Knowledge (XXG)

Poromechanics

Source đź“ť

153:: a shear or transverse wave, and two types of longitudinal or compressional waves, which Biot called type I and type II waves. The transverse and type I (or fast) longitudinal wave are similar to the transverse and longitudinal waves in an elastic solid, respectively. The slow compressional wave, (also known as Biot’s slow wave) is unique to poroelastic materials. The prediction of the Biot’s slow wave generated some controversy, until it was experimentally observed by Thomas Plona in 1980. Other important early contributors to the theory of poroelasticity were 167:
Recent applications of poroelasticity to biology such as modeling of blood flows through the beating myocardium have also required an extension of the equations to nonlinear (large deformation) elasticity and the inclusion of inertia forces.
106:
as well as the properties of its constituents (solid matrix and fluid). The distribution of pores across multiple scales as well as the pressure of the fluid with which they are filled give rise to distinct elastic behaviour of the bulk.
474: 516: 62:). Usually both solid matrix and the pore network, or pore space, are assumed to be continuous, so as to form two interpenetrating continua such as in a sponge. Natural substances including 335: 164:
Conversion of energy from fast compressional and shear waves into the highly attenuating slow compressional wave is a significant cause of elastic wave attenuation in porous media.
911: 432: 118:, the father of soil mechanics. However a more general concept of a poroelastic medium, independent of its nature or application, is usually attributed to 126:(now known as Biot theory) which gives a complete and general description of the mechanical behaviour of a poroelastic medium. Biot's equations of the 217:
MĂĽller TM, Gurevich B, Lebedev M (2010). "Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks: a review".
841:"General coupling of porous flows and hyperelastic formulations: from thermodynamics principles to energy balance and compatible time schemes" 783:
Rice JR, Cleary MP (1976). "Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents".
122:(1905–1985), a Belgian-American engineer. In a series of papers published between 1935 and 1962 Biot developed the theory of dynamic 415: 271: 901: 149:
One of the key findings of the theory of poroelasticity is that in poroelastic media there exist three types of elastic
135: 639:
Plona T (1980). "Observation of a Second Bulk Compressional Wave in a Porous Medium at Ultrasonic Frequencies".
706: 336:"Predictions of angle dependent tortuosity and elasticity effects on sound propagation in cancellous bone" 916: 852: 792: 753: 648: 605: 566: 531: 517:"Theory of propagation of elastic waves in a fluid saturated porous solid. II Higher frequency range" 489: 447: 300: 226: 119: 103: 91: 27: 906: 621: 475:"Theory of propagation of elastic waves in a fluid saturated porous solid. I Low frequency range" 366: 316: 289:"A poroelastic model valid in large strains with applications to perfusion in cardiac modeling" 411: 358: 267: 131: 115: 71: 860: 800: 761: 702: 656: 613: 574: 539: 497: 455: 403: 350: 308: 242: 234: 693:
Frenkel J (2005). "On the Theory of Seismic and Seismoelectric Phenomena in a Moist Soil".
731: 79: 593: 856: 796: 757: 675: 652: 609: 570: 535: 493: 451: 304: 230: 158: 143: 139: 123: 111: 63: 864: 557:
Biot MA, Willis DG (1957). "The elastic coefficients of the theory of consolidation".
895: 154: 127: 35: 625: 384:
Multiscale modeling of effective elastic properties of fluid-filled porous materials
370: 320: 182: 177: 264:
Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology
43: 312: 247: 881: 804: 31: 397: 362: 407: 832:
Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials
99: 47: 840: 95: 87: 23: 765: 617: 578: 543: 501: 459: 354: 288: 238: 90:
can be considered as porous media. Porous media whose solid matrix is
676:"On the theory of seismic and seismoelectric phenomena in moist soil" 98:
are called poroelastic. A poroelastic medium is characterised by its
55: 660: 594:"Mechanics of deformation and acoustic propagation in porous media" 383: 287:
Chapelle D, Gerbeau JF, Sainte-Marie J, Vignon-Clementel I (2010).
75: 67: 51: 39: 744:
Gassmann F (1951). "Elastic waves through a packing of spheres".
386:
International Journal of Solids and Structures (2019) 162, 36-44
334:
AygĂĽn H, Attenborough K, Postema M, Lauriks W, Langton C (2009).
150: 83: 722:
Vierteljahrsschrift der Naturforschenden Gesellschaft in ZĂĽrich
59: 886: 720:
Gassmann F (1951). "Über die Elastizität poröser Medien".
16:
Field of study combining physics, mechanics and acoustics
110:
The concept of a porous medium originally emerged in
130:
of poroelasticity are derived from the equations of
433:"General theory of three dimensional consolidation" 882:Poronet - PoroMechanics Internet Resources Network 524:The Journal of the Acoustical Society of America 482:The Journal of the Acoustical Society of America 34:that studies the behaviour of fluid-saturated 8: 343:Journal of the Acoustical Society of America 46:) permeated by an interconnected network of 38:. A porous medium or a porous material is a 887:APMR - Acoustical Porous Material Recipes 266:. Princeton: Princeton University Press. 246: 812:Bourbie T, Coussy O, Zinszner B (1987). 785:Reviews of Geophysics and Space Physics 707:10.1061/(ASCE)0733-9399(2005)131:9(879) 194: 730:(English translation available as pdf 912:Applied and interdisciplinary physics 7: 816:. Houston: Gulf Publication Company. 114:, and in particular in the works of 146:of fluid through a porous matrix. 14: 865:10.1016/j.euromechflu.2014.02.009 206:. Hoboken: John Wiley & Sons. 82:, and man-made materials such as 695:Journal of Engineering Mechanics 845:European Journal of Mechanics B 839:Chapelle D, Moireau P (2014). 1: 834:. London: Chapman & Hall. 825:. Washington, DC: Hemisphere. 823:Dynamics of Multiphase Media 559:Journal of Applied Mechanics 933: 598:Journal of Applied Physics 440:Journal of Applied Physics 399:Theoretical Soil Mechanics 138:for a viscous fluid, and 814:Acoustics of Porous Media 313:10.1007/s00466-009-0452-x 134:for a solid matrix, the 805:10.1029/RG014i002p00227 641:Applied Physics Letters 293:Computational Mechanics 136:Navier–Stokes equations 821:Nigmatulin RI (1990). 50:(voids) filled with a 408:10.1002/9780470172766 225:(5): 75A147–75A164. 120:Maurice Anthony Biot 902:Continuum mechanics 857:2014EJMF...46...82C 797:1976RvGSP..14..227R 758:1951Geop...16..673G 653:1980ApPhL..36..259P 610:1962JAP....33.1482B 571:1957JAM....24..594B 536:1956ASAJ...28..179B 494:1956ASAJ...28..168B 452:1941JAP....12..155B 402:. New York: Wiley. 396:Terzaghi K (1943). 305:2010CompM..46..101C 231:2010Geop...75A.147M 28:continuum mechanics 830:Allard JF (1993). 683:Journal of Physics 674:Frenkel J (1944). 248:20.500.11937/35921 94:and the fluid is 72:biological tissues 766:10.1190/1.1437718 618:10.1063/1.1728759 579:10.1115/1.4011606 544:10.1121/1.1908241 502:10.1121/1.1908239 460:10.1063/1.1712886 355:10.1121/1.3242358 239:10.1190/1.3463417 202:Coussy O (2004). 132:linear elasticity 116:Karl von Terzaghi 26:and specifically 924: 868: 835: 826: 817: 808: 770: 769: 741: 735: 729: 717: 711: 710: 690: 680: 671: 665: 664: 636: 630: 629: 604:(4): 1482–1498. 592:Biot MA (1962). 589: 583: 582: 554: 548: 547: 521: 515:Biot MA (1956). 512: 506: 505: 479: 473:Biot MA (1956). 470: 464: 463: 437: 431:Biot MA (1941). 428: 422: 421: 393: 387: 381: 375: 374: 349:(6): 3286–3290. 340: 331: 325: 324: 284: 278: 277: 262:Wang HF (2000). 259: 253: 252: 250: 214: 208: 207: 199: 932: 931: 927: 926: 925: 923: 922: 921: 892: 891: 878: 872: 838: 829: 820: 811: 782: 779: 777:Further reading 774: 773: 743: 742: 738: 719: 718: 714: 692: 691:Republished as 678: 673: 672: 668: 661:10.1063/1.91445 638: 637: 633: 591: 590: 586: 556: 555: 551: 519: 514: 513: 509: 477: 472: 471: 467: 435: 430: 429: 425: 418: 395: 394: 390: 382: 378: 338: 333: 332: 328: 286: 285: 281: 274: 261: 260: 256: 216: 215: 211: 201: 200: 196: 191: 174: 80:cancellous bone 42:referred to as 22:is a branch of 17: 12: 11: 5: 930: 928: 920: 919: 914: 909: 904: 894: 893: 890: 889: 884: 877: 876:External links 874: 870: 869: 836: 827: 818: 809: 791:(2): 227–241. 778: 775: 772: 771: 752:(4): 673–685. 736: 712: 701:(9): 879–887. 666: 631: 584: 565:(4): 594–601. 549: 530:(2): 179–191. 507: 488:(2): 168–178. 465: 446:(2): 155–164. 423: 416: 388: 376: 326: 279: 272: 254: 209: 193: 192: 190: 187: 186: 185: 180: 173: 170: 159:Fritz Gassmann 124:poroelasticity 112:soil mechanics 15: 13: 10: 9: 6: 4: 3: 2: 929: 918: 915: 913: 910: 908: 905: 903: 900: 899: 897: 888: 885: 883: 880: 879: 875: 873: 866: 862: 858: 854: 850: 846: 842: 837: 833: 828: 824: 819: 815: 810: 806: 802: 798: 794: 790: 786: 781: 780: 776: 767: 763: 759: 755: 751: 747: 740: 737: 733: 727: 723: 716: 713: 708: 704: 700: 696: 689:(4): 230–241. 688: 684: 677: 670: 667: 662: 658: 654: 650: 646: 642: 635: 632: 627: 623: 619: 615: 611: 607: 603: 599: 595: 588: 585: 580: 576: 572: 568: 564: 560: 553: 550: 545: 541: 537: 533: 529: 525: 518: 511: 508: 503: 499: 495: 491: 487: 483: 476: 469: 466: 461: 457: 453: 449: 445: 441: 434: 427: 424: 419: 417:9780471853053 413: 409: 405: 401: 400: 392: 389: 385: 380: 377: 372: 368: 364: 360: 356: 352: 348: 344: 337: 330: 327: 322: 318: 314: 310: 306: 302: 298: 294: 290: 283: 280: 275: 273:9780691037462 269: 265: 258: 255: 249: 244: 240: 236: 232: 228: 224: 220: 213: 210: 205: 204:Poromechanics 198: 195: 188: 184: 181: 179: 176: 175: 171: 169: 165: 162: 160: 156: 155:Yakov Frenkel 152: 147: 145: 141: 137: 133: 129: 128:linear theory 125: 121: 117: 113: 108: 105: 101: 97: 93: 89: 85: 81: 77: 73: 69: 65: 61: 57: 53: 49: 45: 41: 37: 33: 29: 25: 21: 20:Poromechanics 917:Porous media 871: 848: 844: 831: 822: 813: 788: 784: 749: 745: 739: 725: 721: 715: 698: 694: 686: 682: 669: 644: 640: 634: 601: 597: 587: 562: 558: 552: 527: 523: 510: 485: 481: 468: 443: 439: 426: 398: 391: 379: 346: 342: 329: 296: 292: 282: 263: 257: 222: 218: 212: 203: 197: 183:Rock physics 178:Petrophysics 166: 163: 148: 109: 104:permeability 36:porous media 19: 18: 140:Darcy's law 896:Categories 746:Geophysics 647:(4): 259. 299:: 91–101. 219:Geophysics 189:References 74:including 907:Acoustics 851:: 82–96. 32:acoustics 626:58914453 371:36340512 363:20000942 321:18226623 172:See also 100:porosity 88:ceramics 853:Bibcode 793:Bibcode 754:Bibcode 728:: 1–23. 649:Bibcode 606:Bibcode 567:Bibcode 532:Bibcode 490:Bibcode 448:Bibcode 301:Bibcode 227:Bibcode 96:viscous 92:elastic 24:physics 624:  414:  369:  361:  319:  270:  142:for a 56:liquid 44:matrix 679:(PDF) 622:S2CID 520:(PDF) 478:(PDF) 436:(PDF) 367:S2CID 339:(PDF) 317:S2CID 151:waves 84:foams 76:heart 68:soils 64:rocks 52:fluid 48:pores 40:solid 732:here 412:ISBN 359:PMID 268:ISBN 157:and 144:flow 86:and 78:and 30:and 861:doi 801:doi 762:doi 703:doi 699:131 657:doi 614:doi 575:doi 540:doi 498:doi 456:doi 404:doi 351:doi 347:126 309:doi 243:hdl 235:doi 60:gas 58:or 898:: 859:. 849:46 847:. 843:. 799:. 789:14 787:. 760:. 750:16 748:. 726:96 724:. 697:. 685:. 681:. 655:. 645:36 643:. 620:. 612:. 602:33 600:. 596:. 573:. 563:24 561:. 538:. 528:28 526:. 522:. 496:. 486:28 484:. 480:. 454:. 444:12 442:. 438:. 410:. 365:. 357:. 345:. 341:. 315:. 307:. 297:46 295:. 291:. 241:. 233:. 223:75 221:. 161:. 102:, 70:, 66:, 867:. 863:: 855:: 807:. 803:: 795:: 768:. 764:: 756:: 734:) 709:. 705:: 687:3 663:. 659:: 651:: 628:. 616:: 608:: 581:. 577:: 569:: 546:. 542:: 534:: 504:. 500:: 492:: 462:. 458:: 450:: 420:. 406:: 373:. 353:: 323:. 311:: 303:: 276:. 251:. 245:: 237:: 229:: 54:(

Index

physics
continuum mechanics
acoustics
porous media
solid
matrix
pores
fluid
liquid
gas
rocks
soils
biological tissues
heart
cancellous bone
foams
ceramics
elastic
viscous
porosity
permeability
soil mechanics
Karl von Terzaghi
Maurice Anthony Biot
poroelasticity
linear theory
linear elasticity
Navier–Stokes equations
Darcy's law
flow

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑