Knowledge (XXG)

Polymer devolatilization

Source đź“ť

163:
There are two basic forms of devolatilization to a vacuum. In foam devolatilization, bubbles inside the polymer solution nucleate and grow, finally bursting and releasing their volatile content to the surroundings. This requires sufficient vapor pressure. If possible, this is a very efficient method
218:
Co-rotating twin screw extruders: The polymer solution is brought into a co-rotating twin screw extruders, where it is subjected to shear and mechanical energy input and where vapors are drawn off. This type of machine allows different pressures in different zones. An advantage is the self-cleaning
188:
Falling strand devolatilizers: Polymer is partitioned into many individual strands which fall down in a vacuum chamber. Diffusion moves volatiles into the gas phase, which are then collected via a vacuum system. This is usually the last stage of a devolatizing process, when vapor pressure is
388: 167:
Film devolatilization occurs when there is no longer sufficient vapor pressure to generate bubbles, and requires on sufficient surface area and good mixing. In this case, stripping agent such as nitrogen may be added to the polymer to induce improved mass transfer through bubbles.
119:. Because of the low diffusion coefficients of volatiles in polymers, this can be the rate-determining step. This effect can be enhanced by higher temperatures or by small diffusion lengths due to its higher 102:
of volatiles needs to be higher in the polymer than in the other phase for them to leave the polymer. In order to design such a process, the activity needs to be calculated. This is usually done via the
407: 228:: Polymer solution is brought into a single large vessel, where a rotor agitates the product and creates surface renewal. Only a single pressure level is possible in these machines. 39:, may cause bad sensory properties such as an unpleasant smell or worsen the properties of the polymer. It may also be desirable to recycle monomers and solvents to the process. 19:, also known as polymer degassing, is the process of removing low-molecular-weight components such as residual monomers, solvents, reaction by-products and water from polymers. 31:
reaction, many polymers still contain undesired low-molecular weight components. These component may make the product unusable for further processing (for example, a
208:: A polymer solution is preheated and brought into a separator, where pressure below the vapor pressure of the solution leads to a part of the volatiles evaporating. 51:
Devolatilization can be carried out when a polymer is in the solid or liquid phase, with the volatile components going into a liquid or gas phase. Examples are:
107:. This effect can be enhanced via higher temperatures or lower partial pressure of the volatile component by applying an inert gas or lower pressure. 386:, "Continuous process for the extraction of monomers and oligomers from highly polymerized caprolactam granules", published 1968-03-19 584: 629: 354:
Winkelmann, H; Liebhold, J (2006). "Wirtschaftliches Aufbereiten von ungetrocknetem PET auf gleichläufigen Zweischneckenextrudern ZE".
104: 667: 613: 540: 488: 452: 367: 338: 309: 176:
Devolatilizers for polymer melts are classified as static or moving, also called "still" and "rotating" in the literature.
689: 199: 85:
It is usual for different types of devolatilization steps to be combined to overcome limitations in the individual steps.
694: 147:
Higher temperatures can also affect the chemical stability of the polymer and thus its use properties. If a polymer's
222:
Single-screw extruders: In principle similar to co-rotating twin screw extruders, without the self-cleaning action.
136: 202:
into a separator. Polymer is collected at the bottom, vapor is collected via a vacuum system and condensers.
192: 155:
also occurs during devolatilization, limiting the temperature and residence time available for the process.
195:: Polymer falls down vertical walls, volatiles diffusing on the side that is not in contact with the walls. 99: 402: 115:
In order to be removed from the polymer, the volatile components need to travel to a phase boundary via
383: 131:
Because polymers and polymer solutions often have a very high viscosity, the flow in devolatilizers is
152: 148: 576: 151:
is exceeded, it will partially revert to its monomers, destroying its usability. More generally,
527:
Lechner, F (2006). "Entgasen von Polymerschmelzen mit gleichläufigen Doppelschneckenextrudern".
654:
Diener, A; Kunkel, R (2006). "Kontinuierliche Eindampfung und Entgasung von Polymerschmelzen".
699: 663: 633: 609: 580: 536: 484: 448: 363: 334: 305: 205: 40: 439:
Dohrn, R; Pfohl, O (2006). "Entfernen von FlĂĽchtigen aus Polymeren: Physikalische Grenzen".
253: 32: 659: 605: 532: 480: 444: 359: 330: 232: 120: 28: 683: 301: 325:
Rust, H (2006). "Trocknung und Aufbereitung von PET mit dem Planetwalzenextruder".
132: 67: 78: 56: 225: 600:
Becker, D; Pfeiffer, A (2006). "Devolatilization on single-screw extruders".
116: 656:
Aufbereitungstechnik 2006 - Entgasungsprozesse in der Aufbereitungstechnik
602:
Aufbereitungstechnik 2006 - Entgasungsprozesse in der Aufbereitungstechnik
529:
Aufbereitungstechnik 2006 - Entgasungsprozesse in der Aufbereitungstechnik
477:
Aufbereitungstechnik 2006 - Entgasungsprozesse in der Aufbereitungstechnik
441:
Aufbereitungstechnik 2006 - Entgasungsprozesse in der Aufbereitungstechnik
356:
Aufbereitungstechnik 2006 - Entgasungsprozesse in der Aufbereitungstechnik
327:
Aufbereitungstechnik 2006 - Entgasungsprozesse in der Aufbereitungstechnik
198:
Tube evaporators: A boiling polymer solution flows downward in a vertical
236: 63: 249: 74: 43:
can also involve removal of water and volatile degradation products.
36: 508: 235:
and subjected to shear at longer residence times than in an
231:
Large-volume kneaders: A polymer solution is brought into a
475:
König, T; Kohlgrüber, K (2006). "Entgasung von Polymeren".
35:
cannot directly be used for plastics processing), may be
164:
because the volatiles only need to diffuse a short way.
405:, "Polymer treatment", published 2006-09-28 252:and suspensions, for example in the production of 573:Co-Rotating Twin-Screw Extruders: Applications 8: 558:Strömungssieden hochviskoser Polymerlösungen 428:. New York: Reinhold Publishing Corporation. 55:Solid polymer, liquid phase: Extraction of 522: 520: 502: 500: 291: 289: 244:Devolatilizers for suspensions and latexes 287: 285: 283: 281: 279: 277: 275: 273: 271: 269: 470: 468: 466: 464: 172:Types of devolatilizers for polymer melt 419: 417: 265: 256:, is usually done via stirred vessels. 139:, which can also be a limiting factor. 248:Removal of monomers and solvents from 73:Liquid polymer, gas phase: Removal of 62:Solid polymer, gas phase: Removal of 7: 14: 560:(PhD thesis). Universität Bochum. 184:Static devolatilizers include: 27:When exiting a reactor after a 159:Foam vs. film devolatilization 1: 507:Gestring, Ingo (2002-11-11). 200:shell and tube heat exchanger 105:Flory–Huggins solution theory 89:Physical and chemical aspects 70:via air or nitrogen in silos. 571:KohlgrĂĽber, Klemens (2021). 660:Verein Deutscher Ingenieure 606:Verein Deutscher Ingenieure 533:Verein Deutscher Ingenieure 481:Verein Deutscher Ingenieure 445:Verein Deutscher Ingenieure 360:Verein Deutscher Ingenieure 331:Verein Deutscher Ingenieure 219:action of those extruders. 59:from polyamides with water. 716: 296:Albalak, Ramon J. (1996). 137:heat transfer coefficients 632:. List AG. Archived from 424:Teach; Kiessling (1960). 298:Polymer devolatilization 17:Polymer devolatilization 193:Falling film evaporator 556:Liesenfelder, Ulrich. 510:Entgasen von Polymeren 226:Wiped-film evaporators 100:thermodynamic activity 213:Moving devolatilizers 180:Static devolatilizers 690:Chemical engineering 233:large-volume kneader 695:Process engineering 153:polymer degradation 149:ceiling temperature 47:Basic process types 630:"Devolatilization" 577:Carl Hanser Verlag 143:Chemical stability 586:978-1-56990-781-8 206:Flash evaporators 135:, leading to low 41:Plastic recycling 707: 674: 673: 651: 645: 644: 642: 641: 626: 620: 619: 597: 591: 590: 568: 562: 561: 553: 547: 546: 524: 515: 514: 504: 495: 494: 472: 459: 458: 436: 430: 429: 421: 412: 411: 410: 406: 399: 393: 392: 391: 387: 380: 374: 373: 351: 345: 344: 322: 316: 315: 293: 254:synthetic rubber 33:polymer solution 715: 714: 710: 709: 708: 706: 705: 704: 680: 679: 678: 677: 670: 653: 652: 648: 639: 637: 628: 627: 623: 616: 599: 598: 594: 587: 570: 569: 565: 555: 554: 550: 543: 526: 525: 518: 506: 505: 498: 491: 474: 473: 462: 455: 438: 437: 433: 423: 422: 415: 408: 401: 400: 396: 389: 382: 381: 377: 370: 353: 352: 348: 341: 324: 323: 319: 312: 295: 294: 267: 262: 246: 215: 182: 174: 161: 145: 129: 113: 96: 91: 49: 25: 12: 11: 5: 713: 711: 703: 702: 697: 692: 682: 681: 676: 675: 668: 646: 621: 614: 592: 585: 563: 548: 541: 516: 496: 489: 460: 453: 431: 413: 394: 375: 368: 346: 339: 317: 310: 264: 263: 261: 258: 245: 242: 241: 240: 229: 223: 220: 214: 211: 210: 209: 203: 196: 190: 181: 178: 173: 170: 160: 157: 144: 141: 128: 125: 121:Fourier number 112: 109: 95: 94:Thermodynamics 92: 90: 87: 83: 82: 71: 60: 48: 45: 29:polymerization 24: 21: 13: 10: 9: 6: 4: 3: 2: 712: 701: 698: 696: 693: 691: 688: 687: 685: 671: 669:3-18-234279-7 665: 661: 657: 650: 647: 636:on 2021-03-01 635: 631: 625: 622: 617: 615:3-18-234279-7 611: 607: 603: 596: 593: 588: 582: 578: 574: 567: 564: 559: 552: 549: 544: 542:3-18-234279-7 538: 534: 530: 523: 521: 517: 513:(PhD thesis). 512: 511: 503: 501: 497: 492: 490:3-18-234279-7 486: 482: 478: 471: 469: 467: 465: 461: 456: 454:3-18-234279-7 450: 446: 442: 435: 432: 427: 420: 418: 414: 404: 398: 395: 385: 379: 376: 371: 369:3-18-234279-7 365: 361: 357: 350: 347: 342: 340:3-18-234279-7 336: 332: 328: 321: 318: 313: 311:0-8247-9627-6 307: 303: 302:Marcel Dekker 299: 292: 290: 288: 286: 284: 282: 280: 278: 276: 274: 272: 270: 266: 259: 257: 255: 251: 243: 238: 234: 230: 227: 224: 221: 217: 216: 212: 207: 204: 201: 197: 194: 191: 187: 186: 185: 179: 177: 171: 169: 165: 158: 156: 154: 150: 142: 140: 138: 134: 127:Heat transfer 126: 124: 122: 118: 110: 108: 106: 101: 93: 88: 86: 80: 76: 72: 69: 65: 61: 58: 54: 53: 52: 46: 44: 42: 38: 34: 30: 22: 20: 18: 655: 649: 638:. Retrieved 634:the original 624: 601: 595: 572: 566: 557: 551: 528: 509: 476: 440: 434: 425: 403:US 7776998B2 397: 378: 355: 349: 326: 320: 297: 247: 183: 175: 166: 162: 146: 130: 114: 97: 84: 68:polyethylene 50: 26: 16: 15: 426:Polystyrene 384:US 3374207A 81:via vacuum. 79:polystyrene 57:caprolactam 684:Categories 640:2021-08-22 260:References 23:Motivation 117:diffusion 111:Diffusion 700:Polymers 237:extruder 64:ethylene 133:laminar 75:styrene 666:  612:  583:  539:  487:  451:  409:  390:  366:  337:  308:  250:latex 77:from 66:from 37:toxic 664:ISBN 610:ISBN 581:ISBN 537:ISBN 485:ISBN 449:ISBN 364:ISBN 335:ISBN 306:ISBN 189:low. 98:The 686:: 662:. 658:. 608:. 604:. 579:. 575:. 535:. 531:. 519:^ 499:^ 483:. 479:. 463:^ 447:. 443:. 416:^ 362:. 358:. 333:. 329:. 304:. 300:. 268:^ 123:. 672:. 643:. 618:. 589:. 545:. 493:. 457:. 372:. 343:. 314:. 239:.

Index

polymerization
polymer solution
toxic
Plastic recycling
caprolactam
ethylene
polyethylene
styrene
polystyrene
thermodynamic activity
Flory–Huggins solution theory
diffusion
Fourier number
laminar
heat transfer coefficients
ceiling temperature
polymer degradation
Falling film evaporator
shell and tube heat exchanger
Flash evaporators
Wiped-film evaporators
large-volume kneader
extruder
latex
synthetic rubber




Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑