Knowledge (XXG)

Point process operation

Source 📝

87:, The Poisson point process often exhibits a type of mathematical closure such that when a point process operation is applied to some Poisson point process, then provided some conditions on the point process operation, the resulting process will be often another Poisson point process operation, hence it is often used as a mathematical model. 115:, which gives the average number of points of the point process located in some region. In other words, in the limit as the number of operations applied approaches infinity, the point process will converge in distribution (or weakly) to a Poisson point process or, if its measure is a random measure, to a 696:
These three operations are all types of independent thinning, which means the interaction between points has no effect on the where a point is removed (or kept). Another generalization involves dependent thinning where points of the point process are removed (or kept) depending on their location in
1486:
results, in the limit as the number of performed operations approaches infinity. For example, if each point in a general point process is repeatedly displaced in a certain random and independent manner, then the new point process, informally speaking, will more and more resemble a Poisson point
110:
in general. Provided that the original point process and the point process operation meet certain mathematical conditions, then as point process operations are applied to the process, then often the resulting point process will behave stochastically more like a Poisson point process if it has a
384:
To develop suitable models with point processes in stochastic geometry, spatial statistics and related fields, there are number of useful transformations that can be performed on point processes including: thinning, superposition, mapping (or transformation of space), clustering, and random
697:
relation to other points of the point process. Thinning can be used to create new point processes such as hard-core processes where points do not exist (due to thinning) within a certain radius of each point in the thinned point process.
1481:
A point operation performed once on some point process can be, in general, performed again and again. In the theory of point processes, results have been derived to study the behaviour of the resulting point process, via
1472:
says that if the original process is a Poisson point process with some intensity measure, then the resulting mapped (or transformed) collection of points also forms a Poisson point process with another intensity measure.
1006: 808: 872: 1166: 760: 367: 1321: 583: 225: 1248: 1279: 922: 450: 320: 1442:
Another property that is considered useful is the ability to map a point process from one underlying space to another space. For example, a point process defined on the plane
1375: 1198: 1097: 645: 614: 1226: 1064: 946: 669: 546: 496: 419: 256: 189: 1418:
Applying random displacements or translations to point processes may be used as mathematical models for mobility of objects in, for example, ecology or wireless networks.
1346: 1040: 691: 518: 472: 281: 165: 1487:
process. Similar convergence results have been developed for the operations of thinning and superposition (with suitable rescaling of the underlying space).
68:
the underlying space of the point process into another space. Point process operations and the resulting point processes are used in the theory of
56:
or both, and are used to construct new point processes, which can be then also used as mathematical models. The operations may include removing or
1412: 1201: 1403:. If each point in the process is displaced or translated independently to other all other points in the process, then the operation forms an 1645: 954: 1431: 1391:
A mathematical model may require randomly moving points of a point process from some locations to other locations on the underlying
106:
in the 1950s and 1960s who both studied point processes on the real line, in the context of studying the arrival of phone calls and
137:
Point processes are mathematical objects that can be used to represent collections of points randomly scattered on some underlying
123:
for renewal processes, are then also used to justify the use of the Poisson point process as a mathematical of various phenomena.
765: 1463: 709:
is used to combine two or more point processes together onto one underlying mathematical space or state space. If there is a
452:. These thinning rules may be deterministic, that is, not random, which is the case for one of the simplest rules known as 816: 1108: 1434:
displacement of points of a Poisson point process (on the same underlying space) forms another Poisson point process.
716: 1704: 1682:
Stochastic Geometry: Lectures given at the CIME Summer School held in Martina Franca, Italy, September 13–18, 2004
1099:. Each cluster is also a point process, but with a finite number of points. The union of all the clusters forms a 339: 1483: 370: 65: 1699: 1468:
Provided that the mapping (or transformation) adheres to some conditions, then a result sometimes known as the
1408: 1287: 551: 1623: 882: 197: 142: 132: 95: 83:
One point process that gives particularly convenient results under random point process operations is the
33: 1231: 1447: 1253: 896: 424: 289: 84: 1351: 1174: 1073: 619: 588: 1628: 1207: 1045: 927: 650: 523: 477: 400: 237: 170: 373: 73: 45: 1329: 1023: 674: 501: 455: 264: 148: 1407:
displacement or translation. It is usually assume that all the random translations have a common
1392: 878: 671:
is located on the underlying space. A further generalization is to have the thinning probability
138: 103: 91: 77: 1641: 1451: 231: 94:
as the number of random point process operations applied approaches infinity. This had led to
332:
A point process needs to be defined on an underlying mathematical space. Often this space is
1633: 49: 877:
also forms a point process. In this expression the superposition operation is denoted by a
1680:
A. Baddeley, I. Bárány, and R. Schneider. Spatial point processes and their applications.
107: 1588:}. Probability and its Applications (New York). Springer, New York, second edition, 2008. 326: 112: 1693: 710: 69: 53: 41: 397:
operation entails using some predefined rule to remove points from a point process
141:. They have a number of interpretations, which is reflected by the various types of 1386: 1622:. C&H/CRC Monographs on Statistics & Applied Probability. Vol. 100. 116: 98:
of point process operations, which have their origins in the pioneering work of
17: 99: 21: 259: 1637: 881:), which implies the random set interpretation of point processes; see 548:). This rule may be generalized by introducing a non-negative function 37: 1602:
Stochastic Geometry and Wireless Networks, Volume II – Applications
1001:{\displaystyle \Lambda =\sum \limits _{i=1}^{\infty }\Lambda _{i}.} 52:
randomly located in space. These operations can be purely random,
1620:
Statistical Inference and Simulation for Spatial Point Processes
616:-thinning where now the probability of a point being removed is 1665:
Stochastic Geometry and Wireless Networks, Volume I – Theory
803:{\displaystyle \textstyle \Lambda _{1},\Lambda _{2},\dots } 1586:
An introduction to the theory of point processes. Vol. {II
1395:. This point process operation is referred to as random 498:
is independently removed (or kept) with some probability
167:
belongs to or is a member of a point process, denoted by
1517:
D. Stoyan, W. S. Kendall, J. Mecke, and L. Ruschendorf.
924:
is a Poisson point process, then the resulting process
1513: 1511: 1509: 1507: 1505: 1503: 1501: 1499: 1355: 1333: 1257: 1235: 1211: 1178: 1077: 1049: 1027: 931: 900: 769: 720: 678: 654: 623: 592: 555: 527: 505: 481: 459: 428: 404: 343: 293: 268: 241: 201: 174: 152: 1415:
random vectors in the underlying mathematical space.
1354: 1332: 1290: 1256: 1234: 1210: 1177: 1111: 1076: 1048: 1026: 957: 930: 899: 819: 768: 719: 677: 653: 622: 591: 554: 526: 504: 480: 458: 427: 403: 342: 292: 267: 240: 200: 173: 151: 1543: 1541: 1539: 1537: 1535: 1533: 1531: 1529: 1527: 948:
is also a Poisson point process with mean intensity
867:{\displaystyle {N}=\bigcup _{i=1}^{\infty }{N}_{i},} 64:multiple point processes into one point process or 1369: 1340: 1315: 1273: 1250:, then the intensity of the cluster point process 1242: 1220: 1200:are all sets of finite points with each set being 1192: 1160: 1091: 1058: 1034: 1000: 940: 916: 866: 802: 754: 685: 663: 639: 608: 577: 540: 512: 490: 466: 444: 413: 369:, although point processes can be defined on more 361: 314: 275: 250: 219: 183: 159: 90:Point process operations have been studied in the 1161:{\displaystyle {N}_{c}=\bigcup _{x\in {N}}N^{x}.} 755:{\displaystyle \textstyle {N}_{1},{N}_{2}\dots } 1580: 1578: 1576: 1574: 1572: 1570: 1618:Moller, J.; Plenge Waagepetersen, R. (2003). 1204:. Furthermore, if the original point process 336:-dimensional Euclidean space denoted here by 230:and represents the point process as a random 8: 362:{\displaystyle \textstyle {\textbf {R}}^{d}} 1551:, volume 3. Oxford university press, 1992. 60:points from a point process, combining or 1627: 1360: 1353: 1331: 1295: 1289: 1264: 1259: 1255: 1233: 1212: 1209: 1183: 1176: 1149: 1138: 1131: 1118: 1113: 1110: 1082: 1075: 1050: 1047: 1025: 989: 979: 968: 956: 932: 929: 907: 902: 898: 855: 850: 843: 832: 820: 818: 787: 774: 767: 742: 737: 727: 722: 718: 676: 655: 652: 621: 590: 585:in order to define the located-dependent 553: 525: 503: 482: 479: 457: 435: 430: 426: 405: 402: 352: 346: 345: 341: 294: 291: 266: 242: 239: 234:. Alternatively, the number of points of 208: 199: 175: 172: 150: 1519:Stochastic geometry and its applications 1411:; hence the displacements form a set of 1348:is the mean of number of points in each 647:and is dependent on where the point of 48:of phenomena that can be represented as 1495: 1477:Convergence of point process operations 1413:independent and identically distributed 1316:{\displaystyle \lambda _{c}=c\lambda ,} 1202:independent and identically distributed 1171:Often is it assumed that the clusters 1659: 1657: 1596: 1594: 578:{\displaystyle \textstyle p(x)\leq 1} 7: 1669:Foundations and Trends in Networking 1606:Foundations and Trends in Networking 329:interpretation for point processes. 220:{\displaystyle \textstyle x\in {N},} 119:. Convergence results, such as the 1564:. Pages 173-175, Academic Pr, 1983. 1521:, volume 2. Wiley Chichester, 1995. 1381:Random displacement and translation 1243:{\displaystyle \textstyle \lambda } 965: 347: 1274:{\displaystyle \textstyle {N}_{c}} 986: 980: 958: 917:{\displaystyle \textstyle {N}_{i}} 844: 784: 771: 445:{\displaystyle \textstyle {N}_{p}} 315:{\displaystyle \textstyle {N}(B),} 14: 1663:F. Baccelli and B. Błaszczyszyn. 1600:F. Baccelli and B. Błaszczyszyn. 1430:effectively says that the random 713:or collection of point processes 1370:{\displaystyle \textstyle N^{x}} 1193:{\displaystyle \textstyle N^{x}} 1092:{\displaystyle \textstyle N^{x}} 1584:D. J. Daley and D. Vere-Jones. 1464:Mapping theorem (point process) 640:{\displaystyle \textstyle p(x)} 609:{\displaystyle \textstyle p(x)} 191:, then this can be written as: 1221:{\displaystyle \textstyle {N}} 1059:{\displaystyle \textstyle {N}} 1020:entails replacing every point 941:{\displaystyle \textstyle {N}} 664:{\displaystyle \textstyle {N}} 633: 627: 602: 596: 565: 559: 541:{\displaystyle \textstyle 1-p} 491:{\displaystyle \textstyle {N}} 414:{\displaystyle \textstyle {N}} 305: 299: 251:{\displaystyle \textstyle {N}} 184:{\displaystyle \textstyle {N}} 1: 1016:The point operation known as 1341:{\displaystyle \textstyle c} 1035:{\displaystyle \textstyle x} 686:{\displaystyle \textstyle p} 513:{\displaystyle \textstyle p} 467:{\displaystyle \textstyle p} 421:to form a new point process 276:{\displaystyle \textstyle B} 160:{\displaystyle \textstyle x} 30:point process transformation 810:, then their superposition 145:. For example, if a point 72:and related fields such as 1721: 1461: 1384: 889:Poisson point process case 474:-thinning: each point of 130: 44:, which are often used as 1228:has a constant intensity 1042:in a given point process 1446:can be transformed from 1426:The result known as the 1409:probability distribution 1671:. NoW Publishers, 2009. 1608:. NoW Publishers, 2009. 1438:Transformation of space 893:In the case where each 707:superposition operation 26:point process operation 1667:, volume 3, No 3–4 of 1604:, volume 4, No 1–2 of 1371: 1342: 1317: 1275: 1244: 1222: 1194: 1162: 1093: 1060: 1036: 1002: 984: 942: 918: 885:for more information. 883:Point process notation 868: 848: 804: 756: 687: 665: 641: 610: 579: 542: 514: 492: 468: 446: 415: 380:Examples of operations 363: 316: 277: 252: 221: 185: 161: 143:point process notation 133:Point process notation 127:Point process notation 34:mathematical operation 1638:10.1201/9780203496930 1448:Cartesian coordinates 1372: 1343: 1318: 1276: 1245: 1223: 1195: 1163: 1101:cluster point process 1094: 1061: 1037: 1003: 964: 943: 919: 869: 828: 805: 757: 688: 666: 642: 611: 580: 543: 515: 493: 469: 447: 416: 364: 317: 283:is often written as: 278: 253: 222: 186: 162: 121:Palm-Khinchin theorem 85:Poisson point process 1428:Displacement theorem 1422:Displacement theorem 1352: 1330: 1288: 1254: 1232: 1208: 1175: 1109: 1074: 1046: 1024: 955: 928: 897: 817: 766: 717: 675: 651: 620: 589: 552: 524: 502: 478: 456: 425: 401: 340: 290: 265: 238: 198: 171: 149: 96:convergence theorems 1684:, pages 1–75, 2007. 1326:where the constant 762:with mean measures 374:mathematical spaces 102:in 1940s and later 74:stochastic geometry 46:mathematical models 1547:J. F. C. Kingman. 1393:mathematical space 1367: 1366: 1338: 1337: 1313: 1271: 1270: 1240: 1239: 1218: 1217: 1190: 1189: 1158: 1144: 1089: 1088: 1056: 1055: 1032: 1031: 998: 938: 937: 914: 913: 864: 800: 799: 752: 751: 683: 682: 661: 660: 637: 636: 606: 605: 575: 574: 538: 537: 510: 509: 488: 487: 464: 463: 442: 441: 411: 410: 359: 358: 312: 311: 273: 272: 248: 247: 217: 216: 181: 180: 157: 156: 139:mathematical space 104:Aleksandr Khinchin 92:mathematical limit 78:spatial statistics 40:object known as a 1705:Spatial processes 1647:978-1-58488-265-7 1549:Poisson processes 1452:polar coordinates 1127: 349: 325:which reflects a 117:Cox point process 1712: 1685: 1678: 1672: 1661: 1652: 1651: 1631: 1615: 1609: 1598: 1589: 1582: 1565: 1558: 1552: 1545: 1522: 1515: 1376: 1374: 1373: 1368: 1365: 1364: 1347: 1345: 1344: 1339: 1322: 1320: 1319: 1314: 1300: 1299: 1280: 1278: 1277: 1272: 1269: 1268: 1263: 1249: 1247: 1246: 1241: 1227: 1225: 1224: 1219: 1216: 1199: 1197: 1196: 1191: 1188: 1187: 1167: 1165: 1164: 1159: 1154: 1153: 1143: 1142: 1123: 1122: 1117: 1098: 1096: 1095: 1090: 1087: 1086: 1065: 1063: 1062: 1057: 1054: 1041: 1039: 1038: 1033: 1007: 1005: 1004: 999: 994: 993: 983: 978: 947: 945: 944: 939: 936: 923: 921: 920: 915: 912: 911: 906: 873: 871: 870: 865: 860: 859: 854: 847: 842: 824: 809: 807: 806: 801: 792: 791: 779: 778: 761: 759: 758: 753: 747: 746: 741: 732: 731: 726: 692: 690: 689: 684: 670: 668: 667: 662: 659: 646: 644: 643: 638: 615: 613: 612: 607: 584: 582: 581: 576: 547: 545: 544: 539: 519: 517: 516: 511: 497: 495: 494: 489: 486: 473: 471: 470: 465: 451: 449: 448: 443: 440: 439: 434: 420: 418: 417: 412: 409: 368: 366: 365: 360: 357: 356: 351: 350: 321: 319: 318: 313: 298: 282: 280: 279: 274: 258:located in some 257: 255: 254: 249: 246: 226: 224: 223: 218: 212: 190: 188: 187: 182: 179: 166: 164: 163: 158: 1720: 1719: 1715: 1714: 1713: 1711: 1710: 1709: 1700:Point processes 1690: 1689: 1688: 1679: 1675: 1662: 1655: 1648: 1629:10.1.1.124.1275 1617: 1616: 1612: 1599: 1592: 1583: 1568: 1562:Random measures 1560:O. Kallenberg. 1559: 1555: 1546: 1525: 1516: 1497: 1493: 1479: 1470:Mapping theorem 1466: 1460: 1458:Mapping theorem 1440: 1424: 1389: 1383: 1356: 1350: 1349: 1328: 1327: 1291: 1286: 1285: 1258: 1252: 1251: 1230: 1229: 1206: 1205: 1179: 1173: 1172: 1145: 1112: 1107: 1106: 1078: 1072: 1071: 1044: 1043: 1022: 1021: 1014: 985: 953: 952: 926: 925: 901: 895: 894: 891: 849: 815: 814: 783: 770: 764: 763: 736: 721: 715: 714: 703: 693:random itself. 673: 672: 649: 648: 618: 617: 587: 586: 550: 549: 522: 521: 500: 499: 476: 475: 454: 453: 429: 423: 422: 399: 398: 391: 382: 344: 338: 337: 288: 287: 263: 262: 236: 235: 196: 195: 169: 168: 147: 146: 135: 129: 108:queueing theory 70:point processes 36:performed on a 12: 11: 5: 1718: 1716: 1708: 1707: 1702: 1692: 1691: 1687: 1686: 1673: 1653: 1646: 1610: 1590: 1566: 1553: 1523: 1494: 1492: 1489: 1478: 1475: 1462:Main article: 1459: 1456: 1439: 1436: 1423: 1420: 1385:Main article: 1382: 1379: 1363: 1359: 1336: 1324: 1323: 1312: 1309: 1306: 1303: 1298: 1294: 1267: 1262: 1238: 1215: 1186: 1182: 1169: 1168: 1157: 1152: 1148: 1141: 1137: 1134: 1130: 1126: 1121: 1116: 1085: 1081: 1053: 1030: 1013: 1010: 1009: 1008: 997: 992: 988: 982: 977: 974: 971: 967: 963: 960: 935: 910: 905: 890: 887: 875: 874: 863: 858: 853: 846: 841: 838: 835: 831: 827: 823: 798: 795: 790: 786: 782: 777: 773: 750: 745: 740: 735: 730: 725: 702: 699: 681: 658: 635: 632: 629: 626: 604: 601: 598: 595: 573: 570: 567: 564: 561: 558: 536: 533: 530: 508: 485: 462: 438: 433: 408: 390: 387: 385:displacement. 381: 378: 355: 327:random measure 323: 322: 310: 307: 304: 301: 297: 271: 245: 228: 227: 215: 211: 207: 204: 178: 155: 131:Main article: 128: 125: 13: 10: 9: 6: 4: 3: 2: 1717: 1706: 1703: 1701: 1698: 1697: 1695: 1683: 1677: 1674: 1670: 1666: 1660: 1658: 1654: 1649: 1643: 1639: 1635: 1630: 1625: 1621: 1614: 1611: 1607: 1603: 1597: 1595: 1591: 1587: 1581: 1579: 1577: 1575: 1573: 1571: 1567: 1563: 1557: 1554: 1550: 1544: 1542: 1540: 1538: 1536: 1534: 1532: 1530: 1528: 1524: 1520: 1514: 1512: 1510: 1508: 1506: 1504: 1502: 1500: 1496: 1490: 1488: 1485: 1476: 1474: 1471: 1465: 1457: 1455: 1453: 1449: 1445: 1437: 1435: 1433: 1429: 1421: 1419: 1416: 1414: 1410: 1406: 1402: 1398: 1394: 1388: 1380: 1378: 1361: 1357: 1334: 1310: 1307: 1304: 1301: 1296: 1292: 1284: 1283: 1282: 1265: 1260: 1236: 1213: 1203: 1184: 1180: 1155: 1150: 1146: 1139: 1135: 1132: 1128: 1124: 1119: 1114: 1105: 1104: 1103: 1102: 1083: 1079: 1069: 1051: 1028: 1019: 1011: 995: 990: 975: 972: 969: 961: 951: 950: 949: 933: 908: 903: 888: 886: 884: 880: 861: 856: 851: 839: 836: 833: 829: 825: 821: 813: 812: 811: 796: 793: 788: 780: 775: 748: 743: 738: 733: 728: 723: 712: 711:countable set 708: 701:Superposition 700: 698: 694: 679: 656: 630: 624: 599: 593: 571: 568: 562: 556: 534: 531: 528: 506: 483: 460: 436: 431: 406: 396: 388: 386: 379: 377: 375: 372: 353: 335: 330: 328: 308: 302: 295: 286: 285: 284: 269: 261: 243: 233: 213: 209: 205: 202: 194: 193: 192: 176: 153: 144: 140: 134: 126: 124: 122: 118: 114: 109: 105: 101: 97: 93: 88: 86: 81: 79: 75: 71: 67: 63: 62:superimposing 59: 55: 54:deterministic 51: 47: 43: 42:point process 39: 35: 32:is a type of 31: 27: 23: 19: 1681: 1676: 1668: 1664: 1619: 1613: 1605: 1601: 1585: 1561: 1556: 1548: 1518: 1480: 1469: 1467: 1443: 1441: 1427: 1425: 1417: 1404: 1400: 1397:displacement 1396: 1390: 1387:Nu-transform 1325: 1170: 1100: 1067: 1017: 1015: 892: 876: 706: 704: 695: 394: 392: 383: 333: 331: 324: 229: 136: 120: 113:mean measure 89: 82: 66:transforming 61: 57: 29: 25: 15: 1484:convergence 1432:independent 1405:independent 1401:translation 111:non-random 18:probability 1694:Categories 1491:References 1070:of points 1018:clustering 1012:Clustering 100:Conny Palm 22:statistics 1624:CiteSeerX 1308:λ 1293:λ 1237:λ 1136:∈ 1129:⋃ 987:Λ 981:∞ 966:∑ 959:Λ 879:set union 845:∞ 830:⋃ 797:… 785:Λ 772:Λ 749:… 569:≤ 532:− 260:Borel set 206:∈ 1281:will be 395:thinning 389:Thinning 371:abstract 58:thinning 1068:cluster 1066:with a 1644:  1626:  50:points 38:random 1642:ISBN 705:The 520:(or 393:The 76:and 24:, a 20:and 1634:doi 1450:to 1399:or 232:set 28:or 16:In 1696:: 1656:^ 1640:. 1632:. 1593:^ 1569:^ 1526:^ 1498:^ 1454:. 1377:. 376:. 80:. 1650:. 1636:: 1444:R 1362:x 1358:N 1335:c 1311:, 1305:c 1302:= 1297:c 1266:c 1261:N 1214:N 1185:x 1181:N 1156:. 1151:x 1147:N 1140:N 1133:x 1125:= 1120:c 1115:N 1084:x 1080:N 1052:N 1029:x 996:. 991:i 976:1 973:= 970:i 962:= 934:N 909:i 904:N 862:, 857:i 852:N 840:1 837:= 834:i 826:= 822:N 794:, 789:2 781:, 776:1 744:2 739:N 734:, 729:1 724:N 680:p 657:N 634:) 631:x 628:( 625:p 603:) 600:x 597:( 594:p 572:1 566:) 563:x 560:( 557:p 535:p 529:1 507:p 484:N 461:p 437:p 432:N 407:N 354:d 348:R 334:d 309:, 306:) 303:B 300:( 296:N 270:B 244:N 214:, 210:N 203:x 177:N 154:x

Index

probability
statistics
mathematical operation
random
point process
mathematical models
points
deterministic
transforming
point processes
stochastic geometry
spatial statistics
Poisson point process
mathematical limit
convergence theorems
Conny Palm
Aleksandr Khinchin
queueing theory
mean measure
Cox point process
Point process notation
mathematical space
point process notation
set
Borel set
random measure
abstract
mathematical spaces
countable set
set union

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.