Knowledge (XXG)

Power-flow study

Source đź“ť

2245:: Power flow formulation that provides guarantee of uniqueness of solution and independence on initial conditions for electrical distribution systems. The LPF is based on the current injection method (CIM) and applies the Laurent series expansion. The main characteristics of this formulation are its proven numerical convergence and stability, and its computational advantages, showing to be at least ten times faster than the BFS method both in balanced and unbalanced networks. Since it is based on the system's admittance matrix, the formulation is able to consider radial and meshed network topologies without additional modifications (contrary to the compensation-based BFS). The simplicity and computational efficiency of the LPF method make it an attractive option for recursive power flow problems, such as those encountered in time-series analyses, metaheuristics, probabilistic analysis, reinforcement learning applied to power systems, and other related applications. 93:
Transformer tap positions are selected to ensure the correct voltage at critical locations such as motor control centers. Performing a load-flow study on an existing system provides insight and recommendations as to the system operation and optimization of control settings to obtain maximum capacity while minimizing the operating costs. The results of such an analysis are in terms of active power, reactive power, voltage magnitude and phase angle. Furthermore, power-flow computations are crucial for
1285:
and voltage magnitude, while the coupling between real power and voltage magnitude, as well as reactive power and voltage angle, is weak. As a result, real power is usually transmitted from the bus with higher voltage angle to the bus with lower voltage angle, and reactive power is usually transmitted from the bus with higher voltage magnitude to the bus with lower voltage magnitude. However, this approximation does not hold when the phase angle of the power line impedance is relatively small.
2239:: A method developed to take advantage of the radial structure of most modern distribution grids. It involves choosing an initial voltage profile and separating the original system of equations of grid components into two separate systems and solving one, using the last results of the other, until convergence is achieved. Solving for the currents with the voltages given is called the backward sweep (BS) and solving for the voltages with the currents given is called the forward sweep (FS). 2659: 3238: 2023: 1861: 1284:
In many transmission systems, the impedance of the power network lines is primarily inductive, i.e. the phase angles of the power lines impedance are usually relatively large and very close to 90 degrees. There is thus a strong coupling between real power and voltage angle, and between reactive power
2226:
during the iteration in order to avoid costly matrix decompositions. Also referred to as "fixed-slope, decoupled NR". Within the algorithm, the Jacobian matrix gets inverted only once, and there are three assumptions. Firstly, the conductance between the buses is zero. Secondly, the magnitude of the
125:
Usually analysis of a three-phase power system is simplified by assuming balanced loading of all three phases. Sinusoidal steady-state operation is assumed, with no transient changes in power flow or voltage due to load or generation changes, meaning all current and voltage waveforms are sinusoidal
146:
The goal of a power-flow study is to obtain complete voltage angles and magnitude information for each bus in a power system for specified load and generator real power and voltage conditions. Once this information is known, real and reactive power flow on each branch as well as generator reactive
100:
In term of its approach to uncertainties, load-flow study can be divided to deterministic load flow and uncertainty-concerned load flow. Deterministic load-flow study does not take into account the uncertainties arising from both power generations and load behaviors. To take the uncertainties into
150:
The solution to the power-flow problem begins with identifying the known and unknown variables in the system. The known and unknown variables are dependent on the type of bus. A bus without any generators connected to it is called a Load Bus. With one exception, a bus with at least one generator
126:
with no DC offset and have the same constant frequency. The previous assumption is the same as assuming the power system is linear time-invariant (even though the system of equations is nonlinear), driven by sinusoidal sources of same frequency, and operating in steady-state, which allows to use
121:
of equations which describes the energy flow through each transmission line. The problem is non-linear because the power flow into load impedances is a function of the square of the applied voltages. Due to nonlinearity, in many cases the analysis of large network via AC power-flow model is not
1280:
Equations included are the real and reactive power balance equations for each Load Bus and the real power balance equation for each Generator Bus. Only the real power balance equation is written for a Generator Bus because the net reactive power injected is assumed to be unknown and therefore
92:
A load flow study is especially valuable for a system with multiple load centers, such as a refinery complex. The power-flow study is an analysis of the system’s capability to adequately supply the connected load. The total system losses, as well as individual line losses, also are tabulated.
50:
Power-flow or load-flow studies are important for planning future expansion of power systems as well as in determining the best operation of existing systems. The principal information obtained from the power-flow study is the magnitude and phase angle of the voltage at each
1415: 1830: 1648: 319:
are known. Therefore, for each Load Bus, both the voltage magnitude and angle are unknown and must be solved for; for each Generator Bus, the voltage angle must be solved for; there are no variables that must be solved for the Slack Bus. In a system with
2227:
bus voltage is one per unit. Thirdly, the sine of phases between buses is zero. Fast decoupled load flow can return the answer within seconds whereas the Newton Raphson method takes much longer. This is useful for real-time management of power grids.
1242: 696: 2429:
Petridis, S.; Blanas, O.; Rakopoulos, D.; Stergiopoulos, F.; Nikolopoulos, N.; Voutetakis, S. An Efficient Backward/Forward Sweep Algorithm for Power Flow Analysis through a Novel Tree-Like Structure for Unbalanced Distribution Networks.
2018:{\displaystyle J={\begin{bmatrix}{\dfrac {\partial \Delta P}{\partial \theta }}&{\dfrac {\partial \Delta P}{\partial |V|}}\\{\dfrac {\partial \Delta Q}{\partial \theta }}&{\dfrac {\partial \Delta Q}{\partial |V|}}\end{bmatrix}}} 2233:: A recently developed method based on advanced techniques of complex analysis. It is direct and guarantees the calculation of the correct (operative) branch, out of the multiple solutions present in the power-flow equations. 2467:
Shirmohammadi, D., Hong, H. W., Semlyen, A., & Luo, G. X. (1988). A compensation-based power flow method for weakly meshed distribution and transmission networks. IEEE Transactions on power systems, 3(2), 753-762.
2454:
Giraldo, J. S., Montoya, O. D., Vergara, P. P., & Milano, F. (2022). A fixed-point current injection power flow for electric distribution systems using Laurent series. Electric Power Systems Research, 211, 108326.
522:
equations that do not introduce any new unknown variables. The possible equations to use are power balance equations, which can be written for real and reactive power for each bus. The real power balance equation is:
1310: 2262:
flows. This method is non-iterative and absolutely convergent but less accurate than AC Load Flow solutions. Direct current load flow is used wherever repetitive and fast load flow estimations are required.
2088: 1652: 1470: 1305:
is written, with the higher order terms ignored, for each of the power balance equations included in the system of equations. The result is a linear system of equations that can be expressed as:
1067: 2188:
Make an initial guess of all unknown voltage magnitudes and angles. It is common to use a "flat start" in which all voltage angles are set to zero and all voltage magnitudes are set to 1.0 p.u.
62:
were built between 1929 and the early 1960s to provide laboratory-scale physical models of power systems. Large-scale digital computers replaced the analog methods with numerical solutions.
2173: 1074: 528: 2216:: This is the earliest devised method. It shows slower rates of convergence compared to other iterative methods, but it uses very little memory and does not need to solve a matrix system. 147:
power output can be analytically determined. Due to the nonlinear nature of this problem, numerical methods are employed to obtain a solution that is within an acceptable tolerance.
94: 101:
consideration, there are several approaches that has been used such as probabilistic, possibilistic, information gap decision theory, robust optimization, and interval analysis.
2222:
is a variation on Newton–Raphson that exploits the approximate decoupling of active and reactive flows in well-behaved power networks, and additionally fixes the value of the
951: 520: 467: 411: 2481:
Seifi, H. &. (2011). Appendix A: DC Load Flow. In H. &. Seifi, Electric power system planning: issues, algorithms and solutions (pp. 245-249). Berlin: Springer
1463: 1440: 317: 1281:
including the reactive power balance equation would result in an additional unknown variable. For similar reasons, there are no equations written for the Slack Bus.
1011: 981: 921: 891: 857: 827: 797: 759: 1271: 725: 237: 210: 183: 2510: 297: 267: 1852: 358: 338: 138:
is the basis to build a mathematical model of the generators, loads, buses, and transmission lines of the system, and their electrical impedances and ratings.
3183: 2375: 2321:
Aien, Morteza; Hajebrahimi, Ali; Fotuhi-Firuzabad, Mahmud (2016). "A comprehensive review on uncertainty modeling techniques in power system studies".
1301:
which begins with initial guesses of all unknown variables (voltage magnitude and angles at Load Buses and voltage angles at Generator Buses). Next, a
212:
at each Load Bus are known. For this reason, Load Buses are also known as PQ Buses. For Generator Buses, it is assumed that the real power generated
2037: 2230: 151:
connected to it is called a Generator Bus. The exception is one arbitrarily-selected bus that has a generator. This bus is referred to as the
2297: 47:
parameters, such as voltages, voltage angles, real power and reactive power. It analyzes the power systems in normal steady-state operation.
3262: 3241: 3080: 3188: 2658: 2503: 2808: 2357: 2092: 1293:
There are several different methods of solving the resulting nonlinear system of equations. The most popular is a variation of the
134:
to represent all voltages, power flows, and impedances, scaling the actual target system values to some convenient base. A system
1410:{\displaystyle {\begin{bmatrix}\Delta \theta \\\Delta |V|\end{bmatrix}}=-J^{-1}{\begin{bmatrix}\Delta P\\\Delta Q\end{bmatrix}}} 2971: 2896: 2767: 2223: 1855: 2282:
2013 IREP Symposium Bulk Power System Dynamics and Control - IX Optimization, Security and Control of the Emerging Power Grid
2254:
Direct current load flow gives estimations of lines power flows on AC power systems. Direct current load flow looks only at
3143: 3075: 3065: 2941: 2841: 2496: 1016: 35:
of the flow of electric power in an interconnected system. A power-flow study usually uses simplified notations such as a
2236: 2996: 2956: 2533: 3223: 3218: 2936: 2911: 2901: 2877: 2872: 2578: 59: 2242: 2219: 3267: 3138: 2856: 2826: 2603: 1825:{\displaystyle \Delta Q_{i}=-Q_{i}+\sum _{k=1}^{N}|V_{i}||V_{k}|(G_{ik}\sin \theta _{ik}-B_{ik}\cos \theta _{ik})} 1643:{\displaystyle \Delta P_{i}=-P_{i}+\sum _{k=1}^{N}|V_{i}||V_{k}|(G_{ik}\cos \theta _{ik}+B_{ik}\sin \theta _{ik})} 1294: 3193: 2682: 2643: 58:
Commercial power systems are usually too complex to allow for hand solution of the power flow. Special-purpose
3168: 2976: 2916: 2573: 2372: 2213: 3107: 3097: 3087: 2177:
The process continues until a stopping condition is met. A common stopping condition is to terminate if the
3028: 2891: 2674: 2563: 3163: 2931: 2926: 2906: 2480: 1237:{\displaystyle 0=-Q_{i}+\sum _{k=1}^{N}|V_{i}||V_{k}|(G_{ik}\sin \theta _{ik}-B_{ik}\cos \theta _{ik})} 691:{\displaystyle 0=-P_{i}+\sum _{k=1}^{N}|V_{i}||V_{k}|(G_{ik}\cos \theta _{ik}+B_{ik}\sin \theta _{ik})} 2757: 2519: 2396: 3128: 2961: 2861: 2836: 2789: 2598: 2588: 2553: 926: 472: 419: 363: 3002: 2613: 2303: 78: 32: 3153: 3033: 2638: 2412: 2353: 2293: 1445: 1422: 118: 74: 20: 302: 3102: 3043: 2747: 2742: 2719: 2568: 2404: 2330: 2285: 1298: 986: 956: 896: 866: 832: 802: 772: 734: 135: 36: 2191:
Solve the power balance equations using the most recent voltage angle and magnitude values.
1249: 703: 215: 188: 161: 3133: 3092: 3070: 2951: 2921: 2886: 2846: 2648: 2379: 131: 70: 65:
In addition to a power-flow study, computer programs perform related calculations such as
40: 272: 242: 2400: 3158: 3148: 2946: 2558: 2259: 1837: 343: 323: 3256: 3178: 2966: 2851: 2831: 2762: 2752: 2709: 2593: 2548: 1302: 86: 66: 2307: 3198: 3173: 3038: 3007: 2821: 2623: 2255: 3023: 2991: 2784: 2772: 2692: 2618: 2608: 2538: 2178: 762: 122:
feasible, and a linear (but less accurate) DC power-flow model is used instead.
114: 2334: 2986: 2981: 2794: 2777: 2633: 2289: 2194:
Linearize the system around the most recent voltage angle and magnitude values
2456: 2416: 2408: 2702: 2697: 2583: 2543: 152: 2443: 2373:
Andersson, G: Lectures on Modelling and Analysis of Electric Power Systems
2280:
Low, S. H. (2013). "Convex relaxation of optimal power flow: A tutorial".
2028:
The linearized system of equations is solved to determine the next guess (
2816: 130:
analysis, another simplification. A further simplification is to use the
44: 2203:
Check the stopping conditions, if met then terminate, else go to step 2.
2737: 2727: 2488: 269:
is known. For the Slack Bus, it is assumed that the voltage magnitude
2732: 2439: 127: 52: 2469: 2687: 69:
fault analysis, stability studies (transient and steady-state),
2492: 2391:
Stott, B.; Alsac, O. (May 1974). "Fast Decoupled Load Flow".
158:
In the power-flow problem, it is assumed that the real power
2184:
A rough outline of solution of the power-flow problem is:
2181:
of the mismatch equations is below a specified tolerance.
2083:{\displaystyle \theta _{m+1}=\theta _{m}+\Delta \theta \,} 55:, and the real and reactive power flowing in each line. 1876: 1380: 1319: 2095: 2040: 1973: 1946: 1907: 1880: 1864: 1840: 1655: 1473: 1448: 1425: 1313: 1252: 1077: 1019: 989: 959: 929: 899: 869: 835: 805: 775: 737: 706: 531: 475: 422: 366: 346: 326: 305: 275: 245: 218: 191: 164: 113:
is a model used in electrical engineering to analyze
1062:{\displaystyle \theta _{ik}=\theta _{i}-\theta _{k}} 3207: 3117: 3054: 3016: 2870: 2807: 2718: 2673: 2666: 2526: 2197:
Solve for the change in voltage angle and magnitude
2167: 2082: 2017: 1846: 1824: 1642: 1457: 1434: 1409: 1265: 1236: 1061: 1005: 975: 945: 915: 885: 851: 821: 791: 753: 719: 690: 514: 461: 405: 352: 332: 311: 291: 261: 231: 204: 177: 2393:IEEE Transactions on Power Apparatus and Systems 95:optimal operations of groups of generating units 85:, the conditions which give the lowest cost per 2032:+ 1) of voltage magnitude and angles based on: 953:is the difference in voltage angle between the 2168:{\displaystyle |V|_{m+1}=|V|_{m}+\Delta |V|\,} 1854:is a matrix of partial derivatives known as a 2504: 859:is the imaginary part of the element in the Y 8: 1069:). The reactive power balance equation is: 2670: 2511: 2497: 2489: 2457:https://doi.org/10.1016/j.epsr.2022.108326 1273:is the net reactive power injected at bus 2164: 2159: 2151: 2139: 2134: 2125: 2110: 2105: 2096: 2094: 2079: 2064: 2045: 2039: 1998: 1990: 1972: 1945: 1932: 1924: 1906: 1879: 1871: 1863: 1839: 1810: 1791: 1775: 1756: 1744: 1738: 1729: 1724: 1718: 1709: 1703: 1692: 1679: 1663: 1654: 1628: 1609: 1593: 1574: 1562: 1556: 1547: 1542: 1536: 1527: 1521: 1510: 1497: 1481: 1472: 1447: 1424: 1375: 1366: 1343: 1335: 1314: 1312: 1257: 1251: 1222: 1203: 1187: 1168: 1156: 1150: 1141: 1136: 1130: 1121: 1115: 1104: 1091: 1076: 1053: 1040: 1024: 1018: 994: 988: 964: 958: 934: 928: 904: 898: 874: 868: 840: 834: 810: 804: 780: 774: 742: 736: 711: 705: 676: 657: 641: 622: 610: 604: 595: 590: 584: 575: 569: 558: 545: 530: 474: 421: 365: 345: 325: 304: 284: 276: 274: 254: 246: 244: 223: 217: 196: 190: 169: 163: 16:Numerical analysis of electric power flow 2323:Renewable and Sustainable Energy Reviews 727:is the net active power injected at bus 2444:https://www.mdpi.com/1996-1073/14/4/897 2272: 2200:Update the voltage magnitude and angles 761:is the real part of the element in the 2231:Holomorphic embedding load flow method 7: 2348:Grainger, J.; Stevenson, W. (1994). 111:alternating current power-flow model 43:, and focuses on various aspects of 2237:Backward-Forward Sweep (BFS) method 1465:are called the mismatch equations: 77:. In particular, some programs use 3189:Renewable energy commercialization 2440:https://doi.org/10.3390/en14040897 2148: 2073: 1987: 1979: 1976: 1960: 1952: 1949: 1921: 1913: 1910: 1894: 1886: 1883: 1656: 1474: 1449: 1426: 1393: 1383: 1332: 1322: 1297:. The Newton-Raphson method is an 14: 2470:https://doi.org/10.1109/59.192932 3237: 3236: 2657: 2243:Laurent Power Flow (LPF) method 2220:Fast-decoupled-load-flow method 2160: 2152: 2135: 2126: 2106: 2097: 1999: 1991: 1933: 1925: 1819: 1749: 1745: 1730: 1725: 1710: 1637: 1567: 1563: 1548: 1543: 1528: 1344: 1336: 1289:Newton–Raphson solution method 1231: 1161: 1157: 1142: 1137: 1122: 685: 615: 611: 596: 591: 576: 509: 497: 491: 479: 456: 444: 438: 426: 400: 388: 382: 370: 285: 277: 255: 247: 142:Power-flow problem formulation 1: 3184:Renewable Energy Certificates 3144:Cost of electricity by source 3066:Arc-fault circuit interrupter 2942:High-voltage shore connection 3199:Spark/Dark/Quark/Bark spread 2997:Transmission system operator 2957:Mains electricity by country 2534:Automatic generation control 946:{\displaystyle \theta _{ik}} 515:{\displaystyle 2(N-1)-(R-1)} 462:{\displaystyle 2(N-1)-(R-1)} 406:{\displaystyle 2(N-1)-(R-1)} 3263:Electric power distribution 3224:List of electricity sectors 3219:Electric energy consumption 2937:High-voltage direct current 2912:Electric power transmission 2902:Electric power distribution 2579:Energy return on investment 360:generators, there are then 3284: 3139:Carbon offsets and credits 2857:Three-phase electric power 2335:10.1016/j.rser.2015.12.070 416:In order to solve for the 239:and the voltage magnitude 3232: 3194:Renewable Energy Payments 2683:Fossil fuel power station 2655: 2352:. New York: McGraw–Hill. 2290:10.1109/IREP.2013.6629391 2977:Single-wire earth return 2917:Electrical busbar system 2574:Energy demand management 2409:10.1109/tpas.1974.293985 2208:Other power-flow methods 1458:{\displaystyle \Delta Q} 1435:{\displaystyle \Delta P} 469:unknowns, there must be 3108:Residual-current device 3098:Power system protection 3088:Generator interlock kit 2395:. PAS-93 (3): 859–869. 312:{\displaystyle \theta } 2892:Distributed generation 2564:Electric power quality 2169: 2084: 2019: 1848: 1826: 1708: 1644: 1526: 1459: 1436: 1411: 1267: 1238: 1120: 1063: 1007: 1006:{\displaystyle k_{th}} 977: 976:{\displaystyle i_{th}} 947: 917: 916:{\displaystyle k_{th}} 887: 886:{\displaystyle i_{th}} 853: 852:{\displaystyle B_{ik}} 823: 822:{\displaystyle k_{th}} 793: 792:{\displaystyle i_{th}} 755: 754:{\displaystyle G_{ik}} 721: 692: 574: 516: 463: 407: 354: 334: 313: 293: 263: 233: 206: 179: 3164:Fossil fuel phase-out 2932:Electricity retailing 2927:Electrical substation 2907:Electric power system 2350:Power System Analysis 2170: 2085: 2020: 1849: 1827: 1688: 1645: 1506: 1460: 1437: 1412: 1295:Newton–Raphson method 1268: 1266:{\displaystyle Q_{i}} 1239: 1100: 1064: 1008: 978: 948: 918: 888: 863:corresponding to the 854: 824: 794: 769:corresponding to the 763:bus admittance matrix 756: 722: 720:{\displaystyle P_{i}} 693: 554: 517: 464: 408: 355: 335: 314: 294: 264: 234: 232:{\displaystyle P_{G}} 207: 205:{\displaystyle Q_{D}} 180: 178:{\displaystyle P_{D}} 2520:Electricity delivery 2093: 2038: 1862: 1838: 1653: 1471: 1446: 1423: 1311: 1250: 1075: 1017: 987: 957: 927: 897: 867: 833: 803: 773: 735: 704: 529: 473: 420: 364: 344: 324: 303: 273: 243: 216: 189: 162: 3129:Availability factor 3081:Sulfur hexafluoride 2962:Overhead power line 2862:Virtual power plant 2837:Induction generator 2790:Sustainable biofuel 2599:Home energy storage 2589:Grid energy storage 2554:Droop speed control 2401:1974ITPAS..93..859S 2258:flows and neglects 2214:Gauss–Seidel method 292:{\displaystyle |V|} 262:{\displaystyle |V|} 185:and reactive power 3003:Transmission tower 2614:Nameplate capacity 2378:2017-02-15 at the 2165: 2080: 2015: 2009: 2005: 1968: 1939: 1902: 1844: 1822: 1640: 1455: 1432: 1407: 1401: 1350: 1263: 1234: 1059: 1003: 973: 943: 913: 883: 849: 819: 789: 751: 717: 688: 512: 459: 403: 350: 330: 309: 299:and voltage phase 289: 259: 229: 202: 175: 83:optimal power flow 79:linear programming 33:numerical analysis 3268:Power engineering 3250: 3249: 3154:Environmental tax 3034:Cascading failure 2803: 2802: 2639:Utility frequency 2299:978-1-4799-0199-9 2284:. pp. 1–06. 2004: 1967: 1938: 1901: 1847:{\displaystyle J} 353:{\displaystyle R} 333:{\displaystyle N} 75:economic dispatch 60:network analyzers 21:power engineering 3275: 3240: 3239: 3149:Energy subsidies 3103:Protective relay 3044:Rolling blackout 2671: 2661: 2629:Power-flow study 2569:Electrical fault 2513: 2506: 2499: 2490: 2483: 2478: 2472: 2465: 2459: 2452: 2446: 2427: 2421: 2420: 2388: 2382: 2370: 2364: 2363: 2345: 2339: 2338: 2318: 2312: 2311: 2277: 2174: 2172: 2171: 2166: 2163: 2155: 2144: 2143: 2138: 2129: 2121: 2120: 2109: 2100: 2089: 2087: 2086: 2081: 2069: 2068: 2056: 2055: 2024: 2022: 2021: 2016: 2014: 2013: 2006: 2003: 2002: 1994: 1985: 1974: 1969: 1966: 1958: 1947: 1940: 1937: 1936: 1928: 1919: 1908: 1903: 1900: 1892: 1881: 1853: 1851: 1850: 1845: 1831: 1829: 1828: 1823: 1818: 1817: 1799: 1798: 1783: 1782: 1764: 1763: 1748: 1743: 1742: 1733: 1728: 1723: 1722: 1713: 1707: 1702: 1684: 1683: 1668: 1667: 1649: 1647: 1646: 1641: 1636: 1635: 1617: 1616: 1601: 1600: 1582: 1581: 1566: 1561: 1560: 1551: 1546: 1541: 1540: 1531: 1525: 1520: 1502: 1501: 1486: 1485: 1464: 1462: 1461: 1456: 1441: 1439: 1438: 1433: 1416: 1414: 1413: 1408: 1406: 1405: 1374: 1373: 1355: 1354: 1347: 1339: 1299:iterative method 1272: 1270: 1269: 1264: 1262: 1261: 1243: 1241: 1240: 1235: 1230: 1229: 1211: 1210: 1195: 1194: 1176: 1175: 1160: 1155: 1154: 1145: 1140: 1135: 1134: 1125: 1119: 1114: 1096: 1095: 1068: 1066: 1065: 1060: 1058: 1057: 1045: 1044: 1032: 1031: 1012: 1010: 1009: 1004: 1002: 1001: 982: 980: 979: 974: 972: 971: 952: 950: 949: 944: 942: 941: 922: 920: 919: 914: 912: 911: 892: 890: 889: 884: 882: 881: 858: 856: 855: 850: 848: 847: 828: 826: 825: 820: 818: 817: 798: 796: 795: 790: 788: 787: 760: 758: 757: 752: 750: 749: 726: 724: 723: 718: 716: 715: 697: 695: 694: 689: 684: 683: 665: 664: 649: 648: 630: 629: 614: 609: 608: 599: 594: 589: 588: 579: 573: 568: 550: 549: 521: 519: 518: 513: 468: 466: 465: 460: 412: 410: 409: 404: 359: 357: 356: 351: 339: 337: 336: 331: 318: 316: 315: 310: 298: 296: 295: 290: 288: 280: 268: 266: 265: 260: 258: 250: 238: 236: 235: 230: 228: 227: 211: 209: 208: 203: 201: 200: 184: 182: 181: 176: 174: 173: 136:one-line diagram 119:nonlinear system 117:. It provides a 37:one-line diagram 25:power-flow study 3283: 3282: 3278: 3277: 3276: 3274: 3273: 3272: 3253: 3252: 3251: 3246: 3228: 3212: 3210: 3203: 3134:Capacity factor 3122: 3120: 3113: 3093:Numerical relay 3071:Circuit breaker 3059: 3057: 3050: 3012: 2952:Load management 2922:Electrical grid 2887:Demand response 2880: 2875: 2866: 2847:Microgeneration 2799: 2714: 2662: 2653: 2649:Vehicle-to-grid 2522: 2517: 2487: 2486: 2479: 2475: 2466: 2462: 2453: 2449: 2428: 2424: 2390: 2389: 2385: 2380:Wayback Machine 2371: 2367: 2360: 2347: 2346: 2342: 2320: 2319: 2315: 2300: 2279: 2278: 2274: 2269: 2252: 2210: 2133: 2104: 2091: 2090: 2060: 2041: 2036: 2035: 2008: 2007: 1986: 1975: 1970: 1959: 1948: 1942: 1941: 1920: 1909: 1904: 1893: 1882: 1872: 1860: 1859: 1836: 1835: 1806: 1787: 1771: 1752: 1734: 1714: 1675: 1659: 1651: 1650: 1624: 1605: 1589: 1570: 1552: 1532: 1493: 1477: 1469: 1468: 1444: 1443: 1421: 1420: 1400: 1399: 1390: 1389: 1376: 1362: 1349: 1348: 1329: 1328: 1315: 1309: 1308: 1291: 1253: 1248: 1247: 1218: 1199: 1183: 1164: 1146: 1126: 1087: 1073: 1072: 1049: 1036: 1020: 1015: 1014: 990: 985: 984: 960: 955: 954: 930: 925: 924: 900: 895: 894: 870: 865: 864: 862: 836: 831: 830: 806: 801: 800: 776: 771: 770: 768: 738: 733: 732: 707: 702: 701: 672: 653: 637: 618: 600: 580: 541: 527: 526: 471: 470: 418: 417: 362: 361: 342: 341: 322: 321: 301: 300: 271: 270: 241: 240: 219: 214: 213: 192: 187: 186: 165: 160: 159: 144: 132:per-unit system 107: 71:unit commitment 41:per-unit system 29:load-flow study 17: 12: 11: 5: 3281: 3279: 3271: 3270: 3265: 3255: 3254: 3248: 3247: 3245: 3244: 3233: 3230: 3229: 3227: 3226: 3221: 3215: 3213: 3209:Statistics and 3208: 3205: 3204: 3202: 3201: 3196: 3191: 3186: 3181: 3176: 3171: 3166: 3161: 3159:Feed-in tariff 3156: 3151: 3146: 3141: 3136: 3131: 3125: 3123: 3118: 3115: 3114: 3112: 3111: 3105: 3100: 3095: 3090: 3085: 3084: 3083: 3078: 3068: 3062: 3060: 3055: 3052: 3051: 3049: 3048: 3047: 3046: 3036: 3031: 3026: 3020: 3018: 3014: 3013: 3011: 3010: 3005: 3000: 2994: 2989: 2984: 2979: 2974: 2969: 2964: 2959: 2954: 2949: 2947:Interconnector 2944: 2939: 2934: 2929: 2924: 2919: 2914: 2909: 2904: 2899: 2897:Dynamic demand 2894: 2889: 2883: 2881: 2871: 2868: 2867: 2865: 2864: 2859: 2854: 2849: 2844: 2839: 2834: 2829: 2827:Combined cycle 2824: 2819: 2813: 2811: 2805: 2804: 2801: 2800: 2798: 2797: 2792: 2787: 2782: 2781: 2780: 2775: 2770: 2765: 2760: 2750: 2745: 2740: 2735: 2730: 2724: 2722: 2716: 2715: 2713: 2712: 2707: 2706: 2705: 2700: 2695: 2690: 2679: 2677: 2668: 2664: 2663: 2656: 2654: 2652: 2651: 2646: 2641: 2636: 2631: 2626: 2621: 2616: 2611: 2606: 2604:Load-following 2601: 2596: 2591: 2586: 2581: 2576: 2571: 2566: 2561: 2559:Electric power 2556: 2551: 2546: 2541: 2536: 2530: 2528: 2524: 2523: 2518: 2516: 2515: 2508: 2501: 2493: 2485: 2484: 2473: 2460: 2447: 2422: 2383: 2365: 2358: 2340: 2313: 2298: 2271: 2270: 2268: 2265: 2260:reactive power 2251: 2248: 2247: 2246: 2240: 2234: 2228: 2217: 2209: 2206: 2205: 2204: 2201: 2198: 2195: 2192: 2189: 2162: 2158: 2154: 2150: 2147: 2142: 2137: 2132: 2128: 2124: 2119: 2116: 2113: 2108: 2103: 2099: 2078: 2075: 2072: 2067: 2063: 2059: 2054: 2051: 2048: 2044: 2012: 2001: 1997: 1993: 1989: 1984: 1981: 1978: 1971: 1965: 1962: 1957: 1954: 1951: 1944: 1943: 1935: 1931: 1927: 1923: 1918: 1915: 1912: 1905: 1899: 1896: 1891: 1888: 1885: 1878: 1877: 1875: 1870: 1867: 1843: 1821: 1816: 1813: 1809: 1805: 1802: 1797: 1794: 1790: 1786: 1781: 1778: 1774: 1770: 1767: 1762: 1759: 1755: 1751: 1747: 1741: 1737: 1732: 1727: 1721: 1717: 1712: 1706: 1701: 1698: 1695: 1691: 1687: 1682: 1678: 1674: 1671: 1666: 1662: 1658: 1639: 1634: 1631: 1627: 1623: 1620: 1615: 1612: 1608: 1604: 1599: 1596: 1592: 1588: 1585: 1580: 1577: 1573: 1569: 1565: 1559: 1555: 1550: 1545: 1539: 1535: 1530: 1524: 1519: 1516: 1513: 1509: 1505: 1500: 1496: 1492: 1489: 1484: 1480: 1476: 1454: 1451: 1431: 1428: 1404: 1398: 1395: 1392: 1391: 1388: 1385: 1382: 1381: 1379: 1372: 1369: 1365: 1361: 1358: 1353: 1346: 1342: 1338: 1334: 1331: 1330: 1327: 1324: 1321: 1320: 1318: 1290: 1287: 1260: 1256: 1233: 1228: 1225: 1221: 1217: 1214: 1209: 1206: 1202: 1198: 1193: 1190: 1186: 1182: 1179: 1174: 1171: 1167: 1163: 1159: 1153: 1149: 1144: 1139: 1133: 1129: 1124: 1118: 1113: 1110: 1107: 1103: 1099: 1094: 1090: 1086: 1083: 1080: 1056: 1052: 1048: 1043: 1039: 1035: 1030: 1027: 1023: 1000: 997: 993: 970: 967: 963: 940: 937: 933: 910: 907: 903: 880: 877: 873: 860: 846: 843: 839: 816: 813: 809: 786: 783: 779: 766: 748: 745: 741: 714: 710: 687: 682: 679: 675: 671: 668: 663: 660: 656: 652: 647: 644: 640: 636: 633: 628: 625: 621: 617: 613: 607: 603: 598: 593: 587: 583: 578: 572: 567: 564: 561: 557: 553: 548: 544: 540: 537: 534: 511: 508: 505: 502: 499: 496: 493: 490: 487: 484: 481: 478: 458: 455: 452: 449: 446: 443: 440: 437: 434: 431: 428: 425: 402: 399: 396: 393: 390: 387: 384: 381: 378: 375: 372: 369: 349: 329: 308: 287: 283: 279: 257: 253: 249: 226: 222: 199: 195: 172: 168: 143: 140: 106: 103: 15: 13: 10: 9: 6: 4: 3: 2: 3280: 3269: 3266: 3264: 3261: 3260: 3258: 3243: 3235: 3234: 3231: 3225: 3222: 3220: 3217: 3216: 3214: 3206: 3200: 3197: 3195: 3192: 3190: 3187: 3185: 3182: 3180: 3179:Pigouvian tax 3177: 3175: 3172: 3170: 3167: 3165: 3162: 3160: 3157: 3155: 3152: 3150: 3147: 3145: 3142: 3140: 3137: 3135: 3132: 3130: 3127: 3126: 3124: 3116: 3109: 3106: 3104: 3101: 3099: 3096: 3094: 3091: 3089: 3086: 3082: 3079: 3077: 3076:Earth-leakage 3074: 3073: 3072: 3069: 3067: 3064: 3063: 3061: 3053: 3045: 3042: 3041: 3040: 3037: 3035: 3032: 3030: 3027: 3025: 3022: 3021: 3019: 3017:Failure modes 3015: 3009: 3006: 3004: 3001: 2998: 2995: 2993: 2990: 2988: 2985: 2983: 2980: 2978: 2975: 2973: 2970: 2968: 2967:Power station 2965: 2963: 2960: 2958: 2955: 2953: 2950: 2948: 2945: 2943: 2940: 2938: 2935: 2933: 2930: 2928: 2925: 2923: 2920: 2918: 2915: 2913: 2910: 2908: 2905: 2903: 2900: 2898: 2895: 2893: 2890: 2888: 2885: 2884: 2882: 2879: 2874: 2869: 2863: 2860: 2858: 2855: 2853: 2852:Rankine cycle 2850: 2848: 2845: 2843: 2840: 2838: 2835: 2833: 2832:Cooling tower 2830: 2828: 2825: 2823: 2820: 2818: 2815: 2814: 2812: 2810: 2806: 2796: 2793: 2791: 2788: 2786: 2783: 2779: 2776: 2774: 2771: 2769: 2766: 2764: 2761: 2759: 2756: 2755: 2754: 2751: 2749: 2746: 2744: 2741: 2739: 2736: 2734: 2731: 2729: 2726: 2725: 2723: 2721: 2717: 2711: 2708: 2704: 2701: 2699: 2696: 2694: 2691: 2689: 2686: 2685: 2684: 2681: 2680: 2678: 2676: 2675:Non-renewable 2672: 2669: 2665: 2660: 2650: 2647: 2645: 2642: 2640: 2637: 2635: 2632: 2630: 2627: 2625: 2622: 2620: 2617: 2615: 2612: 2610: 2607: 2605: 2602: 2600: 2597: 2595: 2594:Grid strength 2592: 2590: 2587: 2585: 2582: 2580: 2577: 2575: 2572: 2570: 2567: 2565: 2562: 2560: 2557: 2555: 2552: 2550: 2549:Demand factor 2547: 2545: 2542: 2540: 2537: 2535: 2532: 2531: 2529: 2525: 2521: 2514: 2509: 2507: 2502: 2500: 2495: 2494: 2491: 2482: 2477: 2474: 2471: 2464: 2461: 2458: 2451: 2448: 2445: 2441: 2437: 2433: 2426: 2423: 2418: 2414: 2410: 2406: 2402: 2398: 2394: 2387: 2384: 2381: 2377: 2374: 2369: 2366: 2361: 2359:0-07-061293-5 2355: 2351: 2344: 2341: 2336: 2332: 2329:: 1077–1089. 2328: 2324: 2317: 2314: 2309: 2305: 2301: 2295: 2291: 2287: 2283: 2276: 2273: 2266: 2264: 2261: 2257: 2250:DC power-flow 2249: 2244: 2241: 2238: 2235: 2232: 2229: 2225: 2221: 2218: 2215: 2212: 2211: 2207: 2202: 2199: 2196: 2193: 2190: 2187: 2186: 2185: 2182: 2180: 2175: 2156: 2145: 2140: 2130: 2122: 2117: 2114: 2111: 2101: 2076: 2070: 2065: 2061: 2057: 2052: 2049: 2046: 2042: 2033: 2031: 2026: 2010: 1995: 1982: 1963: 1955: 1929: 1916: 1897: 1889: 1873: 1868: 1865: 1857: 1841: 1832: 1814: 1811: 1807: 1803: 1800: 1795: 1792: 1788: 1784: 1779: 1776: 1772: 1768: 1765: 1760: 1757: 1753: 1739: 1735: 1719: 1715: 1704: 1699: 1696: 1693: 1689: 1685: 1680: 1676: 1672: 1669: 1664: 1660: 1632: 1629: 1625: 1621: 1618: 1613: 1610: 1606: 1602: 1597: 1594: 1590: 1586: 1583: 1578: 1575: 1571: 1557: 1553: 1537: 1533: 1522: 1517: 1514: 1511: 1507: 1503: 1498: 1494: 1490: 1487: 1482: 1478: 1466: 1452: 1429: 1417: 1402: 1396: 1386: 1377: 1370: 1367: 1363: 1359: 1356: 1351: 1340: 1325: 1316: 1306: 1304: 1303:Taylor Series 1300: 1296: 1288: 1286: 1282: 1278: 1276: 1258: 1254: 1244: 1226: 1223: 1219: 1215: 1212: 1207: 1204: 1200: 1196: 1191: 1188: 1184: 1180: 1177: 1172: 1169: 1165: 1151: 1147: 1131: 1127: 1116: 1111: 1108: 1105: 1101: 1097: 1092: 1088: 1084: 1081: 1078: 1070: 1054: 1050: 1046: 1041: 1037: 1033: 1028: 1025: 1021: 998: 995: 991: 968: 965: 961: 938: 935: 931: 908: 905: 901: 878: 875: 871: 844: 841: 837: 814: 811: 807: 784: 781: 777: 764: 746: 743: 739: 730: 712: 708: 698: 680: 677: 673: 669: 666: 661: 658: 654: 650: 645: 642: 638: 634: 631: 626: 623: 619: 605: 601: 585: 581: 570: 565: 562: 559: 555: 551: 546: 542: 538: 535: 532: 524: 506: 503: 500: 494: 488: 485: 482: 476: 453: 450: 447: 441: 435: 432: 429: 423: 414: 397: 394: 391: 385: 379: 376: 373: 367: 347: 327: 306: 281: 251: 224: 220: 197: 193: 170: 166: 156: 154: 148: 141: 139: 137: 133: 129: 123: 120: 116: 112: 104: 102: 98: 96: 90: 88: 87:kilowatt hour 84: 80: 76: 72: 68: 67:short-circuit 63: 61: 56: 54: 48: 46: 42: 38: 34: 30: 26: 22: 3174:Net metering 3121:and policies 3039:Power outage 3008:Utility pole 2972:Pumped hydro 2878:distribution 2873:Transmission 2822:Cogeneration 2628: 2624:Power factor 2476: 2463: 2450: 2435: 2431: 2425: 2392: 2386: 2368: 2349: 2343: 2326: 2322: 2316: 2281: 2275: 2256:active power 2253: 2183: 2176: 2034: 2029: 2027: 1833: 1467: 1418: 1307: 1292: 1283: 1279: 1274: 1245: 1071: 728: 699: 525: 415: 157: 149: 145: 124: 110: 108: 99: 91: 82: 81:to find the 64: 57: 49: 28: 24: 18: 3169:Load factor 3024:Black start 2992:Transformer 2693:Natural gas 2644:Variability 2619:Peak demand 2609:Merit order 2539:Backfeeding 923:column and 115:power grids 89:delivered. 3257:Categories 3211:production 3056:Protective 2987:Super grid 2982:Smart grid 2809:Generation 2743:Geothermal 2634:Repowering 2267:References 413:unknowns. 340:buses and 3119:Economics 2842:Micro CHP 2720:Renewable 2703:Petroleum 2698:Oil shale 2584:Grid code 2544:Base load 2417:0018-9510 2149:Δ 2077:θ 2074:Δ 2062:θ 2043:θ 1988:∂ 1980:Δ 1977:∂ 1964:θ 1961:∂ 1953:Δ 1950:∂ 1922:∂ 1914:Δ 1911:∂ 1898:θ 1895:∂ 1887:Δ 1884:∂ 1808:θ 1804:⁡ 1785:− 1773:θ 1769:⁡ 1690:∑ 1673:− 1657:Δ 1626:θ 1622:⁡ 1591:θ 1587:⁡ 1508:∑ 1491:− 1475:Δ 1450:Δ 1427:Δ 1394:Δ 1384:Δ 1368:− 1360:− 1333:Δ 1326:θ 1323:Δ 1220:θ 1216:⁡ 1197:− 1185:θ 1181:⁡ 1102:∑ 1085:− 1051:θ 1047:− 1038:θ 1022:θ 932:θ 674:θ 670:⁡ 639:θ 635:⁡ 556:∑ 539:− 504:− 495:− 486:− 451:− 442:− 433:− 395:− 386:− 377:− 307:θ 153:slack bus 3242:Category 3029:Brownout 2817:AC power 2527:Concepts 2432:Energies 2376:Archived 2308:14195805 2224:Jacobian 1856:Jacobian 893:row and 829:column, 799:row and 45:AC power 3058:devices 2768:Thermal 2763:Osmotic 2758:Current 2738:Biomass 2728:Biofuel 2710:Nuclear 2667:Sources 2438:, 897. 2397:Bibcode 1013:buses ( 31:, is a 27:, or 2753:Marine 2733:Biogas 2434:2021, 2415:  2356:  2306:  2296:  1419:where 1246:where 700:where 128:phasor 23:, the 3110:(GFI) 2999:(TSO) 2785:Solar 2773:Tidal 2748:Hydro 2304:S2CID 105:Model 2876:and 2795:Wind 2778:Wave 2688:Coal 2413:ISSN 2354:ISBN 2294:ISBN 2179:norm 1834:and 1442:and 983:and 73:and 39:and 2405:doi 2331:doi 2286:doi 1801:cos 1766:sin 1619:sin 1584:cos 1213:cos 1178:sin 861:BUS 767:BUS 667:sin 632:cos 109:An 53:bus 19:In 3259:: 2442:, 2436:14 2411:. 2403:. 2327:57 2325:. 2302:. 2292:. 2025:. 1858:: 1277:. 731:, 155:. 97:. 2512:e 2505:t 2498:v 2419:. 2407:: 2399:: 2362:. 2337:. 2333:: 2310:. 2288:: 2161:| 2157:V 2153:| 2146:+ 2141:m 2136:| 2131:V 2127:| 2123:= 2118:1 2115:+ 2112:m 2107:| 2102:V 2098:| 2071:+ 2066:m 2058:= 2053:1 2050:+ 2047:m 2030:m 2011:] 2000:| 1996:V 1992:| 1983:Q 1956:Q 1934:| 1930:V 1926:| 1917:P 1890:P 1874:[ 1869:= 1866:J 1842:J 1820:) 1815:k 1812:i 1796:k 1793:i 1789:B 1780:k 1777:i 1761:k 1758:i 1754:G 1750:( 1746:| 1740:k 1736:V 1731:| 1726:| 1720:i 1716:V 1711:| 1705:N 1700:1 1697:= 1694:k 1686:+ 1681:i 1677:Q 1670:= 1665:i 1661:Q 1638:) 1633:k 1630:i 1614:k 1611:i 1607:B 1603:+ 1598:k 1595:i 1579:k 1576:i 1572:G 1568:( 1564:| 1558:k 1554:V 1549:| 1544:| 1538:i 1534:V 1529:| 1523:N 1518:1 1515:= 1512:k 1504:+ 1499:i 1495:P 1488:= 1483:i 1479:P 1453:Q 1430:P 1403:] 1397:Q 1387:P 1378:[ 1371:1 1364:J 1357:= 1352:] 1345:| 1341:V 1337:| 1317:[ 1275:i 1259:i 1255:Q 1232:) 1227:k 1224:i 1208:k 1205:i 1201:B 1192:k 1189:i 1173:k 1170:i 1166:G 1162:( 1158:| 1152:k 1148:V 1143:| 1138:| 1132:i 1128:V 1123:| 1117:N 1112:1 1109:= 1106:k 1098:+ 1093:i 1089:Q 1082:= 1079:0 1055:k 1042:i 1034:= 1029:k 1026:i 999:h 996:t 992:k 969:h 966:t 962:i 939:k 936:i 909:h 906:t 902:k 879:h 876:t 872:i 845:k 842:i 838:B 815:h 812:t 808:k 785:h 782:t 778:i 765:Y 747:k 744:i 740:G 729:i 713:i 709:P 686:) 681:k 678:i 662:k 659:i 655:B 651:+ 646:k 643:i 627:k 624:i 620:G 616:( 612:| 606:k 602:V 597:| 592:| 586:i 582:V 577:| 571:N 566:1 563:= 560:k 552:+ 547:i 543:P 536:= 533:0 510:) 507:1 501:R 498:( 492:) 489:1 483:N 480:( 477:2 457:) 454:1 448:R 445:( 439:) 436:1 430:N 427:( 424:2 401:) 398:1 392:R 389:( 383:) 380:1 374:N 371:( 368:2 348:R 328:N 286:| 282:V 278:| 256:| 252:V 248:| 225:G 221:P 198:D 194:Q 171:D 167:P

Index

power engineering
numerical analysis
one-line diagram
per-unit system
AC power
bus
network analyzers
short-circuit
unit commitment
economic dispatch
linear programming
kilowatt hour
optimal operations of groups of generating units
power grids
nonlinear system
phasor
per-unit system
one-line diagram
slack bus
bus admittance matrix
Newton–Raphson method
iterative method
Taylor Series
Jacobian
norm
Gauss–Seidel method
Fast-decoupled-load-flow method
Jacobian
Holomorphic embedding load flow method
Backward-Forward Sweep (BFS) method

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑