Knowledge

Poincaré–Hopf theorem

Source 📝

74: 1041:
It is still possible to define the index for a vector field with nonisolated zeroes. A construction of this index and the extension of Poincaré–Hopf theorem for vector fields with nonisolated zeroes is outlined in Section 1.1.2 of
788: 972:. Extend the vector field to this neighborhood so that it still has the same zeroes and the zeroes have the same indices. In addition, make sure that the extended vector field at the boundary of 913:
without boundary, this amounts to saying that the integral is 0. But by examining vector fields in a sufficiently small neighborhood of a source or sink, we see that sources and sinks contribute
469: 1055: 415: 893:. Thus, this theorem establishes a deep link between two seemingly unrelated areas of mathematics. It is perhaps as interesting that the proof of this theorem relies heavily on 592: 1005:. Technique: cut away all zeroes of the vector field with small neighborhoods. Then use the fact that the degree of a map from the boundary of an n-dimensional manifold to an 840: 77:
According to the Poincare-Hopf theorem, closed trajectories can encircle two centres and one saddle or one centre, but never just the saddle. (Here for in case of a
525: 864: 811: 713: 689: 669: 645: 618: 493: 376: 356: 332: 312: 292: 272: 252: 232: 208: 188: 168: 148: 128: 108: 917:
amounts (known as the index) to the total, and they must all sum to 0. This result may be considered one of the earliest of a whole series of theorems (e.g.
1147: 926: 1128: 721: 918: 1152: 418: 1111: 424: 1106: 381: 1001:
sphere. Thus, the sum of the indices is independent of the actual vector field, and depends only on the manifold
955: 866:. A particularly useful corollary is when there is a non-vanishing vector field implying Euler characteristic 0. 1025: 624: 1101: 934: 910: 890: 692: 530: 40: 922: 843: 902: 982:
The sum of indices of the zeroes of the old (and new) vector field is equal to the degree of the
78: 59: 898: 1124: 906: 870: 816: 211: 44: 498: 715:
be pointing in the outward normal direction along the boundary. Then we have the formula
849: 796: 698: 674: 654: 630: 603: 478: 361: 341: 317: 297: 277: 257: 237: 217: 193: 173: 153: 133: 113: 93: 16:
Counts 0s of a vector field on a differentiable manifold using its Euler characteristic
1141: 621: 1060: 1032:
for which it is clear that the sum of indices is equal to the Euler characteristic.
648: 335: 63: 909:
is equal to the integral of that form over the boundary. In the special case of a
20: 874: 48: 1079:
Henri Poincaré, On curves defined by differential equations (1881–1882)
983: 73: 1013:
sphere, that can be extended to the whole n-dimensional manifold, is zero.
941:
concepts. They play an important role in the modern study of both fields.
930: 894: 886: 472: 67: 1088:
H. Hopf, Vektorfelder in n-dimensionalen Mannigfaltigkeiten, Math. Ann.
938: 914: 1016:
Finally, identify this sum of indices as the Euler characteristic of
783:{\displaystyle \sum _{i}\operatorname {index} _{x_{i}}(v)=\chi (M)\,} 72: 793:
where the sum of the indices is over all the isolated zeroes of
885:
The Euler characteristic of a closed surface is a purely
58:
theorem is often illustrated by the special case of the
1119:
Brasselet, Jean-Paul; Seade, José; Suwa, Tatsuo (2009).
1020:. To do that, construct a very specific vector field on 889:
concept, whereas the index of a vector field is purely
852: 819: 799: 724: 701: 677: 657: 633: 606: 533: 501: 481: 427: 384: 364: 344: 320: 300: 280: 260: 240: 220: 196: 176: 156: 136: 116: 96: 954:in some high-dimensional Euclidean space. (Use the 1043: 858: 834: 805: 782: 707: 683: 663: 639: 612: 586: 519: 487: 464:{\displaystyle u:\partial D\to \mathbb {S} ^{n-1}} 463: 409: 370: 350: 326: 306: 286: 266: 246: 226: 202: 182: 162: 142: 122: 102: 1056:Eisenbud–Levine–Khimshiashvili signature formula 873:and later generalized to higher dimensions by 62:, which simply states that there is no smooth 869:The theorem was proven for two dimensions by 410:{\displaystyle \operatorname {index} _{x}(v)} 8: 581: 566: 110:be a differentiable manifold, of dimension 929:) establishing deep relationships between 39:) is an important theorem that is used in 851: 818: 798: 779: 744: 739: 729: 723: 700: 676: 656: 632: 605: 561: 532: 500: 480: 449: 445: 444: 426: 389: 383: 363: 343: 319: 299: 279: 259: 239: 219: 195: 175: 155: 135: 115: 95: 901:, which states that the integral of the 1072: 7: 1121:Vector fields on singular varieties 587:{\displaystyle u(z)=v(z)/\|v(z)\|} 434: 14: 1148:Theorems in differential topology 927:Grothendieck–Riemann–Roch theorem 1044:Brasselet, Seade & Suwa 2009 829: 823: 776: 770: 761: 755: 578: 572: 558: 552: 543: 537: 514: 502: 440: 404: 398: 1: 961:Take a small neighborhood of 70:having no sources or sinks. 1107:Encyclopedia of Mathematics 919:Atiyah–Singer index theorem 33:Poincaré–Hopf index theorem 29:Poincaré–Hopf index formula 1169: 1092:(1926), pp. 209–221. 965:in that Euclidean space, 956:Whitney embedding theorem 671:with isolated zeroes. If 1123:. Heidelberg: Springer. 835:{\displaystyle \chi (M)} 417:, can be defined as the 1102:"Poincaré–Hopf theorem" 625:differentiable manifold 190:is an isolated zero of 66:on an even-dimensional 897:, and, in particular, 860: 836: 807: 784: 709: 695:, then we insist that 685: 665: 641: 614: 588: 521: 489: 465: 411: 372: 352: 328: 308: 288: 268: 248: 228: 204: 184: 164: 144: 124: 104: 82: 1153:Differential topology 986:from the boundary of 979:is directed outwards. 861: 837: 808: 785: 710: 686: 666: 642: 615: 589: 522: 520:{\displaystyle (n-1)} 490: 466: 412: 373: 353: 329: 309: 289: 269: 249: 234:. Pick a closed ball 229: 205: 185: 165: 145: 125: 105: 76: 41:differential topology 25:Poincaré–Hopf theorem 850: 844:Euler characteristic 817: 797: 722: 699: 675: 655: 631: 604: 531: 499: 479: 425: 382: 362: 342: 318: 298: 294:is the only zero of 278: 258: 238: 218: 194: 174: 154: 134: 114: 94: 43:. It is named after 903:exterior derivative 27:(also known as the 856: 832: 803: 780: 734: 705: 681: 661: 637: 610: 584: 527:-sphere given by 517: 485: 461: 407: 368: 348: 324: 304: 284: 264: 244: 224: 200: 180: 160: 150:a vector field on 140: 120: 100: 83: 79:Hamiltonian system 60:hairy ball theorem 37:Hopf index theorem 1130:978-3-642-05205-7 923:De Rham's theorem 907:differential form 859:{\displaystyle M} 806:{\displaystyle v} 725: 708:{\displaystyle v} 684:{\displaystyle M} 664:{\displaystyle M} 640:{\displaystyle v} 613:{\displaystyle M} 488:{\displaystyle D} 371:{\displaystyle x} 351:{\displaystyle v} 327:{\displaystyle D} 307:{\displaystyle v} 287:{\displaystyle x} 267:{\displaystyle x} 247:{\displaystyle D} 227:{\displaystyle x} 212:local coordinates 203:{\displaystyle v} 183:{\displaystyle x} 163:{\displaystyle M} 143:{\displaystyle v} 123:{\displaystyle n} 103:{\displaystyle M} 1160: 1134: 1115: 1093: 1086: 1080: 1077: 1012: 1000: 865: 863: 862: 857: 841: 839: 838: 833: 812: 810: 809: 804: 789: 787: 786: 781: 751: 750: 749: 748: 733: 714: 712: 711: 706: 690: 688: 687: 682: 670: 668: 667: 662: 646: 644: 643: 638: 619: 617: 616: 611: 593: 591: 590: 585: 565: 526: 524: 523: 518: 494: 492: 491: 486: 470: 468: 467: 462: 460: 459: 448: 416: 414: 413: 408: 394: 393: 377: 375: 374: 369: 357: 355: 354: 349: 333: 331: 330: 325: 313: 311: 310: 305: 293: 291: 290: 285: 273: 271: 270: 265: 253: 251: 250: 245: 233: 231: 230: 225: 209: 207: 206: 201: 189: 187: 186: 181: 169: 167: 166: 161: 149: 147: 146: 141: 129: 127: 126: 121: 109: 107: 106: 101: 86:Formal statement 1168: 1167: 1163: 1162: 1161: 1159: 1158: 1157: 1138: 1137: 1131: 1118: 1100: 1097: 1096: 1087: 1083: 1078: 1074: 1069: 1052: 1039: 1011:–1)-dimensional 1006: 999:–1)-dimensional 994: 992: 978: 971: 947: 945:Sketch of proof 899:Stokes' theorem 883: 848: 847: 815: 814: 795: 794: 740: 735: 720: 719: 697: 696: 673: 672: 653: 652: 629: 628: 602: 601: 529: 528: 497: 496: 477: 476: 443: 423: 422: 385: 380: 379: 360: 359: 340: 339: 316: 315: 296: 295: 276: 275: 256: 255: 236: 235: 216: 215: 210:, and fix some 192: 191: 172: 171: 170:. Suppose that 152: 151: 132: 131: 112: 111: 92: 91: 88: 17: 12: 11: 5: 1166: 1164: 1156: 1155: 1150: 1140: 1139: 1136: 1135: 1129: 1116: 1095: 1094: 1081: 1071: 1070: 1068: 1065: 1064: 1063: 1058: 1051: 1048: 1038: 1037:Generalization 1035: 1034: 1033: 1014: 990: 980: 976: 969: 959: 946: 943: 882: 879: 871:Henri Poincaré 855: 831: 828: 825: 822: 802: 791: 790: 778: 775: 772: 769: 766: 763: 760: 757: 754: 747: 743: 738: 732: 728: 704: 680: 660: 636: 609: 583: 580: 577: 574: 571: 568: 564: 560: 557: 554: 551: 548: 545: 542: 539: 536: 516: 513: 510: 507: 504: 484: 458: 455: 452: 447: 442: 439: 436: 433: 430: 406: 403: 400: 397: 392: 388: 367: 347: 323: 303: 283: 263: 243: 223: 199: 179: 159: 139: 119: 99: 87: 84: 45:Henri Poincaré 15: 13: 10: 9: 6: 4: 3: 2: 1165: 1154: 1151: 1149: 1146: 1145: 1143: 1132: 1126: 1122: 1117: 1113: 1109: 1108: 1103: 1099: 1098: 1091: 1085: 1082: 1076: 1073: 1066: 1062: 1059: 1057: 1054: 1053: 1049: 1047: 1045: 1036: 1031: 1027: 1026:triangulation 1023: 1019: 1015: 1010: 1004: 998: 989: 985: 981: 975: 968: 964: 960: 957: 953: 949: 948: 944: 942: 940: 936: 932: 928: 924: 920: 916: 912: 908: 904: 900: 896: 892: 888: 880: 878: 876: 872: 867: 853: 845: 826: 820: 800: 773: 767: 764: 758: 752: 745: 741: 736: 730: 726: 718: 717: 716: 702: 694: 678: 658: 650: 634: 626: 623: 607: 599: 595: 575: 569: 562: 555: 549: 546: 540: 534: 511: 508: 505: 482: 474: 456: 453: 450: 437: 431: 428: 420: 401: 395: 390: 386: 365: 345: 337: 321: 301: 281: 261: 241: 221: 213: 197: 177: 157: 137: 117: 97: 85: 80: 75: 71: 69: 65: 61: 57: 56:Poincaré–Hopf 52: 50: 46: 42: 38: 34: 30: 26: 22: 1120: 1105: 1089: 1084: 1075: 1061:Hopf theorem 1040: 1029: 1021: 1017: 1008: 1002: 996: 987: 973: 966: 962: 951: 884: 881:Significance 868: 792: 649:vector field 597: 596: 254:centered at 89: 64:vector field 55: 53: 36: 32: 28: 24: 18: 895:integration 887:topological 421:of the map 334:. Then the 21:mathematics 1142:Categories 1067:References 935:analytical 875:Heinz Hopf 274:, so that 49:Heinz Hopf 1112:EMS Press 984:Gauss map 931:geometric 821:χ 768:χ 753:⁡ 727:∑ 582:‖ 567:‖ 509:− 471:from the 454:− 441:→ 435:∂ 396:⁡ 1050:See also 1024:using a 939:physical 911:manifold 891:analytic 693:boundary 598:Theorem. 473:boundary 68:n-sphere 1114:, 2001 993:to the 915:integer 842:is the 627:. Let 622:compact 495:to the 1127:  950:Embed 419:degree 130:, and 23:, the 905:of a 737:index 647:be a 620:be a 387:index 336:index 214:near 35:, or 1125:ISBN 933:and 813:and 691:has 600:Let 90:Let 54:The 47:and 1046:). 1028:of 937:or 846:of 651:on 475:of 358:at 338:of 314:in 19:In 1144:: 1110:, 1104:, 1090:96 958:.) 925:, 921:, 877:. 594:. 378:, 51:. 31:, 1133:. 1042:( 1030:M 1022:M 1018:M 1009:n 1007:( 1003:M 997:n 995:( 991:ε 988:N 977:ε 974:N 970:ε 967:N 963:M 952:M 854:M 830:) 827:M 824:( 801:v 777:) 774:M 771:( 765:= 762:) 759:v 756:( 746:i 742:x 731:i 703:v 679:M 659:M 635:v 608:M 579:) 576:z 573:( 570:v 563:/ 559:) 556:z 553:( 550:v 547:= 544:) 541:z 538:( 535:u 515:) 512:1 506:n 503:( 483:D 457:1 451:n 446:S 438:D 432:: 429:u 405:) 402:v 399:( 391:x 366:x 346:v 322:D 302:v 282:x 262:x 242:D 222:x 198:v 178:x 158:M 138:v 118:n 98:M 81:)

Index

mathematics
differential topology
Henri Poincaré
Heinz Hopf
hairy ball theorem
vector field
n-sphere

Hamiltonian system
local coordinates
index
degree
boundary
compact
differentiable manifold
vector field
boundary
Euler characteristic
Henri Poincaré
Heinz Hopf
topological
analytic
integration
Stokes' theorem
exterior derivative
differential form
manifold
integer
Atiyah–Singer index theorem
De Rham's theorem

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.