Knowledge

Prandtl–Batchelor theorem

Source 📝

1412: 1699: 630: 807: 1543: 1275: 1811:
The circulation around those closed streamlines is not zero (unless the velocity at each point of the streamline is zero with a possible discontinuous vorticity jump across the streamline) . The only way the above equation can be satisfied is only if
1558: 480: 175: 985: 530: 1806: 249:
can have infinite number of possibilities, all of which satisfies the equation and the boundary condition. This is not true if no streamline is closed, in which case, every streamline can be traced back to the boundary
1864:
i.e., vorticity is not changing across these closed streamlines, thus proving the theorem. Of course, the theorem is not valid inside the boundary layer regime. This theorem cannot be derived from the Euler equations.
1236: 712: 1063: 670: 1267: 911: 322:
are prescribed. The difficulty arises only when there are some closed streamlines inside the domain that does not connect to the boundary and one may suppose that at high Reynolds numbers,
1859: 1407:{\displaystyle {\frac {1}{\mathrm {Re} }}\oint _{C}\nabla \omega \cdot \mathbf {n} \ dl={\frac {1}{\mathrm {Re} }}\oint _{C}{\frac {d\omega }{d\psi }}\nabla \psi \cdot \mathbf {n} \ dl=0.} 704: 1457: 1118: 1745: 1907:
Feynman, R. P., & Lagerstrom, P. A. (1956). Remarks on high Reynolds number flows in finite domains. In Proc. IX International Congress on Applied Mechanics (Vol. 3, pp. 342-343).
1026: 407: 1694:{\displaystyle \Gamma =-\oint _{C}\mathbf {u} \cdot d\mathbf {l} =-\int _{S}\omega d\mathbf {S} =\int _{S}\nabla ^{2}\psi d\mathbf {S} =\oint _{C}\nabla \psi \cdot \mathbf {n} dl} 418: 1449: 378: 349: 320: 247: 1143: 832: 271: 1083: 198: 291: 93: 101: 855: 919: 875: 523: 503: 218: 1880:
Prandtl, L. (1904). Über Flussigkeitsbewegung bei sehr kleiner Reibung. Verhandl. III, Internat. Math.-Kong., Heidelberg, Teubner, Leipzig, 1904, 484–491.
625:{\displaystyle \int _{S}\mathbf {u} \cdot \nabla \mathbf {\omega } \,d\mathbf {S} ={\frac {1}{\mathrm {Re} }}\int _{S}\nabla ^{2}\omega \,d\mathbf {S} .} 1753: 351:
is not uniquely defined in regions where closed streamlines occur. The Prandtl–Batchelor theorem, however, asserts that this is not the case and
1925:
Lagerstrom, P. A. (1975). Solutions of the Navier–Stokes equation at large Reynolds number. SIAM Journal on Applied mathematics, 28(1), 202-214.
1889:
Batchelor, G. K. (1956). On steady laminar flow with closed streamlines at large Reynolds number. Journal of Fluid Mechanics, 1(2), 177–190.
877:
is taken to be one of the closed streamlines since then the velocity vector projected normal to the contour will be zero, that is to say
802:{\displaystyle \oint _{C}\omega \mathbf {u} \cdot \mathbf {n} dl={\frac {1}{\mathrm {Re} }}\oint _{C}\nabla \omega \cdot \mathbf {n} dl.} 1148: 69: 1031: 638: 1241: 880: 1818: 1538:{\displaystyle {\frac {1}{\mathrm {Re} }}{\frac {d\omega }{d\psi }}\oint _{C}\nabla \psi \cdot \mathbf {n} \ dl=0.} 675: 1088: 990:
This expression is true for finite but large Reynolds number since we did not neglect the viscous term before.
1711: 1238:, and this small corrections become smaller and smaller as we increase the Reynolds number. Thus, in the limit 1940: 996: 220:-direction of the vorticity vector. As it stands, the problem is ill-posed since the vorticity distribution 383: 1916:
Wood, W. W. (1957). Boundary layers whose streamlines are closed. Journal of Fluid Mechanics, 2(1), 77-87.
475:{\displaystyle \mathbf {u} \cdot \nabla \mathbf {\omega } ={\frac {1}{\mathrm {Re} }}\nabla ^{2}\omega .} 1549: 1420: 354: 325: 296: 223: 1898:
Davidson, P. A. (2016). Introduction to magnetohydrodynamics (Vol. 55). Cambridge university press.
1123: 815: 48:
unaware of this work proved the theorem in 1956. The problem was also studied in the same year by
253: 26:
if in a two-dimensional laminar flow at high Reynolds number closed streamlines occur, then the
1068: 183: 170:{\displaystyle \nabla ^{2}\psi =-\omega (\psi ),\quad \psi =\psi _{o}{\text{ on }}\partial D} 65: 45: 37: 505:
lying entirely in the region where we have closed streamlines, bounded by a closed contour
276: 78: 980:{\displaystyle {\frac {1}{\mathrm {Re} }}\oint _{C}\nabla \omega \cdot \mathbf {n} \ dl=0} 73: 53: 49: 837: 1705: 860: 508: 488: 203: 41: 33: 17: 1934: 32:. A similar statement holds true for axisymmetric flows. The theorem is named after 380:
is uniquely defined in such cases, through an examination of the limiting process
1451:
is constant for a given streamline, we can take that term outside the integral,
1801:{\displaystyle {\frac {\Gamma }{\mathrm {Re} }}{\frac {d\omega }{d\psi }}=0.} 27: 1269:, in the first approximation (neglecting the small corrections), we have 412:
The steady, non-dimensional vorticity equation in our case reduces to
1231:{\displaystyle \omega =\omega (\psi )+{\rm {small\ corrections}}} 857:. The left-hand side integrand can be made zero if the contour 44:
in his celebrated 1904 paper stated this theorem in arguments,
834:
is the outward unit vector normal to the contour line element
635:
The integrand in the left-hand side term can be written as
68:, the two-dimensional problem governed by two-dimensional 1821: 1756: 1714: 1561: 1460: 1423: 1278: 1244: 1151: 1126: 1091: 1071: 1034: 999: 922: 883: 863: 840: 818: 715: 678: 641: 533: 511: 491: 421: 386: 357: 328: 299: 279: 256: 226: 206: 186: 104: 81: 1548:
One may notice that the integral is negative of the
1853: 1800: 1739: 1693: 1537: 1443: 1406: 1261: 1230: 1137: 1112: 1077: 1058:{\displaystyle \mathbf {u} \cdot \nabla \omega =0} 1057: 1020: 979: 905: 869: 849: 826: 801: 698: 665:{\displaystyle \nabla \cdot (\omega \mathbf {u} )} 664: 624: 517: 497: 474: 401: 372: 343: 314: 285: 265: 241: 212: 192: 169: 87: 30:in the closed streamline region must be a constant 993:Unlike the two-dimensional inviscid flows, where 1262:{\displaystyle \mathrm {Re} \rightarrow \infty } 906:{\displaystyle \mathbf {u} \cdot \mathbf {n} =0} 200:is the only non-zero vorticity component in the 1065:with no restrictions on the functional form of 1854:{\displaystyle {\frac {d\omega }{d\psi }}=0,} 8: 699:{\displaystyle \nabla \cdot \mathbf {u} =0} 1113:{\displaystyle \omega \neq \omega (\psi )} 293:and therefore its corresponding vorticity 1822: 1820: 1772: 1762: 1757: 1755: 1740:{\displaystyle \omega =-\nabla ^{2}\psi } 1728: 1713: 1680: 1665: 1653: 1641: 1631: 1619: 1607: 1592: 1581: 1575: 1560: 1515: 1500: 1476: 1466: 1461: 1459: 1430: 1422: 1384: 1355: 1349: 1335: 1330: 1313: 1298: 1284: 1279: 1277: 1245: 1243: 1174: 1173: 1150: 1127: 1125: 1090: 1070: 1035: 1033: 998: 957: 942: 928: 923: 921: 892: 884: 882: 862: 839: 819: 817: 785: 770: 756: 751: 737: 729: 720: 714: 685: 677: 654: 640: 614: 610: 601: 591: 577: 572: 564: 560: 555: 544: 538: 532: 510: 490: 460: 446: 441: 433: 422: 420: 385: 356: 327: 298: 278: 255: 225: 205: 185: 156: 150: 109: 103: 80: 1873: 1021:{\displaystyle \omega =\omega (\psi )} 485:Integrate the equation over a surface 706:. By divergence theorem, one obtains 402:{\displaystyle Re\rightarrow \infty } 7: 72:reduce to solving a problem for the 1766: 1763: 1759: 1725: 1671: 1638: 1562: 1506: 1470: 1467: 1375: 1339: 1336: 1304: 1288: 1285: 1256: 1249: 1246: 1223: 1220: 1217: 1214: 1211: 1208: 1205: 1202: 1199: 1196: 1193: 1187: 1184: 1181: 1178: 1175: 1131: 1128: 1043: 948: 932: 929: 776: 760: 757: 679: 642: 598: 581: 578: 552: 457: 450: 447: 430: 396: 257: 161: 106: 14: 1681: 1654: 1620: 1593: 1582: 1516: 1385: 1314: 1036: 958: 893: 885: 820: 786: 738: 730: 686: 655: 615: 565: 545: 423: 1444:{\displaystyle d\omega /d\psi } 139: 1253: 1167: 1161: 1107: 1101: 1015: 1009: 659: 648: 393: 373:{\displaystyle \omega (\psi )} 367: 361: 344:{\displaystyle \omega (\psi )} 338: 332: 315:{\displaystyle \omega (\psi )} 309: 303: 242:{\displaystyle \omega (\psi )} 236: 230: 133: 127: 1: 1138:{\displaystyle \mathrm {Re} } 827:{\displaystyle \mathbf {n} } 1120:. But for large but finite 1957: 266:{\displaystyle \partial D} 56:and by W.W. Wood in 1957. 22:Prandtl–Batchelor theorem 1085:, in the viscous flows, 1078:{\displaystyle \omega } 193:{\displaystyle \omega } 1855: 1802: 1741: 1695: 1539: 1445: 1408: 1263: 1232: 1139: 1114: 1079: 1059: 1022: 981: 907: 871: 851: 828: 803: 700: 666: 626: 519: 499: 476: 403: 374: 345: 316: 287: 267: 243: 214: 194: 171: 89: 1856: 1803: 1742: 1696: 1540: 1446: 1409: 1264: 1233: 1140: 1115: 1080: 1060: 1023: 982: 908: 872: 852: 829: 804: 701: 667: 627: 520: 500: 477: 404: 375: 346: 317: 288: 286:{\displaystyle \psi } 268: 244: 215: 195: 172: 90: 88:{\displaystyle \psi } 1819: 1754: 1712: 1708:for circulation and 1559: 1458: 1421: 1276: 1242: 1149: 1124: 1089: 1069: 1032: 997: 920: 881: 861: 838: 816: 713: 676: 639: 531: 509: 489: 419: 384: 355: 326: 297: 277: 254: 224: 204: 184: 102: 79: 913:. Thus one obtains 1851: 1798: 1737: 1704:where we used the 1691: 1535: 1441: 1404: 1259: 1228: 1135: 1110: 1075: 1055: 1018: 977: 903: 867: 850:{\displaystyle dl} 847: 824: 799: 696: 662: 622: 515: 495: 472: 399: 370: 341: 312: 283: 263: 239: 210: 190: 167: 95:, which satisfies 85: 60:Mathematical proof 1840: 1790: 1770: 1522: 1494: 1474: 1391: 1373: 1343: 1320: 1292: 1192: 964: 936: 870:{\displaystyle C} 764: 585: 518:{\displaystyle C} 498:{\displaystyle S} 454: 213:{\displaystyle z} 159: 1948: 1926: 1923: 1917: 1914: 1908: 1905: 1899: 1896: 1890: 1887: 1881: 1878: 1860: 1858: 1857: 1852: 1841: 1839: 1831: 1823: 1807: 1805: 1804: 1799: 1791: 1789: 1781: 1773: 1771: 1769: 1758: 1747:. Thus, we have 1746: 1744: 1743: 1738: 1733: 1732: 1700: 1698: 1697: 1692: 1684: 1670: 1669: 1657: 1646: 1645: 1636: 1635: 1623: 1612: 1611: 1596: 1585: 1580: 1579: 1544: 1542: 1541: 1536: 1520: 1519: 1505: 1504: 1495: 1493: 1485: 1477: 1475: 1473: 1462: 1450: 1448: 1447: 1442: 1434: 1413: 1411: 1410: 1405: 1389: 1388: 1374: 1372: 1364: 1356: 1354: 1353: 1344: 1342: 1331: 1318: 1317: 1303: 1302: 1293: 1291: 1280: 1268: 1266: 1265: 1260: 1252: 1237: 1235: 1234: 1229: 1227: 1226: 1190: 1144: 1142: 1141: 1136: 1134: 1119: 1117: 1116: 1111: 1084: 1082: 1081: 1076: 1064: 1062: 1061: 1056: 1039: 1027: 1025: 1024: 1019: 986: 984: 983: 978: 962: 961: 947: 946: 937: 935: 924: 912: 910: 909: 904: 896: 888: 876: 874: 873: 868: 856: 854: 853: 848: 833: 831: 830: 825: 823: 808: 806: 805: 800: 789: 775: 774: 765: 763: 752: 741: 733: 725: 724: 705: 703: 702: 697: 689: 671: 669: 668: 663: 658: 631: 629: 628: 623: 618: 606: 605: 596: 595: 586: 584: 573: 568: 559: 548: 543: 542: 524: 522: 521: 516: 504: 502: 501: 496: 481: 479: 478: 473: 465: 464: 455: 453: 442: 437: 426: 408: 406: 405: 400: 379: 377: 376: 371: 350: 348: 347: 342: 321: 319: 318: 313: 292: 290: 289: 284: 272: 270: 269: 264: 248: 246: 245: 240: 219: 217: 216: 211: 199: 197: 196: 191: 176: 174: 173: 168: 160: 157: 155: 154: 114: 113: 94: 92: 91: 86: 66:Reynolds numbers 46:George Batchelor 38:George Batchelor 1956: 1955: 1951: 1950: 1949: 1947: 1946: 1945: 1931: 1930: 1929: 1924: 1920: 1915: 1911: 1906: 1902: 1897: 1893: 1888: 1884: 1879: 1875: 1871: 1832: 1824: 1817: 1816: 1782: 1774: 1752: 1751: 1724: 1710: 1709: 1661: 1637: 1627: 1603: 1571: 1557: 1556: 1496: 1486: 1478: 1456: 1455: 1419: 1418: 1365: 1357: 1345: 1294: 1274: 1273: 1240: 1239: 1147: 1146: 1145:, we can write 1122: 1121: 1087: 1086: 1067: 1066: 1030: 1029: 995: 994: 938: 918: 917: 879: 878: 859: 858: 836: 835: 814: 813: 766: 716: 711: 710: 674: 673: 637: 636: 597: 587: 534: 529: 528: 507: 506: 487: 486: 456: 417: 416: 382: 381: 353: 352: 324: 323: 295: 294: 275: 274: 252: 251: 222: 221: 202: 201: 182: 181: 146: 105: 100: 99: 77: 76: 74:stream function 70:Euler equations 62: 54:Paco Lagerstrom 50:Richard Feynman 12: 11: 5: 1954: 1952: 1944: 1943: 1941:Fluid dynamics 1933: 1932: 1928: 1927: 1918: 1909: 1900: 1891: 1882: 1872: 1870: 1867: 1862: 1861: 1850: 1847: 1844: 1838: 1835: 1830: 1827: 1809: 1808: 1797: 1794: 1788: 1785: 1780: 1777: 1768: 1765: 1761: 1736: 1731: 1727: 1723: 1720: 1717: 1706:Stokes theorem 1702: 1701: 1690: 1687: 1683: 1679: 1676: 1673: 1668: 1664: 1660: 1656: 1652: 1649: 1644: 1640: 1634: 1630: 1626: 1622: 1618: 1615: 1610: 1606: 1602: 1599: 1595: 1591: 1588: 1584: 1578: 1574: 1570: 1567: 1564: 1546: 1545: 1534: 1531: 1528: 1525: 1518: 1514: 1511: 1508: 1503: 1499: 1492: 1489: 1484: 1481: 1472: 1469: 1465: 1440: 1437: 1433: 1429: 1426: 1415: 1414: 1403: 1400: 1397: 1394: 1387: 1383: 1380: 1377: 1371: 1368: 1363: 1360: 1352: 1348: 1341: 1338: 1334: 1329: 1326: 1323: 1316: 1312: 1309: 1306: 1301: 1297: 1290: 1287: 1283: 1258: 1255: 1251: 1248: 1225: 1222: 1219: 1216: 1213: 1210: 1207: 1204: 1201: 1198: 1195: 1189: 1186: 1183: 1180: 1177: 1172: 1169: 1166: 1163: 1160: 1157: 1154: 1133: 1130: 1109: 1106: 1103: 1100: 1097: 1094: 1074: 1054: 1051: 1048: 1045: 1042: 1038: 1017: 1014: 1011: 1008: 1005: 1002: 988: 987: 976: 973: 970: 967: 960: 956: 953: 950: 945: 941: 934: 931: 927: 902: 899: 895: 891: 887: 866: 846: 843: 822: 810: 809: 798: 795: 792: 788: 784: 781: 778: 773: 769: 762: 759: 755: 750: 747: 744: 740: 736: 732: 728: 723: 719: 695: 692: 688: 684: 681: 661: 657: 653: 650: 647: 644: 633: 632: 621: 617: 613: 609: 604: 600: 594: 590: 583: 580: 576: 571: 567: 563: 558: 554: 551: 547: 541: 537: 514: 494: 483: 482: 471: 468: 463: 459: 452: 449: 445: 440: 436: 432: 429: 425: 398: 395: 392: 389: 369: 366: 363: 360: 340: 337: 334: 331: 311: 308: 305: 302: 282: 262: 259: 238: 235: 232: 229: 209: 189: 178: 177: 166: 163: 158: on  153: 149: 145: 142: 138: 135: 132: 129: 126: 123: 120: 117: 112: 108: 84: 61: 58: 34:Ludwig Prandtl 18:fluid dynamics 13: 10: 9: 6: 4: 3: 2: 1953: 1942: 1939: 1938: 1936: 1922: 1919: 1913: 1910: 1904: 1901: 1895: 1892: 1886: 1883: 1877: 1874: 1868: 1866: 1848: 1845: 1842: 1836: 1833: 1828: 1825: 1815: 1814: 1813: 1795: 1792: 1786: 1783: 1778: 1775: 1750: 1749: 1748: 1734: 1729: 1721: 1718: 1715: 1707: 1688: 1685: 1677: 1674: 1666: 1662: 1658: 1650: 1647: 1642: 1632: 1628: 1624: 1616: 1613: 1608: 1604: 1600: 1597: 1589: 1586: 1576: 1572: 1568: 1565: 1555: 1554: 1553: 1551: 1532: 1529: 1526: 1523: 1512: 1509: 1501: 1497: 1490: 1487: 1482: 1479: 1463: 1454: 1453: 1452: 1438: 1435: 1431: 1427: 1424: 1401: 1398: 1395: 1392: 1381: 1378: 1369: 1366: 1361: 1358: 1350: 1346: 1332: 1327: 1324: 1321: 1310: 1307: 1299: 1295: 1281: 1272: 1271: 1270: 1170: 1164: 1158: 1155: 1152: 1104: 1098: 1095: 1092: 1072: 1052: 1049: 1046: 1040: 1012: 1006: 1003: 1000: 991: 974: 971: 968: 965: 954: 951: 943: 939: 925: 916: 915: 914: 900: 897: 889: 864: 844: 841: 796: 793: 790: 782: 779: 771: 767: 753: 748: 745: 742: 734: 726: 721: 717: 709: 708: 707: 693: 690: 682: 651: 645: 619: 611: 607: 602: 592: 588: 574: 569: 561: 556: 549: 539: 535: 527: 526: 525: 512: 492: 469: 466: 461: 443: 438: 434: 427: 415: 414: 413: 410: 390: 387: 364: 358: 335: 329: 306: 300: 280: 260: 233: 227: 207: 187: 164: 151: 147: 143: 140: 136: 130: 124: 121: 118: 115: 110: 98: 97: 96: 82: 75: 71: 67: 59: 57: 55: 51: 47: 43: 39: 35: 31: 29: 23: 19: 1921: 1912: 1903: 1894: 1885: 1876: 1863: 1810: 1703: 1547: 1416: 992: 989: 811: 634: 484: 411: 179: 63: 25: 24:states that 21: 15: 1550:circulation 1869:References 409:properly. 1837:ψ 1829:ω 1787:ψ 1779:ω 1760:Γ 1735:ψ 1726:∇ 1722:− 1716:ω 1678:⋅ 1675:ψ 1672:∇ 1663:∮ 1648:ψ 1639:∇ 1629:∫ 1614:ω 1605:∫ 1601:− 1587:⋅ 1573:∮ 1569:− 1563:Γ 1513:⋅ 1510:ψ 1507:∇ 1498:∮ 1491:ψ 1483:ω 1439:ψ 1428:ω 1382:⋅ 1379:ψ 1376:∇ 1370:ψ 1362:ω 1347:∮ 1311:⋅ 1308:ω 1305:∇ 1296:∮ 1257:∞ 1254:→ 1165:ψ 1159:ω 1153:ω 1105:ψ 1099:ω 1096:≠ 1093:ω 1073:ω 1047:ω 1044:∇ 1041:⋅ 1013:ψ 1007:ω 1001:ω 955:⋅ 952:ω 949:∇ 940:∮ 890:⋅ 783:⋅ 780:ω 777:∇ 768:∮ 735:⋅ 727:ω 718:∮ 683:⋅ 680:∇ 652:ω 646:⋅ 643:∇ 608:ω 599:∇ 589:∫ 557:ω 553:∇ 550:⋅ 536:∫ 467:ω 458:∇ 435:ω 431:∇ 428:⋅ 397:∞ 394:→ 365:ψ 359:ω 336:ψ 330:ω 307:ψ 301:ω 281:ψ 258:∂ 234:ψ 228:ω 188:ω 162:∂ 148:ψ 141:ψ 131:ψ 125:ω 122:− 116:ψ 107:∇ 83:ψ 28:vorticity 1935:Category 64:At high 42:Prandtl 1552:since 1521:  1417:Since 1390:  1319:  1191:  1028:since 963:  812:where 672:since 273:where 180:where 52:and 36:and 16:In 1937:: 1796:0. 1533:0. 1402:0. 40:. 20:, 1849:, 1846:0 1843:= 1834:d 1826:d 1793:= 1784:d 1776:d 1767:e 1764:R 1730:2 1719:= 1689:l 1686:d 1682:n 1667:C 1659:= 1655:S 1651:d 1643:2 1633:S 1625:= 1621:S 1617:d 1609:S 1598:= 1594:l 1590:d 1583:u 1577:C 1566:= 1530:= 1527:l 1524:d 1517:n 1502:C 1488:d 1480:d 1471:e 1468:R 1464:1 1436:d 1432:/ 1425:d 1399:= 1396:l 1393:d 1386:n 1367:d 1359:d 1351:C 1340:e 1337:R 1333:1 1328:= 1325:l 1322:d 1315:n 1300:C 1289:e 1286:R 1282:1 1250:e 1247:R 1224:s 1221:n 1218:o 1215:i 1212:t 1209:c 1206:e 1203:r 1200:r 1197:o 1194:c 1188:l 1185:l 1182:a 1179:m 1176:s 1171:+ 1168:) 1162:( 1156:= 1132:e 1129:R 1108:) 1102:( 1053:0 1050:= 1037:u 1016:) 1010:( 1004:= 975:0 972:= 969:l 966:d 959:n 944:C 933:e 930:R 926:1 901:0 898:= 894:n 886:u 865:C 845:l 842:d 821:n 797:. 794:l 791:d 787:n 772:C 761:e 758:R 754:1 749:= 746:l 743:d 739:n 731:u 722:C 694:0 691:= 687:u 660:) 656:u 649:( 620:. 616:S 612:d 603:2 593:S 582:e 579:R 575:1 570:= 566:S 562:d 546:u 540:S 513:C 493:S 470:. 462:2 451:e 448:R 444:1 439:= 424:u 391:e 388:R 368:) 362:( 339:) 333:( 310:) 304:( 261:D 237:) 231:( 208:z 165:D 152:o 144:= 137:, 134:) 128:( 119:= 111:2

Index

fluid dynamics
vorticity
Ludwig Prandtl
George Batchelor
Prandtl
George Batchelor
Richard Feynman
Paco Lagerstrom
Reynolds numbers
Euler equations
stream function
circulation
Stokes theorem
Category
Fluid dynamics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.