543: 534: 532: 522: 521: 517: 508: 506: 505:. New Scientist 500: 499: 495: 486: 484: 481: 476: 475: 471: 462: 460: 450: 445: 444: 440: 431: 429: 424: 423: 419: 410: 408: 399: 398: 394: 385: 383: 378: 377: 373: 364: 362: 357: 356: 352: 343: 341: 332: 331: 324: 320: 295: 287:Electrorefining 256: 243: 208:alpha particles 205: 198: 194: 185: 136: 104: 73:(0.8–1.0 wt.%) 63: 28: 23: 22: 15: 12: 11: 5: 1508: 1506: 1498: 1497: 1492: 1487: 1482: 1480:Gallium alloys 1472: 1471: 1465: 1464: 1462: 1461: 1457: 1452: 1450: 1446: 1445: 1443: 1442: 1438: 1433: 1431: 1427: 1426: 1424: 1423: 1419: 1415: 1411: 1406: 1404: 1400: 1399: 1397: 1396: 1392: 1388: 1384: 1380: 1376: 1372: 1368: 1364: 1360: 1356: 1352: 1348: 1344: 1340: 1334: 1332: 1328: 1327: 1325: 1324: 1319: 1315: 1311: 1307: 1303: 1299: 1295: 1291: 1287: 1282: 1277: 1273: 1269: 1263: 1261: 1260:Plutonium(III) 1257: 1256: 1254: 1253: 1248: 1243: 1239: 1235: 1231: 1226: 1224: 1220: 1219: 1214: 1212: 1211: 1204: 1197: 1189: 1180: 1179: 1176: 1175: 1173: 1169: 1165: 1161: 1157: 1153: 1149: 1145: 1141: 1137: 1133: 1129: 1125: 1123: 1114: 1113: 1109: 1105: 1101: 1097: 1093: 1089: 1085: 1081: 1077: 1073: 1069: 1065: 1061: 1057: 1053: 1048: 1043: 1039: 1035: 1031: 1027: 1023: 1019: 1015: 1011: 1007: 1003: 999: 995: 991: 986: 982: 978: 974: 970: 966: 962: 958: 954: 950: 946: 942: 938: 934: 928: 926: 922: 921: 919: 918: 914: 909: 907: 906:Gallium(I,III) 903: 902: 900: 899: 894: 889: 883: 881: 877: 876: 874: 873: 868: 863: 858: 853: 848: 846: 842: 841: 839: 838: 834: 830: 825: 823: 819: 818: 813: 811: 810: 803: 796: 788: 781: 780: 750: 726: 706: 685: 663: 632: 625: 605: 580: 561:(3): 185–191. 541: 515: 493: 469: 438: 417: 392: 371: 350: 321: 319: 316: 294: 291: 255: 252: 242: 239: 203: 196: 192: 184: 181: 135: 132: 103: 100: 99: 98: 95: 92: 85: 62: 59: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1507: 1496: 1493: 1491: 1488: 1486: 1483: 1481: 1478: 1477: 1475: 1460: 1454: 1453: 1451: 1447: 1441: 1435: 1434: 1432: 1430:Plutonium(VI) 1428: 1422: 1416: 1414: 1408: 1407: 1405: 1401: 1395: 1381: 1379: 1369: 1367: 1361: 1359: 1353: 1351: 1341: 1339: 1336: 1335: 1333: 1331:Plutonium(IV) 1329: 1323: 1320: 1318: 1312: 1310: 1304: 1302: 1296: 1294: 1288: 1286: 1283: 1281: 1278: 1276: 1270: 1268: 1265: 1264: 1262: 1258: 1252: 1249: 1247: 1244: 1242: 1236: 1234: 1228: 1227: 1225: 1223:Plutonium(II) 1221: 1217: 1210: 1205: 1203: 1198: 1196: 1191: 1190: 1187: 1172: 1158: 1156: 1146: 1144: 1126: 1124: 1122: 1118: 1112: 1102: 1100: 1090: 1088: 1078: 1076: 1066: 1064: 1054: 1052: 1049: 1047: 1044: 1042: 1036: 1034: 1020: 1018: 1008: 1006: 1000: 998: 992: 990: 987: 985: 979: 977: 971: 969: 963: 961: 955: 953: 943: 941: 935: 933: 930: 929: 927: 923: 917: 911: 910: 908: 904: 898: 895: 893: 890: 888: 885: 884: 882: 878: 872: 869: 867: 864: 862: 859: 857: 850: 849: 847: 843: 837: 827: 826: 824: 820: 816: 809: 804: 802: 797: 795: 790: 789: 786: 768: 764: 760: 754: 751: 736: 730: 727: 716: 710: 707: 695: 689: 686: 674: 667: 664: 653:on 2012-03-02 649: 642: 636: 633: 628: 622: 619:. CRC Press. 618: 617: 609: 606: 595:on 2013-02-17 594: 590: 584: 581: 576: 572: 568: 564: 560: 556: 552: 545: 542: 531:on 2016-03-03 530: 526: 519: 516: 504: 497: 494: 480: 473: 470: 458: 457: 449: 442: 439: 427: 421: 418: 406: 402: 396: 393: 381: 375: 372: 360: 354: 351: 340:on 2010-09-15 339: 335: 329: 327: 323: 317: 315: 313: 309: 305: 301: 292: 290: 288: 284: 280: 276: 275:ARIES process 272: 268: 265: 261: 253: 251: 249: 240: 238: 236: 232: 231:plutonium-238 227: 225: 224:void swelling 221: 217: 213: 209: 200: 190: 182: 180: 178: 173: 168: 166: 161: 157: 152: 149: 145: 141: 133: 131: 129: 123: 120: 115: 111: 109: 101: 96: 93: 90: 86: 83: 82: 81: 78: 76: 72: 68: 60: 58: 56: 52: 48: 44: 40: 36: 32: 19: 1403:Plutonium(V) 925:Gallium(III) 771:. Retrieved 767:the original 762: 753: 742:. Retrieved 729: 718:. Retrieved 709: 698:. Retrieved 688: 677:. Retrieved 666: 655:. Retrieved 648:the original 635: 615: 608: 597:. Retrieved 593:the original 583: 558: 554: 544: 533:. Retrieved 529:the original 518: 507:. Retrieved 496: 485:. Retrieved 472: 461:. Retrieved 454: 441: 430:. Retrieved 420: 409:. Retrieved 405:the original 395: 384:. Retrieved 374: 363:. Retrieved 353: 342:. Retrieved 338:the original 296: 283:ion exchange 257: 244: 228: 201: 186: 169: 153: 137: 124: 116: 112: 108:hot pressing 105: 79: 64: 34: 30: 29: 880:Gallium(II) 822:Gallium(-V) 696:. frepatent 312:Klaus Fuchs 308:boron group 212:uranium-235 1474:Categories 845:Gallium(I) 773:5 February 744:2010-01-25 720:2010-01-25 700:2010-01-25 679:2010-01-25 657:2010-01-25 599:2010-01-25 535:2010-01-25 509:2010-01-25 487:2010-01-25 463:2010-01-25 432:2010-01-25 411:2010-01-25 386:2010-01-25 365:2010-01-25 344:2010-01-25 318:References 241:Production 195:Ga, and Pu 191:: PuGa, Pu 49:, used in 361:. jeffrey 304:aluminium 271:zirconium 235:Blue Gene 167:lattice. 160:annealing 87:very low 43:plutonium 267:cladding 264:fuel rod 260:MOX fuel 148:5f shell 128:critical 61:Overview 37:) is an 563:Bibcode 300:silicon 142:than a 140:ceramic 75:gallium 47:gallium 1002:Ga(CN) 994:Ga(OH) 675:. IEEE 623:  220:helium 156:grains 1418:XePuF 1371:Pu(IO 1343:Pu(NO 1148:Ga(CH 1092:Ga(CH 1010:Ga(NO 738:(PDF) 651:(PDF) 644:(PDF) 482:(PDF) 451:(PDF) 183:Aging 144:metal 71:mol.% 39:alloy 35:Pu–Ga 1383:Pu(C 1306:PuBr 1298:PuCl 1267:PuAs 1251:PuSi 1246:PuSe 1160:Ga(C 1128:Ga(C 1096:COO) 1051:GaSb 1038:GaPO 965:GaCl 957:GaBr 932:GaAs 913:GaCl 897:GaTe 892:GaSe 866:GaBr 861:GaCl 775:2022 621:ISBN 459:(26) 302:and 210:and 199:Ga. 45:and 1456:PuO 1437:PuF 1410:PuF 1363:PuO 1355:PuF 1338:PuC 1322:PuN 1314:PuI 1290:PuF 1285:PuB 1280:PuP 1272:PuH 1238:PuB 1230:PuH 1046:GaP 1026:(SO 989:GaN 981:GaI 973:GaF 937:GaH 887:GaS 871:GaI 571:doi 559:359 165:fcc 41:of 1476:: 1108:Te 1104:Ga 1084:Se 1080:Ga 1068:Ga 1056:Ga 1022:Ga 945:Ga 852:Ga 833:Ga 829:Mg 761:. 569:. 557:. 553:. 453:. 325:^ 179:. 130:. 77:. 57:. 1458:4 1439:6 1420:6 1412:5 1393:2 1391:) 1389:8 1387:H 1385:8 1377:4 1375:) 1373:3 1365:2 1357:4 1349:4 1347:) 1345:3 1316:3 1308:3 1300:3 1292:3 1274:3 1240:2 1232:2 1208:e 1201:t 1194:v 1170:3 1168:) 1166:5 1164:H 1162:2 1154:3 1152:) 1150:3 1142:3 1140:) 1138:2 1136:O 1134:7 1132:H 1130:5 1110:3 1106:2 1098:3 1094:3 1086:3 1082:2 1074:3 1072:S 1070:2 1062:3 1060:O 1058:2 1040:4 1032:3 1030:) 1028:4 1024:2 1016:3 1014:) 1012:3 1004:3 996:3 983:3 975:3 967:3 959:3 951:6 949:H 947:2 939:3 915:2 856:O 854:2 835:2 831:5 807:e 800:t 793:v 777:. 747:. 723:. 703:. 682:. 660:. 629:. 602:. 577:. 573:: 565:: 538:. 512:. 490:. 466:. 435:. 414:. 389:. 368:. 347:. 204:3 197:6 193:3 91:, 33:( 20:)

Index

Plutonium-gallium alloy
alloy
plutonium
gallium
nuclear weapon pits
Manhattan Project
several different solid allotropes
mol.%
gallium
thermal expansion
hot pressing
phase transition
critical
ceramic
metal
5f shell
grains
annealing
fcc
isotopic signature
nuclear smuggling
intermetallic compounds
alpha particles
uranium-235
dynamic equilibrium
helium
void swelling
plutonium-238
Blue Gene
plutonium(III) fluoride

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.