Knowledge (XXG)

Polyacetylene

Source 📝

82: 653: 694: 254: 45: 444: 65: 843: 858: 430: 818: 272: 701:
By varying the apparatus and catalyst loading, Shirakawa and coworkers were able to synthesize polyacetylene as thin films, rather than insoluble black powders. They obtained these films by coating the walls of a reaction flask under inert conditions with a solution of the Ziegler–Natta catalyst and
1160:
Polyacetylene has no commercial applications, although the discovery of polyacetylene as a conductive organic polymer led to many developments in materials science. Conducting polymers are of interest for solution-processing for film-forming conductive polymers. Therefore, attention has shifted to
387:
in 2000. Early work in the field of polyacetylene research was aimed at using doped polymers as easily processable and lightweight "plastic metals". Despite the promise of this polymer in the field of conductive polymers, many of its properties such as instability to air and difficulty with
1295:
Gorman, C. B.; Ginsburg, E. J.; Grubbs, R. H. (1993). "Soluble, Highly Conjugated Derivatives of Polyacetylene from the Ring-Opening Metathesis Polymerization of Monosubstituted Cyclooctratetraenes: Synthesis and the Relationship between Polymer Structure and Physical Properties".
1109: 1084:
The synthesis and processing of polyacetylene films affects the properties. Increasing the catalyst ratio creates thicker films with a greater draw ratio, allowing them to be stretched further. Lower catalyst loadings leads to the formation of dark red
830:
Polyacetylene can also be synthesized from other polymers. This method enables modification and processing of the polymer before conversion into the highly insoluble polyacetylene. Short, irregular segments of polyacetylene can be obtained by
690:. This method allows control over the structure and properties of the final polymer by varying temperature and catalyst loading. Mechanistic studies suggest that this polymerization involves metal insertion into the triple bond of acetylene. 849:
More efficient methos for synthesizing long polyacetylene chains exist and include the Durham precursor route in which precusor polymers are prepared by ring-opening metathesis polymerization, and a subsequent heat-induced reverse
234: 1011:-polyacetylene has a lower conductivity of 1.7×10 Ωcm. Doping with bromine causes an increase in conductivity to 0.5 Ωcm, while a higher conductivity of 38 Ωcm is obtained through doping with iodine. Doping of either 524:
in 1958. The resulting polyacetylene was linear, of high molecular weight, displayed high crystallinity, and had a regular structure. X-ray diffraction studies demonstrated that the resulting polyacetylene was
536:’s group who were able to prepare silvery films of polyacetylene. They discovered that the polymerization of polyacetylene could be achieved at the surface of a concentrated solution of the catalyst system of 619:
further increased the conductivities, bringing them close to that of copper. Furthermore, it was found that heat treatment of the catalyst used for polymerization led to films with higher conductivities.
529:-polyacetylene. After this first reported synthesis, few chemists were interested in polyacetylene because the product of Natta's preparation was an insoluble, air sensitive, and infusible black powder. 519:
One of the earliest reported acetylene polymers was named Cuprene. Its highly cross-linked nature led to no further studies in the field for quite some time. Linear polyacetylene was first prepared by
1097:, then freezing and subliming the benzene. Polyacetylene has a bulk density of 0.4 g/cm, while density of the foam is significantly lower, at 0.02–0.04 g/cm. The morphology consists of 1124:-polyacetylene show high thermal stability, exposure to air causes a large decrease in the flexibility and conductivity. When polyacetylene is exposed to air, oxidation of the backbone by O 503:
nature of the polyacetylene backbone, not all of the carbon–carbon bonds in the material are equal: a distinct single/double alternation exists. Each hydrogen atom can be replaced by a
587:. These materials exhibited the largest room temperature conductivity observed for a covalent organic polymer, and this seminal report was key in furthering the development of organic 507:. Substituted polyacetylenes tend to be more rigid than saturated polymers. Furthermore, placing different functional groups as substituents on the polymer backbone leads to a twisted 1205:
Perego, Giovanni; Lugli, Gabriele; Pedretti, Ugo; Cesari, Marco (1988). "X-ray investigation on highly oriented polyacetylene, 1. Crystal structure of cis- and trans-polyacetylene".
1743:
Ito, T.; Shirakawa, H.; Ikeda, S. (1974). "Simultaneous Polymerization and Formation of Polyacetylene Film on the Surface of Concentrated Soluble Ziegler-Type Catalyst Solution".
1553:
Shirakawa, H.; Louis, E.J.; MacDiarmid, A.G.; Chiang, C.K.; Heeger, A.J. (1977). "Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH)
285: 739:
to produce usable polymer. Gas-phase polymerization typically produces irregular cuprene, whereas liquid-phase polymerization, conducted at −78 °C produces linear
1875:
MacDiarmid, Alan Graham; Mammone, R. J.; Kaner, R. B.; Porter, Lord; Pethig, R.; Heeger, A. J.; Rosseinsky, D. R.; Gillespie, Ronald James; Day, Peter (1985-05-30).
702:
adding gaseous acetylene resulting in immediate formation of a film. Enkelmann and coworkers further improved polyacetylene synthesis by changing the catalyst to a
1116:
For applications, polyacetylenes suffer from many drawbacks. They are insoluble in solvents, making it essentially impossible to process the material. While both
1105:
between chains. The insolubility of polyacetylene makes it difficult to characterize this material and to determine the extent of cross-linking in the material.
81: 1089:, which can be converted to films by cutting and pressing between glass plates. A foam-like material can be obtained from the gel by displacing the 756: 660:
A variety of methods have been developed to synthesize polyacetylene. One of the most common methods is via passing acetylene gas over a
632: 770:. This synthetic route also provides a facile method for adding solubilizing groups to the polymer while maintaining the conjugation. 560:, a related but inorganic polymer. Polythiazyl caught Heeger's interest as a chain-like metallic material, and he collaborated with 1716:
Clarke, T. C.; Yannoni, T. S.; Katz, T. J. (1983). "Mechanism of Ziegler–Natta Polymerization of Acetylene: A Nutation NMR Study".
1383: 913: 604: 352: 2106: 1497: 2096: 1959: 292: 1043:, and found that the structure depends on synthetic conditions. When the synthesis is performed below −78 °C, the 30:
This article is about polymers with alternating double and single bonds. For compounds with multiple triple bonds, see
661: 1207: 1778:
Klavetter, Floyd L.; Grubbs, Robert H. (1988). "Polycyclooctatetraene (Polyacetylene): Synthesis and Properties".
2101: 1805: 851: 1829:
Chiang, C.K.; Gau, S.C.; Fincher, C.R.; Park, Y.W.; MacDiarmid, A.G.; Heeger, A.J. (1978). "Polyacetylene, (CH)
508: 384: 44: 469: 568:
at low temperatures. Shirakawa, Heeger, and MacDiarmid collaborated on further development of polyacetylene.
253: 968: 925: 917: 878: 652: 693: 624: 572: 356: 64: 1174: 1129: 1036: 665: 636: 380: 246: 105: 1881:
Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences
1019:-polyacetylene leads to an increase in their conductivities by at least six orders of magnitude. Doped 2048: 1888: 1842: 1752: 1630: 1466:
Saxon, A.M.; Liepins, F.; Aldissi, M. (1985). "Polyacetylene: Its Synthesis, Doping, and Structure".
1246: 991: 987: 980: 964: 952: 941: 882: 871: 836: 87: 2081: 1101:, with an average width of 200 Å. These fibrils form an irregular, web-like network, with some 491:-polyacetylene, can be achieved by changing the temperature at which the reaction is conducted. The 1235:"Nobel Lecture: Semiconducting and metallic polymers: The fourth generation of polymeric materials" 1077: 1067: 1049: 832: 588: 129: 735:
irradiation have all been used. This method avoid the use of catalysts and solvents, but requires
391:
Compounds called polyacetylenes also occur in nature, although in this context the term refers to
1904: 1620: 1162: 1040: 714: 703: 564:
who had previous experience with this material. By the early 1970s, this polymer was known to be
360: 1876: 351:
groups. This compound is conceptually important, as the discovery of polyacetylene and its high
1580:
Shirakawa, Hideki (1995). "Synthesis and characterization of highly conducting polyacetylene".
743:-polyacetylene, and solid-phase polymerization, conducted at still lower temperature, produces 2111: 2076: 1664: 1646: 1516: 1354: 937: 795: 760: 676: 579:, the conductivity increased seven orders of magnitude. Similar results were achieved using Cl 537: 500: 2056: 2019: 1986: 1951: 1896: 1850: 1787: 1760: 1725: 1698: 1654: 1638: 1589: 1562: 1508: 1475: 1421: 1344: 1336: 1305: 1274: 1254: 1215: 1108: 533: 504: 376: 364: 200: 172: 50: 139: 807: 774:
and coworkers synthesized a variety of polyacetylene derivatives with linear and branched
728: 565: 561: 553: 372: 316: 2052: 1892: 1846: 1756: 1634: 1250: 814:) unit directly connected to the polymer reduces steric crowding and prevents twisting. 1659: 1608: 1349: 1324: 1023:-polyacetylene films usually have conductivities two or three times greater than doped 936:. The "hole" on the polymer backbone is weakly associated with the anionic acceptor by 842: 724: 443: 340: 320: 263: 2090: 1955: 1702: 1593: 1479: 1425: 1166: 771: 1908: 1682:
Feast, W. J.; Tsibouklis, J.; Pouwer, K. L.; Groenendaal, L.; Meijer, E. W. (1996).
928:
occurs from the polymer to the acceptor compound; the polyacetylene chain acts as a
1524: 1145: 521: 400: 1877:"The concept of 'doping' of conducting polymers: the role of reduction potentials" 1683: 1406: 1340: 857: 1405:
Feast, W.J.; Tsibouklis, J.; Pouwer, K.L.; Groenendaal, L.; Meijer, E.W. (1996).
1053:
form is favored. At room temperature, the polymerization yields a ratio of 60:40
1609:"Observation of the topological soliton state in the Su–Schrieffer–Heeger model" 1219: 1170: 870:
When polyacetylene films are exposed to vapors of electron-accepting compounds (
732: 557: 549: 461: 368: 2060: 1932: 1259: 1234: 1102: 817: 736: 150: 17: 1650: 1149: 948:
retain their high conductivity even after exposure to air for several days.
881:
of the material increases by orders of magnitude over the undoped material.
764: 375:
for this polymer led to intense interest in the use of organic compounds in
344: 221: 1900: 1668: 1520: 1358: 1003:
The conductivity of polyacetylene depends on structure and doping. Undoped
548:
in an inert solvent such as toluene. In parallel with Shirakawa's studies,
1764: 2024: 2007: 1991: 1974: 1566: 1325:"Biosynthesis and function of polyacetylenes and allied natural products" 1141: 1133: 976: 909: 723:
Polyacetylene can also be produced by photopolymerization of acetylene.
465: 1791: 1729: 1642: 1309: 1152:
temporarily, while coating with glass increases stability indefinitely.
697:
Mechanism of polyacetylene synthesis from acetylene and a metal catalyst
429: 1186: 1137: 1094: 1090: 994: 972: 945: 921: 767: 628: 532:
The next major development of polyacetylene polymerization was made by
392: 31: 1933:"Organic Metals and Semiconductors: The Chemistry of Polyacetylene (CH 1684:"Synthesis, processing and material properties of conjugated polymers" 1407:"Synthesis, processing and material properties of conjugated polymers" 2039:
Will, F.G.; D.W. McKee (1983). "Thermal Oxidation of Polyacetylene".
1512: 1098: 1075:-polyacetylene are very flexible and can be readily stretched, while 983: 960: 956: 929: 905: 885: 874: 861:
Durham precursor polymer (Reverse Diels–Alder) route to polyacetylene
799: 480: 457: 348: 1854: 262:
Except where otherwise noted, data are given for materials in their
1625: 1177:
could also be a potential application of conductive polyacetylene.
1027:-polyacetylene even though the parent film has lower conductivity. 90:
of the transoidal (top) and cisoidal (bottom) conformations of the
1107: 963:
for polyacetylene include lithium, sodium, and potassium. As with
933: 856: 816: 791: 783: 775: 692: 651: 623:
To account for such an increase in conductivity in polyacetylene,
308: 395:, compounds containing multiple acetylene groups ("poly" meaning 1035:
The structure of polyacetylene films have been examined by both
916:
of these polymers is believed to be a result of the creation of
786:
had high conductivity but low solubility, while highly branched
627:
and Heeger considered the existence of topologically protected
1926: 1924: 1922: 1920: 1918: 1086: 1007:-polyacetylene films have a conductivity of 4.4×10 Ωcm, while 986:
is not as significant as those achieved upon treatment with a
495:
form of the polymer is thermodynamically less stable than the
854:
yields the final polymer, as well as volatile side products.
802:
crowding. They obtained soluble and conductive polymers with
388:
processing have led to avoidance in commercial applications.
2008:"Raman Scattering and Electronic Spectra of Poly(acetylene)" 959:
can also be used to create conductive polyacetylene. n-Type
635:, which has served as model in other contexts to understand 1607:
Meier, Eric J.; An, Fangzhao Alex; Gadway, Bryce (2016).
1384:"The Nobel Prize in Chemistry, 2000: Conductive Polymers" 1559:
Journal of the Chemical Society, Chemical Communications
280: 979:. The increase in conductivity upon treatment with an 339:. The name refers to its conceptual construction from 2082:
The Nobel Prize in Chemistry 2000 presentation speech
1000:Polyacetylene can also be doped electrochemically. 720:system, which was stable to both oxygen and water. 511:of the polymer chain to interrupt the conjugation. 591:. Further studies led to improved control of the 363:. The high electrical conductivity discovered by 2006:Shirakawa, H. S.; Ito, T. S.; Ikeda, S. (1973). 1973:Shirakawa, H. S.; Ito, T. S.; Ikeda, S. (1971). 1496:Hall, N; McDiarmid, Alan; Heeger, Alan (2003). 1047:form predominates, while above 150 °C the 138: 1833:: n-type and p-type doping and compensation". 997:are extremely sensitive to air and moisture. 8: 1548: 1546: 1544: 778:chains. Polymers with linear groups such as 971:are created, where the polymer backbone is 27:Organic polymer made of the repeating unit 1975:"Infrared Spectroscopy of Poly(acetylene)" 1498:"Twenty-five years of conducting polymers" 794:groups increased solubility but decreased 456:Polyacetylene consists of a long chain of 36: 2023: 1990: 1824: 1822: 1658: 1624: 1461: 1459: 1457: 1455: 1348: 1258: 806:-butyl and neopentyl groups, because the 631:defects, their model is now known as the 556:were studying the metallic properties of 1962:from the original on September 24, 2017. 1780:Journal of the American Chemical Society 1718:Journal of the American Chemical Society 1453: 1451: 1449: 1447: 1445: 1443: 1441: 1439: 1437: 1435: 1377: 1375: 1373: 1371: 1369: 1298:Journal of the American Chemical Society 1290: 1288: 1286: 1284: 990:dopant. Polyacetylene chains doped with 841: 383:). This discovery was recognized by the 333: 329: 325: 188: 184: 180: 1400: 1398: 1396: 1197: 763:, a material easier to handle than the 468:atom. The double bonds can have either 1491: 1489: 1112:Products of oxidation of polyacetylene 757:ring-opening metathesis polymerisation 751:Ring-opening metathesis polymerization 359:helped to launch the field of organic 1870: 1868: 1866: 1864: 1081:-polyacetylene is much more brittle. 7: 755:Polyacetylene can be synthesized by 603:-polyacetylene doping led to higher 1275:"The Nobel Prize in Chemistry 2000" 1165:for application purposes including 599:isomer ratio and demonstrated that 479:. The controlled synthesis of each 1931:MacDiarmid, A; Heeger, A. (1979). 460:atoms with alternating single and 25: 1745:Journal of Polymer Science Part A 798:due to polymer twisting to avoid 442: 428: 270: 252: 80: 63: 43: 1065:form appear coppery, while the 347:to give a chain with repeating 266:(at 25 °C , 100 kPa). 1: 1341:10.1016/j.plipres.2008.02.002 821:Grubbs route to polyacetylene 1956:10.1016/0379-6779(80)90002-8 1703:10.1016/0032-3861(96)00439-9 1594:10.1016/0379-6779(94)02340-5 1480:10.1016/0079-6700(85)90008-5 1426:10.1016/0032-3861(96)00439-9 940:. Polyacetylene doped with ( 912:from the polymer chain. The 464:between them, each with one 399:), rather than to chains of 1220:10.1002/macp.1988.021891113 2128: 2061:10.1002/pol.1983.170211210 2041:Journal of Polymer Science 1382:Norden, B; Krutmeijer, E. 1329:Progress in Lipid Research 1071:form is silvery. Films of 633:Su–Schrieffer–Heeger model 29: 1323:Minto, Robert E. (2008). 1260:10.1103/RevModPhys.73.681 1239:Reviews of Modern Physics 969:charge-transfer complexes 918:charge-transfer complexes 260: 233: 228: 210: 165: 122: 114: 104: 99: 79: 62: 42: 920:between the polymer and 385:Nobel Prize in Chemistry 1061:. Films containing the 932:and the acceptor as an 879:electrical conductivity 826:From precursor polymers 615:-polyacetylene with AsF 611:-polyacetylene. Doping 403:groups ("poly" meaning 315:) usually refers to an 2107:Organic semiconductors 1937:) and its Derivatives" 1901:10.1098/rsta.1985.0004 1113: 908:act by abstracting an 862: 846: 822: 698: 662:Ziegler–Natta catalyst 657: 637:topological insulators 381:organic semiconductors 2097:Molecular electronics 1806:"Conducting Polymers" 1765:10.1002/pola.1996.854 1613:Nature Communications 1233:Heeger, Alan (2001). 1175:Molecular electronics 1130:Infrared spectroscopy 1111: 1037:infrared spectroscopy 860: 845: 820: 696: 655: 88:Ball-and-stick models 2025:10.1295/polymj.4.460 1992:10.1295/polymj.2.231 1567:10.1039/C39770000578 1148:or wax can slow the 852:Diels–Alder reaction 837:poly(vinyl chloride) 656:Ziegler–Natta scheme 575:polyacetylene with I 499:isomer. Despite the 449:Ball-and-stick model 70:Skeletal formula of 2053:1983JPoSA..21.3479W 1893:1985RSPTA.314....3M 1847:1978ApPhL..33...18C 1792:10.1021/ja00231a036 1757:1996JPoSA..34.2533I 1730:10.1021/ja00364a076 1643:10.1038/ncomms13986 1635:2016NatCo...713986M 1310:10.1021/ja00057a024 1251:2001RvMP...73..681H 1163:conductive polymers 1132:shows formation of 951:Electron-donating ( 833:dehydrohalogenation 589:conductive polymers 361:conductive polymers 201:Solubility in water 39: 1114: 1041:Raman spectroscopy 863: 847: 823: 699: 658: 487:-polyacetylene or 435:Structural diagram 293:Infobox references 211:Related compounds 117:Polyacetylene, PAc 37: 2047:(12): 3479–3492. 1786:(23): 7807–7813. 1724:(26): 7787–7789. 1697:(22): 5017–5047. 1214:(11): 2657–2669. 975:and the donor is 938:Coulomb potential 761:cyclooctatetraene 405:polymerization of 301:Chemical compound 299: 298: 217:Related compounds 16:(Redirected from 2119: 2102:Organic polymers 2065: 2064: 2036: 2030: 2029: 2027: 2003: 1997: 1996: 1994: 1970: 1964: 1963: 1950:(101–118): 101. 1944:Synthetic Metals 1941: 1928: 1913: 1912: 1872: 1859: 1858: 1835:Appl. Phys. Lett 1826: 1817: 1816: 1810: 1802: 1796: 1795: 1775: 1769: 1768: 1740: 1734: 1733: 1713: 1707: 1706: 1688: 1679: 1673: 1672: 1662: 1628: 1604: 1598: 1597: 1582:Synthetic Metals 1577: 1571: 1570: 1550: 1539: 1538: 1536: 1535: 1529: 1523:. Archived from 1513:10.1039/B210718J 1502: 1493: 1484: 1483: 1468:Prog. Polym. Sci 1463: 1430: 1429: 1411: 1402: 1391: 1390: 1388: 1379: 1364: 1362: 1352: 1320: 1314: 1313: 1304:(4): 1397–1409. 1292: 1279: 1278: 1271: 1265: 1264: 1262: 1230: 1224: 1223: 1202: 747:-polyacetylene. 625:J. R. Schrieffer 534:Hideki Shirakawa 505:functional group 483:of the polymer, 446: 432: 377:microelectronics 365:Hideki Shirakawa 338: 283: 277: 274: 273: 256: 193: 173:Chemical formula 142: 84: 67: 51:Skeletal formula 47: 40: 21: 2127: 2126: 2122: 2121: 2120: 2118: 2117: 2116: 2087: 2086: 2073: 2068: 2038: 2037: 2033: 2005: 2004: 2000: 1972: 1971: 1967: 1939: 1936: 1930: 1929: 1916: 1874: 1873: 1862: 1855:10.1063/1.90166 1832: 1828: 1827: 1820: 1808: 1804: 1803: 1799: 1777: 1776: 1772: 1742: 1741: 1737: 1715: 1714: 1710: 1686: 1681: 1680: 1676: 1606: 1605: 1601: 1579: 1578: 1574: 1561:(16): 578–580. 1556: 1552: 1551: 1542: 1533: 1531: 1527: 1500: 1495: 1494: 1487: 1465: 1464: 1433: 1409: 1404: 1403: 1394: 1386: 1381: 1380: 1367: 1322: 1321: 1317: 1294: 1293: 1282: 1273: 1272: 1268: 1232: 1231: 1227: 1208:Makromol. Chem. 1204: 1203: 1199: 1195: 1183: 1158: 1144:. Coating with 1127: 1033: 926:Charge transfer 903: 899: 895: 891: 868: 828: 813: 753: 718: 711: 707: 688: 684: 680: 673: 650: 645: 618: 607:than doping of 586: 582: 578: 566:superconductive 562:Alan MacDiarmid 554:Alan MacDiarmid 547: 541: 517: 454: 453: 452: 451: 450: 447: 438: 437: 436: 433: 424: 423: 413: 373:Alan MacDiarmid 337: 331: 327: 323: 317:organic polymer 302: 295: 290: 289: 288:  ?) 279: 275: 271: 267: 249: 218: 203: 192: 186: 182: 178: 175: 161: 145: 132: 118: 110: 95: 85: 75: 68: 58: 48: 35: 28: 23: 22: 15: 12: 11: 5: 2125: 2123: 2115: 2114: 2109: 2104: 2099: 2089: 2088: 2085: 2084: 2079: 2072: 2071:External links 2069: 2067: 2066: 2031: 2018:(4): 460–462. 1998: 1985:(2): 231–244. 1965: 1934: 1914: 1887:(1528): 3–15. 1860: 1830: 1818: 1797: 1770: 1735: 1708: 1674: 1599: 1572: 1554: 1540: 1485: 1431: 1392: 1365: 1335:(4): 233–306. 1315: 1280: 1266: 1245:(3): 681–700. 1225: 1196: 1194: 1191: 1190: 1189: 1182: 1179: 1157: 1154: 1125: 1032: 1029: 901: 897: 893: 889: 867: 864: 827: 824: 811: 752: 749: 725:Glow-discharge 716: 709: 705: 686: 682: 678: 671: 649: 648:From acetylene 646: 644: 641: 616: 584: 580: 576: 545: 539: 516: 513: 448: 441: 440: 439: 434: 427: 426: 425: 422:-polyacetylene 417: 416: 415: 414: 412: 409: 341:polymerization 321:repeating unit 300: 297: 296: 291: 269: 268: 264:standard state 261: 258: 257: 250: 245: 242: 241: 231: 230: 226: 225: 224:gas (monomer) 219: 216: 213: 212: 208: 207: 204: 199: 196: 195: 176: 171: 168: 167: 163: 162: 160: 159: 155: 153: 147: 146: 144: 143: 135: 133: 128: 125: 124: 120: 119: 116: 112: 111: 108: 102: 101: 97: 96: 86: 77: 76: 74:-polyacetylene 69: 60: 59: 57:-polyacetylene 49: 38:Polyacetylene 26: 24: 18:Polyacetylenes 14: 13: 10: 9: 6: 4: 3: 2: 2124: 2113: 2110: 2108: 2105: 2103: 2100: 2098: 2095: 2094: 2092: 2083: 2080: 2078: 2077:Polyacetylene 2075: 2074: 2070: 2062: 2058: 2054: 2050: 2046: 2042: 2035: 2032: 2026: 2021: 2017: 2013: 2009: 2002: 1999: 1993: 1988: 1984: 1980: 1976: 1969: 1966: 1961: 1957: 1953: 1949: 1945: 1938: 1927: 1925: 1923: 1921: 1919: 1915: 1910: 1906: 1902: 1898: 1894: 1890: 1886: 1882: 1878: 1871: 1869: 1867: 1865: 1861: 1856: 1852: 1848: 1844: 1840: 1836: 1825: 1823: 1819: 1814: 1807: 1801: 1798: 1793: 1789: 1785: 1781: 1774: 1771: 1766: 1762: 1758: 1754: 1751:(13): 11–20. 1750: 1746: 1739: 1736: 1731: 1727: 1723: 1719: 1712: 1709: 1704: 1700: 1696: 1692: 1685: 1678: 1675: 1670: 1666: 1661: 1656: 1652: 1648: 1644: 1640: 1636: 1632: 1627: 1622: 1618: 1614: 1610: 1603: 1600: 1595: 1591: 1587: 1583: 1576: 1573: 1568: 1564: 1560: 1549: 1547: 1545: 1541: 1530:on 2016-03-04 1526: 1522: 1518: 1514: 1510: 1506: 1499: 1492: 1490: 1486: 1481: 1477: 1473: 1469: 1462: 1460: 1458: 1456: 1454: 1452: 1450: 1448: 1446: 1444: 1442: 1440: 1438: 1436: 1432: 1427: 1423: 1419: 1415: 1408: 1401: 1399: 1397: 1393: 1385: 1378: 1376: 1374: 1372: 1370: 1366: 1360: 1356: 1351: 1346: 1342: 1338: 1334: 1330: 1326: 1319: 1316: 1311: 1307: 1303: 1299: 1291: 1289: 1287: 1285: 1281: 1276: 1270: 1267: 1261: 1256: 1252: 1248: 1244: 1240: 1236: 1229: 1226: 1221: 1217: 1213: 1210: 1209: 1201: 1198: 1192: 1188: 1185: 1184: 1180: 1178: 1176: 1172: 1168: 1167:polythiophene 1164: 1155: 1153: 1151: 1147: 1143: 1139: 1135: 1131: 1123: 1119: 1110: 1106: 1104: 1103:cross-linking 1100: 1096: 1092: 1088: 1082: 1080: 1079: 1074: 1070: 1069: 1064: 1060: 1056: 1052: 1051: 1046: 1042: 1038: 1030: 1028: 1026: 1022: 1018: 1014: 1010: 1006: 1001: 998: 996: 993: 989: 985: 982: 978: 974: 970: 966: 962: 958: 954: 949: 947: 943: 939: 935: 931: 927: 923: 919: 915: 911: 907: 887: 884: 880: 876: 873: 865: 859: 855: 853: 844: 840: 838: 834: 825: 819: 815: 809: 805: 801: 797: 793: 789: 785: 781: 777: 773: 772:Robert Grubbs 769: 766: 762: 758: 750: 748: 746: 742: 738: 734: 730: 726: 721: 719: 712: 695: 691: 689: 674: 669: 663: 654: 647: 642: 640: 638: 634: 630: 626: 621: 614: 610: 606: 602: 598: 594: 590: 574: 569: 567: 563: 559: 555: 551: 543: 535: 530: 528: 523: 514: 512: 510: 506: 502: 498: 494: 490: 486: 482: 478: 476: 472: 467: 463: 459: 445: 431: 421: 418:A segment of 410: 408: 406: 402: 398: 394: 389: 386: 382: 378: 374: 370: 366: 362: 358: 354: 350: 346: 342: 336: 322: 318: 314: 310: 306: 305:Polyacetylene 294: 287: 282: 265: 259: 255: 251: 248: 244: 243: 239: 237: 232: 227: 223: 220: 215: 214: 209: 205: 202: 198: 197: 191: 177: 174: 170: 169: 164: 157: 156: 154: 152: 149: 148: 141: 137: 136: 134: 131: 127: 126: 121: 113: 107: 103: 98: 93: 89: 83: 78: 73: 66: 61: 56: 52: 46: 41: 33: 19: 2044: 2040: 2034: 2015: 2011: 2001: 1982: 1978: 1968: 1947: 1943: 1884: 1880: 1838: 1834: 1812: 1800: 1783: 1779: 1773: 1748: 1744: 1738: 1721: 1717: 1711: 1694: 1690: 1677: 1619:(1): 13986. 1616: 1612: 1602: 1585: 1581: 1575: 1558: 1532:. Retrieved 1525:the original 1504: 1471: 1467: 1420:(22): 5017. 1417: 1413: 1332: 1328: 1318: 1301: 1297: 1269: 1242: 1238: 1228: 1211: 1206: 1200: 1159: 1156:Applications 1146:polyethylene 1121: 1117: 1115: 1083: 1076: 1072: 1066: 1062: 1058: 1054: 1048: 1044: 1034: 1024: 1020: 1016: 1012: 1008: 1004: 1002: 999: 950: 914:conductivity 869: 848: 829: 803: 787: 779: 759:(ROMP) from 754: 744: 740: 722: 700: 667: 659: 622: 612: 608: 605:conductivity 600: 596: 592: 570: 531: 526: 522:Giulio Natta 518: 509:conformation 496: 492: 488: 484: 474: 470: 462:double bonds 455: 419: 404: 396: 390: 353:conductivity 334: 312: 304: 303: 235: 189: 123:Identifiers 115:Other names 91: 71: 54: 1813:ch.ic.ac.uk 1505:Chem. Comm. 1474:(1–2): 57. 1171:polyaniline 796:conjugation 733:ultraviolet 558:polythiazyl 550:Alan Heeger 544:and Ti(OBu) 369:Alan Heeger 166:Properties 2091:Categories 1626:1607.02811 1588:(1–3): 3. 1534:2014-03-14 1507:(1): 1–4. 1193:References 1031:Properties 888:include Br 737:cryogenics 664:, such as 501:conjugated 313:polyethyne 247:Pictograms 206:insoluble 151:ChemSpider 140:25067-58-7 130:CAS Number 109:Polyethyne 106:IUPAC name 1841:(1): 18. 1651:2041-1723 1150:oxidation 1142:peroxides 967:dopants, 900:, and AsF 808:methylene 765:acetylene 643:Synthesis 629:solitonic 411:Structure 345:acetylene 319:with the 238:labelling 222:Acetylene 2112:Polyenes 2012:Polym. J 1979:Polym. J 1960:Archived 1909:91941666 1669:28008924 1521:12610942 1359:18387369 1181:See also 1138:epoxides 1136:groups, 1134:carbonyl 1128:occurs. 977:cationic 910:electron 904:. These 477:geometry 466:hydrogen 393:polyynes 229:Hazards 2049:Bibcode 1889:Bibcode 1843:Bibcode 1753:Bibcode 1691:Polymer 1660:5196433 1631:Bibcode 1414:Polymer 1350:2515280 1247:Bibcode 1187:Polyene 1099:fibrils 1095:benzene 1091:solvent 995:dopants 973:anionic 961:dopants 957:dopants 946:dopants 922:halogen 906:dopants 886:dopants 877:), the 875:dopants 768:monomer 515:History 286:what is 284: ( 194: 32:polyyne 1907:  1667:  1657:  1649:  1519:  1357:  1347:  1161:other 1140:, and 992:n-type 988:p-type 984:dopant 981:n-type 965:p-type 953:n-type 942:p-type 930:cation 883:p-Type 872:p-type 866:Doping 800:steric 731:, and 583:and Br 573:doping 481:isomer 458:carbon 401:olefin 371:, and 357:doping 349:olefin 324:[C 311:name: 281:verify 278:  179:[C 100:Names 94:isomer 1940:(PDF) 1905:S2CID 1809:(PDF) 1687:(PDF) 1621:arXiv 1528:(PDF) 1501:(PDF) 1410:(PDF) 1387:(PDF) 1122:trans 1093:with 1078:trans 1068:trans 1059:trans 1050:trans 1025:trans 1017:trans 1015:- or 1005:trans 934:anion 792:butyl 784:octyl 776:alkyl 745:trans 729:gamma 704:Co(NO 609:trans 597:trans 571:Upon 527:trans 497:trans 489:trans 475:trans 420:trans 355:upon 309:IUPAC 92:trans 55:trans 1665:PMID 1647:ISSN 1517:PMID 1355:PMID 1169:and 1120:and 1087:gels 1039:and 896:, Cl 788:tert 715:NaBH 677:Al(C 666:Ti(O 552:and 397:many 158:none 2057:doi 2020:doi 1987:doi 1952:doi 1897:doi 1885:314 1851:doi 1788:doi 1784:110 1761:doi 1726:doi 1722:105 1699:doi 1655:PMC 1639:doi 1590:doi 1563:doi 1557:". 1509:doi 1476:doi 1422:doi 1345:PMC 1337:doi 1306:doi 1302:115 1255:doi 1216:doi 1212:189 1118:cis 1073:cis 1063:cis 1055:cis 1045:cis 1021:cis 1013:cis 1009:cis 892:, I 835:of 810:(CH 804:sec 741:cis 670:Pr) 613:cis 601:cis 593:cis 493:cis 485:cis 473:or 471:cis 407:). 343:of 236:GHS 72:cis 53:of 2093:: 2055:. 2045:21 2043:. 2014:. 2010:. 1981:. 1977:. 1958:. 1946:. 1942:. 1917:^ 1903:. 1895:. 1883:. 1879:. 1863:^ 1849:. 1839:33 1837:. 1821:^ 1811:. 1782:. 1759:. 1749:12 1747:. 1720:. 1695:37 1693:. 1689:. 1663:. 1653:. 1645:. 1637:. 1629:. 1615:. 1611:. 1586:69 1584:. 1543:^ 1515:. 1503:. 1488:^ 1472:11 1470:. 1434:^ 1418:37 1416:. 1412:. 1395:^ 1368:^ 1353:. 1343:. 1333:47 1331:. 1327:. 1300:. 1283:^ 1253:. 1243:73 1241:. 1237:. 1173:. 955:) 944:) 924:. 839:: 727:, 639:. 542:Al 538:Et 367:, 240:: 2063:. 2059:: 2051:: 2028:. 2022:: 2016:4 1995:. 1989:: 1983:2 1954:: 1948:1 1935:x 1911:. 1899:: 1891:: 1857:. 1853:: 1845:: 1831:x 1815:. 1794:. 1790:: 1767:. 1763:: 1755:: 1732:. 1728:: 1705:. 1701:: 1671:. 1641:: 1633:: 1623:: 1617:7 1596:. 1592:: 1569:. 1565:: 1555:x 1537:. 1511:: 1482:. 1478:: 1428:. 1424:: 1389:. 1363:. 1361:. 1339:: 1312:. 1308:: 1277:. 1263:. 1257:: 1249:: 1222:. 1218:: 1126:2 1057:: 902:5 898:2 894:2 890:2 812:2 790:- 782:- 780:n 717:4 713:/ 710:2 708:) 706:3 687:3 685:) 683:5 681:H 679:2 675:/ 672:4 668:i 617:5 595:/ 585:2 581:2 577:2 546:4 540:3 379:( 335:n 332:] 330:2 328:H 326:2 307:( 276:N 190:n 187:] 185:2 183:H 181:2 34:. 20:)

Index

Polyacetylenes
polyyne
trans-polyacetylene
Skeletal formula
cis-polyacetylene

Ball-and-stick models
IUPAC name
CAS Number
25067-58-7
ChemSpider
Chemical formula
Solubility in water
Acetylene
GHS labelling
Pictograms
GHS02: Flammable
standard state
verify
what is
Infobox references
IUPAC
organic polymer
repeating unit
polymerization
acetylene
olefin
conductivity
doping
conductive polymers

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.