Knowledge (XXG)

Precession electron diffraction

Source đź“ť

1343:. Put simply, in a crystalline solid, the probability of interaction between an electron and ion in the lattice depends strongly on the momentum (direction and velocity) of the electron. When probing a sample under diffraction conditions near a zone axis, as is often the case in EDS and EELS applications, channelling can have a large impact on the effective interaction of the incident electrons with specific ions in the crystal structure. In practice, this can lead to erroneous measurements of composition that depend strongly on the orientation and thickness of the sample and the accelerating voltage. Since PED entails an integration over incident directions of the electron probe, and generally does not include beams parallel to the zone axis, the detrimental channeling effects outlined above can be minimized, yielding far more accurate composition measurements in both techniques. 124:) that is excited at any given moment during precession extends farther into reciprocal space. After integration over multiple precessions, many more reflections in the zeroeth order Laue zone (ZOLZ) are present, and as stated previously, their relative intensities are much more kinematical. This provides considerably more information to input into direct methods calculations, improving the accuracy of phase determination algorithms. Similarly, more higher order Laue zone (HOLZ) reflections are present in the pattern, which can provide more complete information about the three-dimensional nature of reciprocal space, even in a single two-dimensional PED pattern. 3457: 71:. The animation illustrates the geometry used to generate a PED pattern. Specifically, the beam tilt coils located pre-specimen are used to tilt the electron beam off of the optic axis so it is incident with the specimen at an angle, φ. The image shift coils post-specimen are then used to tilt the diffracted beams back in a complementary manner such that the direct beam falls in the center of the diffraction pattern. Finally, the beam is precessed around the optic axis while the diffraction pattern is collected over multiple revolutions. 114:. Few reflections are strongly excited at any moment during precession, and those that are excited are generally much closer to a two-beam condition (dynamically coupled only to the forward-scattered beam). Furthermore, for large precession angles, the radius of the excited Laue circle becomes quite large. These contributions combine such that the overall integrated diffraction pattern resembles the kinematical pattern much more closely than a single zone axis pattern. 1126:. Because of the increased number of reflections in both the zero order Laue zone and higher order Laue zones, the geometric relationship between Laue zones is more readily determined. This provides three-dimensional information about the crystal structure that can be used to determine its space group. Furthermore, because the PED technique is insensitive to slight misorientation from the zone axis, it provides the practical benefit of more robust data collection. 1264: 3850: 2916: 1222: 148:
standard cases 60 Hz has been used. In choosing a precession rate, it is important to ensure that many revolutions of the beam occur over the relevant exposure time used to record the diffraction pattern. This ensures adequate averaging over the excitation error of each reflection. Beam sensitive samples may dictate shorter exposure times and thus, motivate the use of higher precession frequencies.
1330:
specimen. Because many dynamical contrast effects are highly sensitive to the orientation of the crystalline sample with respect to the incident beam, these effects can convolute the reconstruction process in tomography. Similarly to single imaging applications, by reducing dynamical contrast, interpretation of the 2-D projections and thus the 3-D reconstruction are more straightforward.
110:: While the underlying physics of the electron diffraction is still dynamical in nature, the conditions used to collect PED patterns minimize many of these effects. The scan/de-scan procedure reduces ion channeling because the pattern is generated off of the zone axis. Integration via precession of the beam minimizes the effect of non-systematic inelastic scattering, such as 3862: 2928: 1275:, this is accomplished by recording a diffraction pattern at a large number of points (pixels) over a region of the crystalline specimen. By comparing the recorded patterns to a database of known patterns (either previously indexed experimental patterns or simulated patterns), the relative orientation of grains in the field of view can be determined. 849: 997:
calculations can the diffraction patterns generated by PED be simulated. However, this requires the crystal potential to be known, and thus is most valuable in refining the crystal potentials suggested through direct methods approaches. The theory of precession electron diffraction is still an active
151:
One of the most significant parameters affecting the diffraction pattern obtained is the precession angle, φ. In general, larger precession angles result in more kinematical diffraction patterns, but both the capabilities of the beam tilt coils in the microscope and the requirements on the probe size
1846:
Hadermann, Joke; Abakumov, Artem M.; Tsirlin, Alexander A.; Filonenko, Vladimir P.; Gonnissen, Julie; Tan, Haiyan; Verbeeck, Johan; Gemmi, Mauro; Antipov, Evgeny V.; Rosner, Helge (2010). "Direct space structure solution from precession electron diffraction data: Resolving heavy and light scatterers
1320:
in the TEM. Specifically, the reduced dynamical intensity transfer between beams that is associated with PED results in reduced dynamical contrast in images collected during precession of the beam. This includes a reduction in thickness fringes, bend contours, and strain fields. While these features
234:
While it is clear that precession reduces many of the dynamical diffraction effects that plague other forms of electron diffraction, the resulting patterns cannot be considered purely kinematical in general. There are models that attempt to introduce corrections to convert measured PED patterns into
218:
corrected instruments. In principle the minimum precessed probe can reach approximately the full-width-half-max (FWHM) of the converged un-precessed probe in any instrument, however in practice the effective precessed probe is typically ~10-50x larger due to uncontrolled aberrations present at high
74:
The result of this process is a diffraction pattern that consists of a summation or integration over the patterns generated during precession. While the geometry of this pattern matches the pattern associated with a normally incident beam, the intensities of the various reflections approximate those
1315:
Though many people conceptualize images and diffraction patterns separately, they contain principally the same information. In the simplest approximation, the two are simply Fourier transforms of one another. Thus, the effects of beam precession on diffraction patterns also have significant effects
1050:
According to NanoMEGAS, as of June, 2015, more than 200 publications have relied on the technique to solve or corroborate crystal structures; many on materials that could not be solved by other conventional crystallography techniques like x-ray diffraction. Their retrofit hardware system is used in
130:
PED is less sensitive to small experimental variations than other electron diffraction techniques. Since the measurement is an average over many incident beam directions, the pattern is less sensitive to slight misorientation of the zone axis from the optic axis of the microscope, and resulting PED
1216:
The PED technique has been used to determine the crystal structure of many classes of materials. Initial investigations during the emergence of the technique focused on complex oxides and nano-precipitates in Aluminum alloys that could not be resolved using x-ray diffraction. Since becoming a more
222:
If the precession angle is made too large, further complications due to the overlap of the ZOLZ and HOLZ reflections in the projected pattern can occur. This complicates the indexing of the diffraction pattern and can corrupt the measured intensities of reflections near the overlap region, thereby
1278:
Because this process is highly automated, the quality of the recorded diffraction patterns is crucial to the software's ability to accurately compare and assign orientations to each pixel. Thus, the advantages of PED are well-suited for use with this scanning technique. By instead recording a PED
1253:
Automated diffraction tomography (ADT) uses software to collect diffraction patterns over a series of slight tilt increments. In this way, a three-dimensional (tomographic) data set of reciprocal lattice intensities can be generated and used for structure determination. By coupling this technique
1026:
crystal structure demonstrated the feasibility of the technique at reducing dynamical effects and providing quasi-kinematical patterns that could be solved through direct methods to determine crystal structure. Over the next ten years, a number of university groups developed their own precession
137:
Because x-rays interact so weakly with matter, there is a minimum size limit of approximately 5 ÎĽm for single crystals that can be examined via x-ray diffraction methods. In contrast, electrons can be used to probe much smaller nano-crystals in a TEM. In PED, the probe size is limited by the
1329:
In an extension of the application of PED to imaging, electron tomography can benefit from the reduction of dynamic contrast effects. Tomography entails collecting a series of images (2-D projections) at various tilt angles and combining them to reconstruct the three dimensional structure of the
147:
Precession electron diffraction is typically conducted using accelerating voltages between 100-400 kV. Patterns can be formed under parallel or convergent beam conditions. Most modern TEMs can achieve a tilt angle, φ, ranging from 0-3°. Precession frequencies can be varied from Hz to kHz, but in
989:
This form seeks to correct for both geometric and dynamical effects, but is still only an approximation that often fails to significantly improve the kinematic quality of the diffraction pattern (sometimes even worsening it). More complete and accurate treatments of these theoretical correction
2034:
Feyand, Mark; Mugnaioli, Enrico; Vermoortele, Frederik; Bueken, Bart; Dieterich, Johannes M.; Reimer, Tim; Kolb, Ute; DeVos, Dirk; Stock, Norbert (2012). "Automated Diffraction Tomography for the Structure Elucidation of Twinned, Sub-micrometer Crystals of a Highly Porous, Catalytically Active
1042:
developed the first commercial precession system capable of being retrofit to any modern TEM. This hardware solution enabled more widespread implementation of the technique and spurred its more mainstream adoption into the crystallography community. Software methods have also been developed to
1242:
PED also enables the use of electron diffraction to investigate beam-sensitive organic materials. Because PED can reproduce symmetric zone axis diffraction patterns even when the zone axis is not perfectly aligned, it enables information to be extracted from sensitive samples without risking
633:
is the radius of the Laue circle, usually taken to be equal to φ. While this correction accounts for the integration over the excitation error, it takes no account for the dynamical effects that are ever-present in electron diffraction. This has been accounted for using a two-beam correction
1338:
Energy-dispersive x-ray spectroscopy (EDS) and electron energy loss spectroscopy (EELS) are commonly used techniques to both qualitatively and quantitatively probe the composition of samples in the TEM. A primary challenge in the quantitative accuracy of both techniques is the phenomenon of
209:
Thus, if the specimen of interest is quite small, the maximum precession angle will be restrained. This is most significant for conditions of convergent beam illumination. 50 nm is a general lower limit on probe size for standard TEMs operating at high precession angles
625: 1818:
Hadermann, Joke; Abakumov, Artem M.; Turner, Stuart; Hafideddine, Zainab; Khasanova, Nellie R.; Antipov, Evgeny V.; Van Tendeloo, Gustaaf (2011). "Solving the Structure of Li Ion Battery Materials with Precession Electron Diffraction: Application to Li2CoPO4F".
643: 1882:
Boulahya, Khalid; Ruiz-González, Luisa; Parras, Marina; González-Calbet, José M.; Nickolsky, M.S.; Nicolopoulos, Stavros (2007). "Ab initio determination of heavy oxide perovskite related structures from precession electron diffraction data".
458: 1173:, and is one of the primary reasons that technique has been so successful at solving crystal structures. However, in electron diffraction, the probing wave interacts much more strongly with the electrostatic crystal potential, and complex 235:
true kinematical patterns that can be used for more accurate direct methods calculations, with varying degrees of success. Here, the most basic corrections are discussed. In purely kinematical diffraction, the intensities of various
219:
angles of tilt. For example, a 2 nm precessed probe with >40 mrad precession angle was demonstrated in an aberration-corrected Nion UltraSTEM with native sub-Ă… probe (aberrations corrected to ~35 mrad half-angle).
152:
limit how large this angle can become in practice. Because PED takes the beam off of the optic axis by design, it accentuates the effect of the spherical aberrations within the probe forming lens. For a given spherical aberration, C
42:(TEM). By rotating (precessing) a tilted incident electron beam around the central axis of the microscope, a PED pattern is formed by integration over a collection of diffraction conditions. This produces a quasi-kinematical 1164:
If the diffraction can be considered kinematical, constraints may be used to probabilistically relate the phases of the reflections to their amplitudes, and the original structure can be solved via direct methods (see
131:
patterns will generally still display the zone axis symmetry. The patterns obtained are also less sensitive to the thickness of the sample, a parameter with strong influence in standard electron diffraction patterns.
138:
lens aberrations and sample thickness. With a typical value for spherical aberration, the minimum probe size is usually around 50 nm. However, with Cs corrected microscopes, the probe can be made much smaller.
913: 1194:
Diffraction patterns collected through PED often agree well-enough with the kinematical pattern to serve as input data for direct methods calculations. A three-dimensional set of intensities mapped over the
3727: 3722: 1254:
with PED, the range and quality of the data set can be improved. The combination of ADT-PED has been employed effectively to investigate complex framework structures and beam-sensitive organic crystals
1047:
for the DigitalMicrograph software. This plug-in enables the widely used software package to collect precession electron diffraction patterns without additional modifications to the microscope.
364: 475: 1237:
that typically occur. PED has been demonstrated to be a viable alternative to solving many of these structures, including the ZSM-10, MCM-68, and many of the ITQ-n class of zeolite structures.
205: 319: 3778: 1921:
Gilmore, Christopher J.; Dong, Wei; Dorset, Douglas L. (2008). "Solving the crystal structures of zeolites using electron diffraction data. I. The use of potential-density histograms".
1279:
pattern at each pixel, dynamical effects are reduced, and the patterns are more easily compared to simulated data, improving the accuracy of the automated phase/orientation assignment.
2560: 844:{\displaystyle I_{\mathbf {g} }^{kinematical}\propto I_{\mathbf {g} }^{experimental}\cdot g{\sqrt {1-{\frac {g}{2R_{o}}}}}\cdot \int \limits _{0}^{A_{\mathbf {g} }}J_{0}(2x)\,dx} 352: 1964:
Dorset, Douglas L.; Gilmore, Christopher J.; Jorda, Jose Luis; Nicolopoulos, Stavros (2007). "Direct electron crystallographic determination of zeolite zonal structures".
255: 359: 2543: 2538: 980: 20: 2687: 2390: 466:. First, a Lorentz correction analogous to that used in x-ray diffraction can be applied to account for the fact that reflections are infrequently exactly at the 2192:
Estradé, Sonia; Portillo, Joaquim; Yedra, Lluís; Rebled, José Manuel; Peiró, Francesca (2012). "EELS signal enhancement by means of beam precession in the TEM".
1155:
information is lost in general since intensity is a measurement of the square of the modulus of the amplitude of any given diffracted beam. This is known as the
2677: 2280: 953: 933: 3596: 2580: 2553: 1321:
can often provide useful information, their suppression enables a more straightforward interpretation of diffraction contrast and mass contrast in images.
3783: 3508: 2488: 1143:
are a collection of mathematical techniques that seek to determine crystal structure based on measurements of diffraction patterns and potentially other
83:
with a radius equal to the precession angle, φ. It is crucial to note that these snapshots contain far fewer strongly excited reflections than a normal
3674: 2966: 2548: 2692: 1778:
Derived from Three-Dimensional Electron Diffraction Intensity Data Collected by a Precession Technique. Comparison with Convergent-Beam Diffraction"
990:
factors have been shown to adjust measured intensities into better agreement with kinematical patterns. For details, see Chapter 4 of reference.
1737:
Own, C.S.; Sinkler, W.; Marks, L.D. (2006). "Rapid structure determination of a metal oxide from pseudo-kinematical electron diffraction data".
3773: 3765: 2508: 1203:. Applying direct methods to this data set will then yield probable crystal structures. Coupling direct methods results with simulations (e.g. 3826: 3804: 2632: 2498: 2445: 1450: 23:
Geometry of electron beam in precession electron diffraction. Original diffraction patterns collected by C.S. Own at Northwestern University
3819: 3669: 3335: 3200: 3049: 2887: 2615: 2600: 2526: 1671:
Morniroli, J.-P.; Redjaimia, A. (2007). "Electron precession microdiffraction as a useful tool for the identification of the space group".
1300: 1271:
Mapping the relative orientation of crystalline grains and/or phases helps understand material texture at the micro and nano scales. In a
1233:
are a technologically valuable class of materials that have historically been difficult to solve using x-ray diffraction due to the large
856: 3809: 3707: 3403: 1401:
Vincent, R.; Midgley, P.A. (1994). "Double conical beam-rocking system for measurement of integrated electron diffraction intensities".
462:
This relationship is generally far from accurate for experimental dynamical electron diffraction and when many reflections have a large
1999:
Kolb, U.; Gorelik, T.; Kübel, C.; Otten, M.T.; Hubert, D. (2007). "Towards automated diffraction tomography: Part I—Data acquisition".
1369:
Own, C. S.: PhD thesis, System Design and Verification of the Precession Electron Diffraction Technique, Northwestern University, 2005,
103:
PED possesses many advantageous attributes that make it well suited to investigating crystal structures via direct methods approaches:
3056: 1291:
of the technique have been found to enhance many other investigative techniques in the TEM. These include bright field and dark field
231:
For an introduction to the theory of electron diffraction, see part 2 of Williams and Carter's Transmission Electron Microscopy text
3831: 3689: 3659: 3588: 2637: 2470: 2323: 2273: 2249: 1304: 3541: 2625: 2620: 2518: 2493: 2460: 1317: 1292: 1272: 1136: 92: 68: 47: 39: 3814: 3737: 3611: 3210: 2697: 2662: 1516:
Gjønnes, Kjersti (1997). "On the integration of electron diffraction intensities in the Vincent-Midgley precession technique".
1177:
effects can dominate the measured diffraction patterns. This makes application of direct methods much more challenging without
3571: 2400: 3649: 2465: 2308: 1043:
achieve the necessary scanning and descanning using the built-in electronics of the TEM. HREM Research Inc has developed the
2932: 1644:
Morniroli, J.P.; Steeds, J.W. (1992). "Microdiffraction as a tool for crystal structure identification and determination".
620:{\displaystyle I_{\mathbf {g} }^{kinematical}\propto I_{\mathbf {g} }^{experimental}\cdot g{\sqrt {1-{\frac {g}{2R_{o}}}}}} 3664: 3654: 2959: 2642: 2605: 2450: 3436: 3788: 3061: 3039: 2920: 2480: 2266: 3466: 3340: 2103:"Ab-initiocrystal structure analysis and refinement approaches of oligop-benzamides based on electron diffraction data" 1466:
Own, CS; Dellby, N; Krivanek, O; Marks, LD; Murfitt, M (2007). "Aberration-corrected Precession Electron Diffraction".
91:. Thus, the composite pattern will display far less dynamical character, and will be well suited for use as input into 3094: 2989: 470:
over the course of a PED measurement. This geometrical correction factor can be shown to assume the approximate form:
1122:
Precession electron diffraction enables much more direct determination of space group symmetries over other forms of
161: 3456: 260: 3866: 3697: 2994: 2667: 2585: 1560:
M Gemmi , L.Righi ,G.Calestani, A.Migliori, A.Speghini, M.Santarosa , M.Bettinelli Ultramicroscopy 84 (2000)133-142
1542:
J.Gjonnes,V.Hansen, BS Berg, P.Runde, YF Gheng, K.Gjonnes,DL Dorset ,C.Gilmore Acta Crystallogr (1998) A54, 306-319
1772:
Gjønnes, J.; Hansen, V.; Berg, B. S.; Runde, P.; Cheng, Y. F.; Gjønnes, K.; Dorset, D. L.; Gilmore, C. J. (1998).
3712: 3641: 3099: 3089: 1090: 3225: 3893: 3854: 3578: 3474: 3347: 3310: 3104: 3084: 2952: 2892: 2846: 2672: 1147:
knowledge (constraints). The central challenge of inverting measured diffraction intensities (i.e. applying an
1077: 3262: 2882: 1433:
Eggeman, Alexander S.; Midgley, Paul A. (2012). "Precession Electron Diffraction". In Hawkes, Peter W. (ed.).
19: 3702: 3546: 3491: 3240: 3205: 2595: 2531: 2405: 2364: 76: 67:
Precession electron diffraction is accomplished utilizing the standard instrument configuration of a modern
3398: 2101:
Gorelik, Tatiana E.; Van De Streek, Jacco; Kilbinger, Andreas F. M.; Brunklaus, Gunther; Kolb, Ute (2012).
3215: 2785: 1068:
is to determine the three dimensional arrangement of atoms in a crystalline material. While historically,
79:
pattern much more closely. At any moment in time during precession, the diffraction pattern consists of a
3320: 3755: 3551: 3513: 3272: 3006: 2790: 2610: 1340: 1174: 1098: 1069: 2227:
System Design and Verification of the Precession Electron Diffraction Technique, Ph.D. Thesis, C.S. Own
1569:
M.Gemmi, X.Zou, S.Hovmoller, A.Migliori, M.Vennstrom, Y.Anderson Acta Crystallogr A (2003) A59, 117-126
2226: 1370: 463: 328: 3888: 3479: 3352: 3188: 3079: 2795: 2354: 1930: 1792: 1592: 1123: 1027:
systems and verified the technique by solving complex crystal structures, including the groups of J.
35: 3496: 3484: 3359: 3325: 3305: 2760: 2745: 2652: 2647: 2590: 2455: 2437: 2369: 2359: 2303: 2289: 1716: 1296: 453:{\displaystyle {\begin{aligned}I_{\mathbf {g} }^{kinematical}=|F_{\mathbf {g} }|^{2}\end{aligned}}} 43: 1287:
Although the PED technique was initially developed for its improved diffraction applications, the
1089:
The symmetry of a crystalline material has profound impacts on its emergent properties, including
238: 3745: 3556: 3501: 3044: 2831: 2410: 2374: 1773: 1696: 1610: 1483: 1217:
widespread crystallographic technique, many more complex metal oxide structures have been solved.
1196: 80: 998:
area of research, and efforts to improve on the ability to correct measured intensities without
3679: 3518: 3446: 3426: 3146: 3016: 2775: 2770: 2245: 2174: 2125: 2070:
Smeets, Stef; McCusker, Lynne B.; Baerlocher, Christian; Mugnaioli, Enrico; Kolb, Ute (2013).
2052: 2016: 1981: 1946: 1900: 1864: 1754: 1688: 1446: 1385: 1267:
ASTAR TEM Orientation imaging of gold particles, courtesy of Dr. Mauro Gemmi, IIT Pisa Italia
1170: 1148: 1032: 635: 51: 1117:
of the material. Determination of these attributes is an important aspect of crystallography.
3717: 3523: 3441: 3431: 3230: 3163: 3134: 3127: 2725: 2657: 2237: 2201: 2164: 2156: 2117: 2083: 2044: 2008: 1973: 1938: 1892: 1856: 1828: 1800: 1746: 1680: 1653: 1600: 1525: 1475: 1438: 1410: 1102: 1076:, the advantages of precession electron diffraction make it one of the preferred methods of 322: 88: 1384:
from Advanced Electron Microscopy course at Northwestern University. Prepared by Professor
958: 3606: 3601: 3566: 3386: 3285: 3220: 3183: 3178: 3029: 2975: 2780: 1140: 1110: 1094: 1065: 983: 467: 2072:"UsingFOCUSto solve zeolite structures from three-dimensional electron diffraction data" 1934: 1796: 1596: 1263: 3416: 3381: 3369: 3364: 3330: 3300: 3290: 3249: 3193: 3117: 3071: 2735: 2349: 2241: 2169: 2144: 1442: 1166: 1106: 1028: 938: 918: 156:, the probe diameter, d, varies with convergence angle, α, and precession angle, φ, as 1529: 3882: 3561: 3374: 3173: 2811: 2755: 2415: 1684: 1657: 1414: 1156: 1152: 223:
reducing the effectiveness of the collected pattern for direct methods calculations.
111: 2862: 2102: 1700: 1614: 1487: 1381: 1221: 3267: 3257: 3151: 3034: 2872: 2836: 2730: 2720: 2395: 2344: 2205: 2160: 2012: 1977: 1896: 1860: 1750: 1011: 121: 3750: 3421: 3295: 3122: 2816: 2750: 2740: 1114: 211: 3315: 3001: 2897: 2318: 2313: 2121: 2087: 1942: 1804: 1479: 1204: 1072:
has been the predominant experimental method used to solve crystal structures
1010:
The first precession electron diffraction system was developed by Vincent and
994: 629:
where g is the reciprocal space magnitude of the reflection in question and R
3024: 2765: 2420: 1234: 1200: 84: 2178: 2129: 2056: 2048: 2020: 1985: 1950: 1904: 1868: 1758: 1692: 1605: 1580: 1014:
in Bristol, UK and published in 1994. Preliminary investigation into the Er
3621: 3391: 3139: 2867: 2333: 1579:
Zhang, Daliang; Oleynikov, Peter; Hovmöller, Sven; Zou, Xiaodong (2010).
1551:
BS Berg,V.Hansen, PA Midgley, J Gjonnes Ultramicroscopy 74 (1998) 147-157
1230: 1044: 3631: 2877: 2821: 2503: 634:
following the form of the Blackman correction originally developed for
2258: 2236:. Advances in Imaging and Electron Physics. Vol. 170. p. 1. 1832: 2841: 1916: 1914: 908:{\displaystyle A_{\mathbf {g} }={\frac {2\pi tF_{\mathbf {g} }}{k}}} 638:. Combining this with the aforementioned Lorentz correction yields: 2071: 1371:
http://www.numis.northwestern.edu/Research/Current/precession.shtml
3626: 2944: 1262: 1220: 1199:
can be generated by collecting diffraction patterns over multiple
2826: 1717:
http://www.nanomegas.com/Documents/Precession%20Applications.pdf
1581:"Collecting 3D electron diffraction data by the rotation method" 2948: 2262: 1243:
overexposure during a time-intensive orientation of the sample.
1169:
as an example). Kinematical diffraction is often the case in
2145:"Reduction of electron channeling in EDS using precession" 3728:
Zeitschrift für Kristallographie – New Crystal Structures
3723:
Zeitschrift für Kristallographie – Crystalline Materials
2221: 1207:) and iteratively refining the solution can lead to the 1039: 1632: 3616: 1727:
Zuo, J. M. & Rouviere, J. L. (2015). IUCrJ 2, 7-8.
1151:) to determine the original crystal potential is that 993:
Only by considering the full dynamical model through
961: 941: 921: 859: 646: 478: 362: 331: 263: 241: 164: 1712: 1710: 321:, are related to the square of the amplitude of the 3797: 3764: 3736: 3688: 3640: 3587: 3534: 3465: 3248: 3239: 3162: 3070: 3015: 2982: 2855: 2804: 2713: 2706: 2573: 2517: 2479: 2436: 2429: 2383: 2332: 2296: 974: 947: 927: 907: 843: 619: 452: 346: 313: 249: 199: 2232:Eggeman, Alexander S.; Midgley, Paul A. (2012). 200:{\displaystyle d\propto 4C_{s}\phi ^{2}\alpha } 2688:Serial block-face scanning electron microscopy 2391:Detectors for transmission electron microscopy 314:{\displaystyle I_{\mathbf {g} }^{kinematical}} 2960: 2274: 8: 1628: 1626: 1624: 1051:more than 75 laboratories across the world. 16:Averaging technique for electron diffraction 3794: 3245: 3067: 3012: 2967: 2953: 2945: 2710: 2433: 2281: 2267: 2259: 1428: 1426: 1424: 1396: 1394: 1299:, and composition-probing techniques like 2168: 2143:Liao, Yifeng; Marks, Laurence D. (2013). 1604: 966: 960: 955:is the wave-vector of the electron beam. 940: 920: 892: 891: 875: 865: 864: 858: 834: 816: 803: 802: 797: 792: 774: 761: 753: 708: 702: 701: 658: 652: 651: 645: 606: 593: 585: 540: 534: 533: 490: 484: 483: 477: 440: 435: 427: 426: 417: 378: 372: 371: 363: 361: 337: 336: 330: 275: 269: 268: 262: 242: 240: 188: 178: 163: 1435:Advances in Imaging and Electron Physics 1365: 1363: 1361: 1359: 1357: 1355: 18: 2037:Angewandte Chemie International Edition 1351: 1211:determination of the crystal structure. 1181:knowledge of the structure in question. 118:Broader range of measured reflections: 108:Quasi-kinematical diffraction patterns 1501:Williams, D.B.; Carter, C.B. (1996). 34:) is a specialized method to collect 7: 3861: 3201:Phase transformation crystallography 2927: 1505:. New York and London: Plenum Press. 1301:energy-dispersive x-ray spectroscopy 1105:is described and categorized by the 46:that is more suitable as input into 3708:Journal of Chemical Crystallography 1774:"Structure Model for the Phase Alm 1031:(Oslo), Migliori (Bologna), and L. 2242:10.1016/B978-0-12-394396-5.00001-4 2076:Journal of Applied Crystallography 2035:Bismuth Metal-Organic Framework". 1443:10.1016/B978-0-12-394396-5.00001-4 14: 2324:Timeline of microscope technology 1305:electron energy loss spectroscopy 3860: 3849: 3848: 3455: 2926: 2915: 2914: 2110:Acta Crystallographica Section B 1923:Acta Crystallographica Section A 1785:Acta Crystallographica Section A 1685:10.1111/j.1365-2818.2007.01800.x 1585:Zeitschrift fĂĽr Kristallographie 1503:Transmission Electron Microscopy 1437:. Vol. 170. pp. 1–63. 1273:transmission electron microscope 1248:Automated diffraction tomography 893: 866: 804: 703: 653: 535: 485: 428: 373: 347:{\displaystyle F_{\mathbf {g} }} 338: 270: 243: 87:pattern and extend farther into 40:transmission electron microscope 2683:Precession electron diffraction 2234:Precession Electron Diffraction 1288: 28:Precession electron diffraction 3650:Bilbao Crystallographic Server 2206:10.1016/j.ultramic.2012.03.018 2161:10.1016/j.ultramic.2012.11.007 2013:10.1016/j.ultramic.2006.10.007 1978:10.1016/j.ultramic.2006.05.013 1897:10.1016/j.ultramic.2006.03.008 1861:10.1016/j.ultramic.2010.03.012 1751:10.1016/j.ultramic.2005.06.058 1225:Example of a zeolite structure 831: 822: 436: 418: 1: 1530:10.1016/S0304-3991(97)00031-4 935:is the sample thickness, and 1658:10.1016/0304-3991(92)90511-H 1468:Microscopy and Microanalysis 1415:10.1016/0304-3991(94)90039-6 250:{\displaystyle \mathbf {g} } 214:), but can be surpassed in C 50:algorithms to determine the 3698:Crystal Growth & Design 2990:Timeline of crystallography 3910: 3509:Nuclear magnetic resonance 2668:Immune electron microscopy 2586:Annular dark-field imaging 2401:Everhart–Thornley detector 227:Theoretical considerations 3844: 3713:Journal of Crystal Growth 3453: 2910: 2822:Hitachi High-Technologies 2122:10.1107/S0108768112003138 2088:10.1107/S0021889813014817 1943:10.1107/S010876730705862X 1805:10.1107/S0108767397017030 1480:10.1017/S1431927607078555 1334:Investigating composition 1149:inverse Fourier Transform 1091:electronic band structure 3579:Single particle analysis 3437:Hermann–Mauguin notation 2847:Thermo Fisher Scientific 2673:Geometric phase analysis 2561:Aberration-Corrected TEM 1095:electromagnetic behavior 1078:electron crystallography 636:powder x-ray diffraction 143:Practical considerations 3703:Crystallography Reviews 3547:Isomorphous replacement 3341:Lomer–Cottrell junction 2596:Charge contrast imaging 2406:Field electron emission 1289:advantageous properties 1189:structure determination 1002:knowledge are ongoing. 3216:Spinodal decomposition 2786:Thomas Eugene Everhart 2049:10.1002/anie.201204963 1821:Chemistry of Materials 1606:10.1524/zkri.2010.1202 1268: 1226: 1084:Symmetry determination 1006:Historical development 976: 949: 929: 909: 845: 811: 621: 454: 348: 315: 251: 201: 135:Very small probe size: 24: 3756:Gregori Aminoff Prize 3552:Molecular replacement 2791:Vernon Ellis Cosslett 2611:Dark-field microscopy 1673:Journal of Microscopy 1316:on the corresponding 1266: 1224: 1175:dynamical diffraction 1099:mechanical properties 1070:x-ray crystallography 977: 975:{\displaystyle J_{0}} 950: 930: 910: 846: 788: 622: 455: 349: 316: 252: 202: 128:Practical robustness: 120:The Laue circle (see 22: 3062:Structure prediction 2796:Vladimir K. Zworykin 2446:Correlative light EM 2355:Electron diffraction 1633:http://nanomegas.com 1124:electron diffraction 1064:The primary goal of 959: 939: 919: 857: 644: 476: 360: 329: 261: 239: 162: 36:electron diffraction 3326:Cottrell atmosphere 3306:Partial dislocation 3050:Restriction theorem 2761:Manfred von Ardenne 2746:Gerasimos Danilatos 2653:Electron tomography 2648:Electron holography 2591:Cathodoluminescence 2370:Secondary electrons 2360:Electron scattering 2304:Electron microscopy 2290:Electron microscopy 2043:(41): 10373–10376. 1935:2008AcCrA..64..284G 1797:1998AcCrA..54..306G 1597:2010ZK....225...94Z 1297:electron tomography 1259:Orientation mapping 1159:of crystallography. 746: 693: 578: 525: 413: 310: 44:diffraction pattern 3746:Carl Hermann Medal 3557:Molecular dynamics 3404:Defects in diamond 3399:Stone–Wales defect 3045:Reciprocal lattice 3007:Biocrystallography 2883:Digital Micrograph 2489:Environmental SEM 2411:Field emission gun 2375:X-ray fluorescence 1283:Beyond diffraction 1269: 1227: 1197:reciprocal lattice 986:of zeroeth order. 972: 945: 925: 905: 841: 697: 647: 617: 529: 479: 450: 448: 367: 344: 311: 264: 247: 197: 25: 3876: 3875: 3840: 3839: 3447:Thermal ellipsoid 3412: 3411: 3321:Frank–Read source 3281: 3280: 3147:Aperiodic crystal 3113: 3112: 2995:Crystallographers 2942: 2941: 2906: 2905: 2776:Nestor J. Zaluzec 2771:Maximilian Haider 2569: 2568: 1833:10.1021/cm201257b 1452:978-0-12-394396-5 1171:x-ray diffraction 948:{\displaystyle k} 928:{\displaystyle t} 903: 783: 781: 615: 613: 354:by the equation: 52:crystal structure 3901: 3864: 3863: 3852: 3851: 3795: 3718:Kristallografija 3572:Gerchberg–Saxton 3467:Characterisation 3459: 3442:Structure factor 3246: 3231:Ostwald ripening 3068: 3013: 2969: 2962: 2955: 2946: 2930: 2929: 2918: 2917: 2726:Bodo von Borries 2711: 2471:Photoemission EM 2434: 2283: 2276: 2269: 2260: 2255: 2210: 2209: 2189: 2183: 2182: 2172: 2140: 2134: 2133: 2107: 2098: 2092: 2091: 2067: 2061: 2060: 2031: 2025: 2024: 2007:(6–7): 507–513. 1996: 1990: 1989: 1972:(6–7): 462–473. 1961: 1955: 1954: 1918: 1909: 1908: 1891:(6–7): 445–452. 1879: 1873: 1872: 1847:in Pb13Mn9O25". 1843: 1837: 1836: 1815: 1809: 1808: 1782: 1769: 1763: 1762: 1734: 1728: 1725: 1719: 1714: 1705: 1704: 1668: 1662: 1661: 1641: 1635: 1630: 1619: 1618: 1608: 1576: 1570: 1567: 1561: 1558: 1552: 1549: 1543: 1540: 1534: 1533: 1513: 1507: 1506: 1498: 1492: 1491: 1463: 1457: 1456: 1430: 1419: 1418: 1398: 1389: 1379: 1373: 1367: 1103:Crystal symmetry 1035:(Northwestern). 981: 979: 978: 973: 971: 970: 954: 952: 951: 946: 934: 932: 931: 926: 914: 912: 911: 906: 904: 899: 898: 897: 896: 876: 871: 870: 869: 850: 848: 847: 842: 821: 820: 810: 809: 808: 807: 796: 784: 782: 780: 779: 778: 762: 754: 745: 707: 706: 692: 657: 656: 626: 624: 623: 618: 616: 614: 612: 611: 610: 594: 586: 577: 539: 538: 524: 489: 488: 464:excitation error 459: 457: 456: 451: 449: 445: 444: 439: 433: 432: 431: 421: 412: 377: 376: 353: 351: 350: 345: 343: 342: 341: 323:structure factor 320: 318: 317: 312: 309: 274: 273: 256: 254: 253: 248: 246: 206: 204: 203: 198: 193: 192: 183: 182: 89:reciprocal space 3909: 3908: 3904: 3903: 3902: 3900: 3899: 3898: 3894:Crystallography 3879: 3878: 3877: 3872: 3836: 3793: 3760: 3732: 3684: 3636: 3607:CrystalExplorer 3583: 3567:Phase retrieval 3530: 3461: 3460: 3451: 3408: 3387:Schottky defect 3286:Perfect crystal 3277: 3273:Abnormal growth 3235: 3221:Supersaturation 3184:Miscibility gap 3165: 3158: 3109: 3066: 3030:Bravais lattice 3011: 2978: 2976:Crystallography 2973: 2943: 2938: 2902: 2851: 2800: 2781:Ondrej Krivanek 2702: 2565: 2513: 2475: 2461:Liquid-Phase EM 2425: 2384:Instrumentation 2379: 2337: 2328: 2292: 2287: 2252: 2231: 2218: 2213: 2194:Ultramicroscopy 2191: 2190: 2186: 2149:Ultramicroscopy 2142: 2141: 2137: 2105: 2100: 2099: 2095: 2069: 2068: 2064: 2033: 2032: 2028: 2001:Ultramicroscopy 1998: 1997: 1993: 1966:Ultramicroscopy 1963: 1962: 1958: 1920: 1919: 1912: 1885:Ultramicroscopy 1881: 1880: 1876: 1849:Ultramicroscopy 1845: 1844: 1840: 1817: 1816: 1812: 1780: 1771: 1770: 1766: 1739:Ultramicroscopy 1736: 1735: 1731: 1726: 1722: 1715: 1708: 1670: 1669: 1665: 1646:Ultramicroscopy 1643: 1642: 1638: 1631: 1622: 1578: 1577: 1573: 1568: 1564: 1559: 1555: 1550: 1546: 1541: 1537: 1518:Ultramicroscopy 1515: 1514: 1510: 1500: 1499: 1495: 1465: 1464: 1460: 1453: 1432: 1431: 1422: 1403:Ultramicroscopy 1400: 1399: 1392: 1380: 1376: 1368: 1353: 1349: 1336: 1327: 1313: 1285: 1261: 1250: 1191: 1141:crystallography 1133: 1086: 1066:crystallography 1062: 1060:Crystallography 1057: 1025: 1021: 1017: 1008: 984:Bessel function 962: 957: 956: 937: 936: 917: 916: 887: 877: 860: 855: 854: 851: 812: 798: 770: 766: 642: 641: 632: 627: 602: 598: 474: 473: 468:Bragg condition 460: 447: 446: 434: 422: 358: 357: 332: 327: 326: 259: 258: 237: 236: 229: 217: 207: 184: 174: 160: 159: 155: 145: 101: 65: 60: 54:of the sample. 17: 12: 11: 5: 3907: 3905: 3897: 3896: 3891: 3881: 3880: 3874: 3873: 3871: 3870: 3858: 3845: 3842: 3841: 3838: 3837: 3835: 3834: 3829: 3824: 3823: 3822: 3817: 3812: 3801: 3799: 3792: 3791: 3786: 3781: 3776: 3770: 3768: 3762: 3761: 3759: 3758: 3753: 3748: 3742: 3740: 3734: 3733: 3731: 3730: 3725: 3720: 3715: 3710: 3705: 3700: 3694: 3692: 3686: 3685: 3683: 3682: 3677: 3672: 3667: 3662: 3657: 3652: 3646: 3644: 3638: 3637: 3635: 3634: 3629: 3624: 3619: 3614: 3609: 3604: 3599: 3593: 3591: 3585: 3584: 3582: 3581: 3576: 3575: 3574: 3564: 3559: 3554: 3549: 3544: 3542:Direct methods 3538: 3536: 3532: 3531: 3529: 3528: 3527: 3526: 3521: 3511: 3506: 3505: 3504: 3499: 3489: 3488: 3487: 3482: 3471: 3469: 3463: 3462: 3454: 3452: 3450: 3449: 3444: 3439: 3434: 3429: 3427:Ewald's sphere 3424: 3419: 3413: 3410: 3409: 3407: 3406: 3401: 3396: 3395: 3394: 3389: 3379: 3378: 3377: 3372: 3370:Frenkel defect 3367: 3365:Bjerrum defect 3357: 3356: 3355: 3345: 3344: 3343: 3338: 3333: 3331:Peierls stress 3328: 3323: 3318: 3313: 3308: 3303: 3301:Burgers vector 3293: 3291:Stacking fault 3288: 3282: 3279: 3278: 3276: 3275: 3270: 3265: 3260: 3254: 3252: 3250:Grain boundary 3243: 3237: 3236: 3234: 3233: 3228: 3223: 3218: 3213: 3208: 3203: 3198: 3197: 3196: 3194:Liquid crystal 3191: 3186: 3181: 3170: 3168: 3160: 3159: 3157: 3156: 3155: 3154: 3144: 3143: 3142: 3132: 3131: 3130: 3125: 3114: 3111: 3110: 3108: 3107: 3102: 3097: 3092: 3087: 3082: 3076: 3074: 3065: 3064: 3059: 3057:Periodic table 3054: 3053: 3052: 3047: 3042: 3037: 3032: 3021: 3019: 3010: 3009: 3004: 2999: 2998: 2997: 2986: 2984: 2980: 2979: 2974: 2972: 2971: 2964: 2957: 2949: 2940: 2939: 2937: 2936: 2924: 2911: 2908: 2907: 2904: 2903: 2901: 2900: 2895: 2890: 2888:Direct methods 2885: 2880: 2875: 2870: 2865: 2859: 2857: 2853: 2852: 2850: 2849: 2844: 2839: 2834: 2829: 2824: 2819: 2814: 2808: 2806: 2802: 2801: 2799: 2798: 2793: 2788: 2783: 2778: 2773: 2768: 2763: 2758: 2753: 2748: 2743: 2738: 2736:Ernst G. Bauer 2733: 2728: 2723: 2717: 2715: 2708: 2704: 2703: 2701: 2700: 2695: 2690: 2685: 2680: 2675: 2670: 2665: 2660: 2655: 2650: 2645: 2640: 2635: 2630: 2629: 2628: 2618: 2613: 2608: 2603: 2598: 2593: 2588: 2583: 2577: 2575: 2571: 2570: 2567: 2566: 2564: 2563: 2558: 2557: 2556: 2546: 2541: 2536: 2535: 2534: 2523: 2521: 2515: 2514: 2512: 2511: 2506: 2501: 2496: 2491: 2485: 2483: 2477: 2476: 2474: 2473: 2468: 2463: 2458: 2453: 2448: 2442: 2440: 2431: 2427: 2426: 2424: 2423: 2418: 2413: 2408: 2403: 2398: 2393: 2387: 2385: 2381: 2380: 2378: 2377: 2372: 2367: 2362: 2357: 2352: 2350:Bremsstrahlung 2347: 2341: 2339: 2330: 2329: 2327: 2326: 2321: 2316: 2311: 2306: 2300: 2298: 2294: 2293: 2288: 2286: 2285: 2278: 2271: 2263: 2257: 2256: 2250: 2229: 2224: 2217: 2216:External links 2214: 2212: 2211: 2184: 2135: 2116:(2): 171–181. 2093: 2062: 2026: 1991: 1956: 1929:(2): 284–294. 1910: 1874: 1855:(7): 881–890. 1838: 1827:(15): 3540–5. 1810: 1764: 1745:(2): 114–122. 1729: 1720: 1706: 1679:(2): 157–171. 1663: 1636: 1620: 1571: 1562: 1553: 1544: 1535: 1508: 1493: 1458: 1451: 1420: 1390: 1374: 1350: 1348: 1345: 1335: 1332: 1326: 1323: 1312: 1309: 1284: 1281: 1260: 1257: 1256: 1255: 1249: 1246: 1245: 1244: 1239: 1238: 1219: 1218: 1213: 1212: 1190: 1184: 1183: 1182: 1167:Sayre equation 1161: 1160: 1137:Direct methods 1132: 1131:Direct methods 1129: 1128: 1127: 1119: 1118: 1107:crystal system 1085: 1082: 1061: 1058: 1056: 1053: 1023: 1019: 1015: 1007: 1004: 969: 965: 944: 924: 902: 895: 890: 886: 883: 880: 874: 868: 863: 840: 837: 833: 830: 827: 824: 819: 815: 806: 801: 795: 791: 787: 777: 773: 769: 765: 760: 757: 752: 749: 744: 741: 738: 735: 732: 729: 726: 723: 720: 717: 714: 711: 705: 700: 696: 691: 688: 685: 682: 679: 676: 673: 670: 667: 664: 661: 655: 650: 640: 630: 609: 605: 601: 597: 592: 589: 584: 581: 576: 573: 570: 567: 564: 561: 558: 555: 552: 549: 546: 543: 537: 532: 528: 523: 520: 517: 514: 511: 508: 505: 502: 499: 496: 493: 487: 482: 472: 443: 438: 430: 425: 420: 416: 411: 408: 405: 402: 399: 396: 393: 390: 387: 384: 381: 375: 370: 366: 365: 356: 340: 335: 308: 305: 302: 299: 296: 293: 290: 287: 284: 281: 278: 272: 267: 245: 228: 225: 215: 196: 191: 187: 181: 177: 173: 170: 167: 158: 153: 144: 141: 140: 139: 132: 125: 115: 100: 97: 95:calculations. 93:direct methods 64: 61: 59: 56: 48:direct methods 38:patterns in a 15: 13: 10: 9: 6: 4: 3: 2: 3906: 3895: 3892: 3890: 3887: 3886: 3884: 3869: 3868: 3859: 3857: 3856: 3847: 3846: 3843: 3833: 3830: 3828: 3825: 3821: 3818: 3816: 3813: 3811: 3808: 3807: 3806: 3803: 3802: 3800: 3796: 3790: 3787: 3785: 3782: 3780: 3777: 3775: 3772: 3771: 3769: 3767: 3763: 3757: 3754: 3752: 3749: 3747: 3744: 3743: 3741: 3739: 3735: 3729: 3726: 3724: 3721: 3719: 3716: 3714: 3711: 3709: 3706: 3704: 3701: 3699: 3696: 3695: 3693: 3691: 3687: 3681: 3678: 3676: 3673: 3671: 3668: 3666: 3663: 3661: 3658: 3656: 3653: 3651: 3648: 3647: 3645: 3643: 3639: 3633: 3630: 3628: 3625: 3623: 3620: 3618: 3615: 3613: 3610: 3608: 3605: 3603: 3600: 3598: 3595: 3594: 3592: 3590: 3586: 3580: 3577: 3573: 3570: 3569: 3568: 3565: 3563: 3562:Patterson map 3560: 3558: 3555: 3553: 3550: 3548: 3545: 3543: 3540: 3539: 3537: 3533: 3525: 3522: 3520: 3517: 3516: 3515: 3512: 3510: 3507: 3503: 3500: 3498: 3495: 3494: 3493: 3490: 3486: 3483: 3481: 3478: 3477: 3476: 3473: 3472: 3470: 3468: 3464: 3458: 3448: 3445: 3443: 3440: 3438: 3435: 3433: 3432:Friedel's law 3430: 3428: 3425: 3423: 3420: 3418: 3415: 3414: 3405: 3402: 3400: 3397: 3393: 3390: 3388: 3385: 3384: 3383: 3380: 3376: 3375:Wigner effect 3373: 3371: 3368: 3366: 3363: 3362: 3361: 3360:Interstitials 3358: 3354: 3351: 3350: 3349: 3346: 3342: 3339: 3337: 3334: 3332: 3329: 3327: 3324: 3322: 3319: 3317: 3314: 3312: 3309: 3307: 3304: 3302: 3299: 3298: 3297: 3294: 3292: 3289: 3287: 3284: 3283: 3274: 3271: 3269: 3266: 3264: 3261: 3259: 3256: 3255: 3253: 3251: 3247: 3244: 3242: 3238: 3232: 3229: 3227: 3224: 3222: 3219: 3217: 3214: 3212: 3209: 3207: 3206:Precipitation 3204: 3202: 3199: 3195: 3192: 3190: 3187: 3185: 3182: 3180: 3177: 3176: 3175: 3174:Phase diagram 3172: 3171: 3169: 3167: 3161: 3153: 3150: 3149: 3148: 3145: 3141: 3138: 3137: 3136: 3133: 3129: 3126: 3124: 3121: 3120: 3119: 3116: 3115: 3106: 3103: 3101: 3098: 3096: 3093: 3091: 3088: 3086: 3083: 3081: 3078: 3077: 3075: 3073: 3069: 3063: 3060: 3058: 3055: 3051: 3048: 3046: 3043: 3041: 3038: 3036: 3033: 3031: 3028: 3027: 3026: 3023: 3022: 3020: 3018: 3014: 3008: 3005: 3003: 3000: 2996: 2993: 2992: 2991: 2988: 2987: 2985: 2981: 2977: 2970: 2965: 2963: 2958: 2956: 2951: 2950: 2947: 2935: 2934: 2925: 2923: 2922: 2913: 2912: 2909: 2899: 2896: 2894: 2891: 2889: 2886: 2884: 2881: 2879: 2876: 2874: 2871: 2869: 2866: 2864: 2861: 2860: 2858: 2854: 2848: 2845: 2843: 2840: 2838: 2835: 2833: 2830: 2828: 2825: 2823: 2820: 2818: 2815: 2813: 2812:Carl Zeiss AG 2810: 2809: 2807: 2805:Manufacturers 2803: 2797: 2794: 2792: 2789: 2787: 2784: 2782: 2779: 2777: 2774: 2772: 2769: 2767: 2764: 2762: 2759: 2757: 2756:James Hillier 2754: 2752: 2749: 2747: 2744: 2742: 2739: 2737: 2734: 2732: 2729: 2727: 2724: 2722: 2719: 2718: 2716: 2712: 2709: 2705: 2699: 2696: 2694: 2691: 2689: 2686: 2684: 2681: 2679: 2676: 2674: 2671: 2669: 2666: 2664: 2661: 2659: 2656: 2654: 2651: 2649: 2646: 2644: 2641: 2639: 2636: 2634: 2631: 2627: 2624: 2623: 2622: 2619: 2617: 2614: 2612: 2609: 2607: 2604: 2602: 2599: 2597: 2594: 2592: 2589: 2587: 2584: 2582: 2579: 2578: 2576: 2572: 2562: 2559: 2555: 2552: 2551: 2550: 2547: 2545: 2542: 2540: 2537: 2533: 2530: 2529: 2528: 2525: 2524: 2522: 2520: 2516: 2510: 2509:Ultrafast SEM 2507: 2505: 2502: 2500: 2497: 2495: 2492: 2490: 2487: 2486: 2484: 2482: 2478: 2472: 2469: 2467: 2466:Low-energy EM 2464: 2462: 2459: 2457: 2454: 2452: 2449: 2447: 2444: 2443: 2441: 2439: 2435: 2432: 2428: 2422: 2419: 2417: 2416:Magnetic lens 2414: 2412: 2409: 2407: 2404: 2402: 2399: 2397: 2394: 2392: 2389: 2388: 2386: 2382: 2376: 2373: 2371: 2368: 2366: 2365:Kikuchi lines 2363: 2361: 2358: 2356: 2353: 2351: 2348: 2346: 2343: 2342: 2340: 2335: 2331: 2325: 2322: 2320: 2317: 2315: 2312: 2310: 2307: 2305: 2302: 2301: 2299: 2295: 2291: 2284: 2279: 2277: 2272: 2270: 2265: 2264: 2261: 2253: 2251:9780123943965 2247: 2243: 2239: 2235: 2230: 2228: 2225: 2223: 2220: 2219: 2215: 2207: 2203: 2199: 2195: 2188: 2185: 2180: 2176: 2171: 2166: 2162: 2158: 2154: 2150: 2146: 2139: 2136: 2131: 2127: 2123: 2119: 2115: 2111: 2104: 2097: 2094: 2089: 2085: 2081: 2077: 2073: 2066: 2063: 2058: 2054: 2050: 2046: 2042: 2038: 2030: 2027: 2022: 2018: 2014: 2010: 2006: 2002: 1995: 1992: 1987: 1983: 1979: 1975: 1971: 1967: 1960: 1957: 1952: 1948: 1944: 1940: 1936: 1932: 1928: 1924: 1917: 1915: 1911: 1906: 1902: 1898: 1894: 1890: 1886: 1878: 1875: 1870: 1866: 1862: 1858: 1854: 1850: 1842: 1839: 1834: 1830: 1826: 1822: 1814: 1811: 1806: 1802: 1798: 1794: 1790: 1786: 1779: 1777: 1768: 1765: 1760: 1756: 1752: 1748: 1744: 1740: 1733: 1730: 1724: 1721: 1718: 1713: 1711: 1707: 1702: 1698: 1694: 1690: 1686: 1682: 1678: 1674: 1667: 1664: 1659: 1655: 1651: 1647: 1640: 1637: 1634: 1629: 1627: 1625: 1621: 1616: 1612: 1607: 1602: 1598: 1594: 1590: 1586: 1582: 1575: 1572: 1566: 1563: 1557: 1554: 1548: 1545: 1539: 1536: 1531: 1527: 1523: 1519: 1512: 1509: 1504: 1497: 1494: 1489: 1485: 1481: 1477: 1473: 1469: 1462: 1459: 1454: 1448: 1444: 1440: 1436: 1429: 1427: 1425: 1421: 1416: 1412: 1409:(3): 271–82. 1408: 1404: 1397: 1395: 1391: 1387: 1383: 1378: 1375: 1372: 1366: 1364: 1362: 1360: 1358: 1356: 1352: 1346: 1344: 1342: 1333: 1331: 1324: 1322: 1319: 1310: 1308: 1306: 1302: 1298: 1294: 1290: 1282: 1280: 1276: 1274: 1265: 1258: 1252: 1251: 1247: 1241: 1240: 1236: 1232: 1229: 1228: 1223: 1215: 1214: 1210: 1206: 1202: 1198: 1193: 1192: 1188: 1185: 1180: 1176: 1172: 1168: 1163: 1162: 1158: 1157:phase problem 1154: 1150: 1146: 1142: 1138: 1135: 1134: 1130: 1125: 1121: 1120: 1116: 1112: 1108: 1104: 1100: 1096: 1092: 1088: 1087: 1083: 1081: 1079: 1075: 1071: 1067: 1059: 1054: 1052: 1048: 1046: 1041: 1036: 1034: 1030: 1013: 1005: 1003: 1001: 996: 991: 987: 985: 967: 963: 942: 922: 900: 888: 884: 881: 878: 872: 861: 838: 835: 828: 825: 817: 813: 799: 793: 789: 785: 775: 771: 767: 763: 758: 755: 750: 747: 742: 739: 736: 733: 730: 727: 724: 721: 718: 715: 712: 709: 698: 694: 689: 686: 683: 680: 677: 674: 671: 668: 665: 662: 659: 648: 639: 637: 607: 603: 599: 595: 590: 587: 582: 579: 574: 571: 568: 565: 562: 559: 556: 553: 550: 547: 544: 541: 530: 526: 521: 518: 515: 512: 509: 506: 503: 500: 497: 494: 491: 480: 471: 469: 465: 441: 423: 414: 409: 406: 403: 400: 397: 394: 391: 388: 385: 382: 379: 368: 355: 333: 324: 306: 303: 300: 297: 294: 291: 288: 285: 282: 279: 276: 265: 257:reflections, 232: 226: 224: 220: 213: 210:(>30  194: 189: 185: 179: 175: 171: 168: 165: 157: 149: 142: 136: 133: 129: 126: 123: 119: 116: 113: 112:Kikuchi lines 109: 106: 105: 104: 98: 96: 94: 90: 86: 82: 78: 72: 70: 62: 57: 55: 53: 49: 45: 41: 37: 33: 29: 21: 3865: 3853: 3798:Associations 3766:Organisation 3258:Disclination 3189:Polymorphism 3152:Quasicrystal 3095:Orthorhombic 3035:Miller index 2983:Key concepts 2931: 2919: 2873:EM Data Bank 2837:Nion Company 2731:Dennis Gabor 2721:Albert Crewe 2682: 2499:Confocal SEM 2396:Electron gun 2345:Auger effect 2233: 2197: 2193: 2187: 2152: 2148: 2138: 2113: 2109: 2096: 2079: 2075: 2065: 2040: 2036: 2029: 2004: 2000: 1994: 1969: 1965: 1959: 1926: 1922: 1888: 1884: 1877: 1852: 1848: 1841: 1824: 1820: 1813: 1788: 1784: 1775: 1767: 1742: 1738: 1732: 1723: 1676: 1672: 1666: 1649: 1645: 1639: 1588: 1584: 1574: 1565: 1556: 1547: 1538: 1521: 1517: 1511: 1502: 1496: 1471: 1467: 1461: 1434: 1406: 1402: 1386:Laurie Marks 1377: 1337: 1328: 1314: 1286: 1277: 1270: 1208: 1186: 1178: 1144: 1073: 1063: 1055:Applications 1049: 1037: 1009: 999: 992: 988: 852: 628: 461: 233: 230: 221: 208: 150: 146: 134: 127: 122:Ewald sphere 117: 107: 102: 73: 66: 31: 27: 26: 3889:Diffraction 3751:Ewald Prize 3519:Diffraction 3497:Diffraction 3480:Diffraction 3422:Bragg plane 3417:Bragg's law 3296:Dislocation 3211:Segregation 3123:Crystallite 3040:Point group 2817:FEI Company 2751:Harald Rose 2741:Ernst Ruska 2430:Microscopes 2338:with matter 2336:interaction 2200:: 135–137. 2082:(4): 1017. 1591:(2–3): 94. 1524:(1): 1–11. 1341:channelling 1115:space group 1045:QED plug-in 81:Laue circle 77:kinematical 3883:Categories 3535:Algorithms 3524:Scattering 3502:Scattering 3485:Scattering 3353:Slip bands 3316:Cross slip 3166:transition 3100:Tetragonal 3090:Monoclinic 3002:Metallurgy 2898:Multislice 2714:Developers 2574:Techniques 2319:Microscope 2314:Micrograph 1791:(3): 306. 1652:(2): 219. 1347:References 1325:Tomography 1303:(EDS) and 1235:unit cells 1205:multislice 995:multislice 99:Advantages 3642:Databases 3105:Triclinic 3085:Hexagonal 3025:Unit cell 3017:Structure 2766:Max Knoll 2421:Stigmator 2222:NanoMEGAS 2155:: 19–22. 1209:ab initio 1201:zone axes 1187:Ab Initio 1074:ab initio 1040:NanoMEGAS 1038:In 2004, 882:π 790:∫ 786:⋅ 759:− 748:⋅ 695:∝ 591:− 580:⋅ 527:∝ 195:α 186:ϕ 169:∝ 85:zone axis 3855:Category 3690:Journals 3622:OctaDist 3617:JANA2020 3589:Software 3475:Electron 3392:F-center 3179:Eutectic 3140:Fiveling 3135:Twinning 3128:Equiaxed 2921:Category 2868:CrysTBox 2856:Software 2527:Cryo-TEM 2334:Electron 2179:23376402 2130:22436916 2057:22976879 2021:17234347 1986:17240069 1951:18285623 1905:17254714 1869:20409638 1759:16125847 1701:23575344 1693:17845710 1615:55751260 1488:27057286 1307:(EELS). 1231:Zeolites 1179:a priori 1145:a priori 1000:a priori 63:Geometry 58:Overview 3867:Commons 3815:Germany 3492:Neutron 3382:Vacancy 3241:Defects 3226:GP-zone 3072:Systems 2933:Commons 2581:4D STEM 2554:4D STEM 2532:Cryo-ET 2504:SEM-XRF 2494:CryoSEM 2451:Cryo-EM 2309:History 2170:3608828 1931:Bibcode 1793:Bibcode 1593:Bibcode 1474:(S02). 1311:Imaging 1293:imaging 1111:lattice 1029:Gjønnes 1012:Midgley 982:is the 75:of the 3810:France 3805:Europe 3738:Awards 3268:Growth 3118:Growth 2878:EMsoft 2863:CASINO 2842:TESCAN 2707:Others 2606:cryoEM 2297:Basics 2248:  2177:  2167:  2128:  2055:  2019:  1984:  1949:  1903:  1867:  1757:  1699:  1691:  1613:  1486:  1449:  1318:images 1113:, and 1097:, and 853:where 3832:Japan 3779:IOBCr 3632:SHELX 3627:Olex2 3514:X-ray 3164:Phase 3080:Cubic 2832:Leica 2678:PINEM 2544:HRTEM 2539:EFTEM 2106:(PDF) 1781:(PDF) 1697:S2CID 1611:S2CID 1484:S2CID 1382:Notes 1153:phase 1033:Marks 3774:IUCr 3675:ICDD 3670:ICSD 3655:CCDC 3602:Coot 3597:CCP4 3348:Slip 3311:Kink 2893:IUCr 2827:JEOL 2698:WBDF 2693:WDXS 2643:EBIC 2638:EELS 2633:ECCI 2621:EBSD 2601:CBED 2549:STEM 2246:ISBN 2175:PMID 2126:PMID 2053:PMID 2017:PMID 1982:PMID 1947:PMID 1901:PMID 1865:PMID 1755:PMID 1689:PMID 1447:ISBN 212:mrad 3789:DMG 3784:RAS 3680:PDB 3665:COD 3660:CIF 3612:DSR 3336:GND 3263:CSL 2663:FEM 2658:FIB 2626:TKD 2616:EDS 2519:TEM 2481:SEM 2456:EMP 2238:doi 2202:doi 2198:116 2165:PMC 2157:doi 2153:126 2118:doi 2084:doi 2045:doi 2009:doi 2005:107 1974:doi 1970:107 1939:doi 1893:doi 1889:107 1857:doi 1853:110 1829:doi 1801:doi 1747:doi 1743:106 1681:doi 1677:227 1654:doi 1601:doi 1589:225 1526:doi 1476:doi 1439:doi 1411:doi 1139:in 69:TEM 32:PED 3885:: 3827:US 3820:UK 2438:EM 2244:. 2196:. 2173:. 2163:. 2151:. 2147:. 2124:. 2114:68 2112:. 2108:. 2080:46 2078:. 2074:. 2051:. 2041:51 2039:. 2015:. 2003:. 1980:. 1968:. 1945:. 1937:. 1927:64 1925:. 1913:^ 1899:. 1887:. 1863:. 1851:. 1825:23 1823:. 1799:. 1789:54 1787:. 1783:. 1776:Fe 1753:. 1741:. 1709:^ 1695:. 1687:. 1675:. 1650:45 1648:. 1623:^ 1609:. 1599:. 1587:. 1583:. 1522:69 1520:. 1482:. 1472:13 1470:. 1445:. 1423:^ 1407:53 1405:. 1393:^ 1354:^ 1295:, 1109:, 1101:. 1093:, 1080:. 1018:Ge 915:, 325:, 2968:e 2961:t 2954:v 2282:e 2275:t 2268:v 2254:. 2240:: 2208:. 2204:: 2181:. 2159:: 2132:. 2120:: 2090:. 2086:: 2059:. 2047:: 2023:. 2011:: 1988:. 1976:: 1953:. 1941:: 1933:: 1907:. 1895:: 1871:. 1859:: 1835:. 1831:: 1807:. 1803:: 1795:: 1761:. 1749:: 1703:. 1683:: 1660:. 1656:: 1617:. 1603:: 1595:: 1532:. 1528:: 1490:. 1478:: 1455:. 1441:: 1417:. 1413:: 1388:. 1024:7 1022:O 1020:2 1016:2 968:0 964:J 943:k 923:t 901:k 894:g 889:F 885:t 879:2 873:= 867:g 862:A 839:x 836:d 832:) 829:x 826:2 823:( 818:0 814:J 805:g 800:A 794:0 776:o 772:R 768:2 764:g 756:1 751:g 743:l 740:a 737:t 734:n 731:e 728:m 725:i 722:r 719:e 716:p 713:x 710:e 704:g 699:I 690:l 687:a 684:c 681:i 678:t 675:a 672:m 669:e 666:n 663:i 660:k 654:g 649:I 631:o 608:o 604:R 600:2 596:g 588:1 583:g 575:l 572:a 569:t 566:n 563:e 560:m 557:i 554:r 551:e 548:p 545:x 542:e 536:g 531:I 522:l 519:a 516:c 513:i 510:t 507:a 504:m 501:e 498:n 495:i 492:k 486:g 481:I 442:2 437:| 429:g 424:F 419:| 415:= 410:l 407:a 404:c 401:i 398:t 395:a 392:m 389:e 386:n 383:i 380:k 374:g 369:I 339:g 334:F 307:l 304:a 301:c 298:i 295:t 292:a 289:m 286:e 283:n 280:i 277:k 271:g 266:I 244:g 216:s 190:2 180:s 176:C 172:4 166:d 154:s 30:(

Index


electron diffraction
transmission electron microscope
diffraction pattern
direct methods
crystal structure
TEM
kinematical
Laue circle
zone axis
reciprocal space
direct methods
Kikuchi lines
Ewald sphere
mrad
structure factor
excitation error
Bragg condition
powder x-ray diffraction
Bessel function
multislice
Midgley
Gjønnes
Marks
NanoMEGAS
QED plug-in
crystallography
x-ray crystallography
electron crystallography
electronic band structure

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑