Knowledge (XXG)

Primitive part and content

Source 📝

33: 157:
states that the product of primitive polynomials (with coefficients in the same unique factorization domain) also is primitive. This implies that the content and the primitive part of the product of two polynomials are, respectively, the product of the contents and the product of the primitive parts.
1899:
For factoring a multivariate polynomial over a field or over the integers, one may consider it as a univariate polynomial with coefficients in a polynomial ring with one less indeterminate. Then the factorization is reduced to factorizing separately the primitive part and the content. As the content
1542:
A consequence is that factoring polynomials over the rationals is equivalent to factoring primitive polynomials over the integers. As polynomials with coefficients in a field are more common than polynomials with integer coefficients, it may seem that this equivalence may be used for factoring
1228:
The last property implies that the computation of the primitive-part-content factorization of a polynomial reduces the computation of its complete factorization to the separate factorization of the content and the primitive part. This is generally interesting, because the computation of the
1204: 939: 1067: 1080: 1543:
polynomials with integer coefficients. In fact, the truth is exactly the opposite: every known efficient algorithm for factoring polynomials with rational coefficients uses this equivalence for reducing the problem
1467: 350: 550: 450: 1838: 838: 1526: 731: 845: 1392: 952: 746:, which asserts that the product of two primitive polynomials is primitive, where a polynomial is primitive if 1 is the greatest common divisor of its coefficients. This implies: 1304: 128:
of such a polynomial is the quotient of the polynomial by its content. Thus a polynomial is the product of its primitive part and its content, and this factorization is unique
253: 1748: 1904:. For factorizing the primitive part, the standard method consists of substituting integers to the indeterminates of the coefficients in a way that does not change the 62: 1472:
It is easy to show that this definition does not depend on the choice of the common denominator, and that the primitive-part-content factorization remains valid:
255:
may be either 2 or −2, since 2 is the greatest common divisor of −12, 30, and −20. If one chooses 2 as the content, the primitive part of this polynomial is
1632:
is a unique factorization domain. The same is true for a polynomial ring over a unique factorization domain. To prove this, it suffices to consider the
1199:{\displaystyle \operatorname {pp} (\operatorname {gcd} (P_{1},P_{2}))=\operatorname {gcd} (\operatorname {pp} (P_{1}),\operatorname {pp} (P_{2})).} 1571:
of many fractions, and this makes the Euclidean algorithm less efficient than algorithms which work only with polynomials over the integers (see
1965: 1908:
in the remaining variable, factorizing the resulting univariate polynomial, and lifting the result to a factorization of the primitive part.
165:, the first step of a polynomial factorization algorithm is generally the computation of its primitive part–content factorization (see 1572: 181: 753: 2003: 1942: 1419: 84: 683: 1567:
is defined for polynomials with rational coefficients. In fact, in this case, the Euclidean algorithm requires one to compute the
261: 455:
For aesthetic reasons, one often prefers choosing a negative content, here −2, giving the primitive-part-content factorization
154: 743: 1901: 1894: 1557: 1209: 461: 361: 166: 45: 1588: 561: 117: 1753: 55: 49: 41: 1991: 1651:
divides a product, then it divides one of the factors. For univariate polynomials over a field, this results from
1478: 630:
is the greatest common divisor of its coefficients, and, as such, is defined up to multiplication by a unit. The
66: 1243:
The primitive-part-content factorization may be extended to polynomials with rational coefficients as follows.
162: 1341: 1652: 1609: 588: 193: 121: 1905: 1637: 141: 680:, then the primitive part must be changed by dividing it by the same unit, in order to keep the equality 169:). Then the factorization problem is reduced to factorize separately the content and the primitive part. 1917: 674:, which is unique up to multiplication by a unit. If the content is changed by multiplication by a unit 1273: 2027: 1568: 934:{\displaystyle \operatorname {pp} (P_{1}P_{2})=\operatorname {pp} (P_{1})\operatorname {pp} (P_{2}).} 210: 1656: 1648: 1629: 1564: 1536: 578: 201: 1563:
This equivalence is also used for computing greatest common divisors of polynomials, although the
1071:
The primitive part of a greatest common divisor of polynomials is the greatest common divisor (in
17: 1616:
that a polynomial ring over a unique factorization domain is also a unique factorization domain.
1613: 1597: 1544: 1532: 1253: 592: 184:
and factorization of polynomials over the integers and of polynomials over the rational numbers.
177: 137: 133: 1716: 1995: 1999: 1961: 1938: 1644: 200:. The choice is arbitrary, and may depend on a further convention, which is commonly that the 180:
of a unique factorization domain. This makes essentially equivalent the problems of computing
1062:{\displaystyle c(\operatorname {gcd} (P_{1},P_{2}))=\operatorname {gcd} (c(P_{1}),c(P_{2})).} 2022: 1971: 197: 151:
if its content equals 1. Thus the primitive part of a polynomial is a primitive polynomial.
943:
The content of a greatest common divisor of polynomials is the greatest common divisor (in
1975: 1625: 574: 173: 1224:) of the content and of the factorization (in the polynomial ring) of the primitive part. 842:
The primitive part of a product of polynomials is the product of their primitive parts:
1984: 1229:
prime-part-content factorization involves only greatest common divisor computation in
2016: 1930: 1861:, it is a primitive polynomial (because it is irreducible). Then Euclid's lemma in 1548: 113: 1953: 1633: 106: 161:
As the computation of greatest common divisors is generally much easier than
750:
The content of a product of polynomials is the product of their contents:
192:
For a polynomial with integer coefficients, the content may be either the
742:
The main properties of the content and the primitive part are results of
140:
of the coefficients (and the multiplication of the primitive part by the
1900:
has one less indeterminate, it may be factorized by applying the method
1846:, it divides one of the contents, and therefore one of the polynomials. 1252:
with rational coefficients, by rewriting its coefficients with the same
167:
Factorization of polynomials § Primitive part–content factorization
1584: 570: 110: 98: 172:
Content and primitive part may be generalized to polynomials over the
1535:
with a unique primitive polynomial over the integers, and that the
129: 1583:
The results of the preceding section remain valid if the ring of
560:
In the remainder of this article, we consider polynomials over a
1462:{\displaystyle \operatorname {pp} (P)=\operatorname {pp} (Q).} 26: 1643:
The unique factorization property is a direct consequence of
1668:
be a unique factorization domain, which is not a field, and
1587:
and the field of rationals are respectively replaced by any
733:
which is called the primitive-part-content factorization of
345:{\displaystyle -6x^{3}+15x-10={\frac {-12x^{3}+30x-20}{2}},} 591:
are well defined, and are unique up to multiplication by a
668:
by its content; it is a polynomial with coefficients in
1531:
This shows that every polynomial over the rationals is
1756: 1719: 1539:
allows the computation of this primitive polynomial.
1481: 1422: 1344: 1276: 1083: 955: 848: 756: 686: 464: 364: 355:
and thus the primitive-part-content factorization is
264: 213: 1235:, which is usually much easier than factorization. 1983: 1960:(Third ed.), Reading, Mass.: Addison-Wesley, 1832: 1742: 1520: 1461: 1386: 1298: 1198: 1061: 933: 832: 725: 545:{\displaystyle -12x^{3}+30x-20=-2(6x^{3}-15x+10).} 544: 445:{\displaystyle -12x^{3}+30x-20=2(-6x^{3}+15x-10).} 444: 344: 247: 1620:Unique factorization property of polynomial rings 1750:of two polynomials, then it divides the content 54:but its sources remain unclear because it lacks 1833:{\displaystyle c(P_{1}P_{2})=c(P_{1})c(P_{2}).} 1313:is a polynomial with integer coefficients. The 833:{\displaystyle c(P_{1}P_{2})=c(P_{1})c(P_{2}).} 176:, and, more generally, to polynomials over the 1521:{\displaystyle P=c(P)\operatorname {pp} (P).} 726:{\displaystyle P=c(P)\operatorname {pp} (P),} 116:(or, more generally, with coefficients in a 8: 1636:case, as the general case may be deduced by 1867:results immediately from Euclid's lemma in 1889:Factorization of multivariate polynomials 1818: 1799: 1777: 1767: 1755: 1734: 1724: 1718: 1480: 1421: 1360: 1343: 1283: 1275: 1181: 1156: 1119: 1106: 1082: 1044: 1022: 988: 975: 954: 919: 897: 872: 862: 847: 818: 799: 777: 767: 755: 685: 515: 475: 463: 415: 375: 363: 312: 299: 275: 263: 224: 212: 85:Learn how and when to remove this message 1698:or an irreducible primitive polynomial. 1218:is the product of the factorization (in 1387:{\displaystyle c(P)={\frac {c(Q)}{d}},} 132:the multiplication of the content by a 1608:This is typically used for factoring 569:, which can typically be the ring of 7: 1692:is either an irreducible element in 1674:the univariate polynomial ring over 204:of the primitive part be positive. 1573:Polynomial greatest common divisor 25: 18:Primitive polynomial (ring theory) 1935:Rings, modules and linear algebra 1640:on the number of indeterminates. 1299:{\displaystyle P={\frac {Q}{d}},} 1655:, which itself results from the 31: 248:{\displaystyle -12x^{3}+30x-20} 1824: 1811: 1805: 1792: 1783: 1760: 1512: 1506: 1497: 1491: 1453: 1447: 1435: 1429: 1372: 1366: 1354: 1348: 1190: 1187: 1174: 1162: 1149: 1140: 1128: 1125: 1099: 1090: 1053: 1050: 1037: 1028: 1015: 1009: 997: 994: 968: 959: 925: 912: 903: 890: 878: 855: 824: 811: 805: 792: 783: 760: 717: 711: 702: 696: 536: 505: 436: 402: 1: 1879:is the field of fractions of 155:Gauss's lemma for polynomials 1895:Factorization of polynomials 1558:Factorization of polynomials 1077:) of their primitive parts: 207:For example, the content of 1840:Thus, by Euclid's lemma in 1589:unique factorization domain 562:unique factorization domain 196:of the coefficients or its 118:unique factorization domain 2044: 1992:Cambridge University Press 1892: 1743:{\displaystyle P_{1}P_{2}} 1680:. An irreducible element 1579:Over a field of fractions 1407:is the primitive part of 124:of its coefficients. The 1610:multivariate polynomials 589:greatest common divisors 182:greatest common divisors 163:polynomial factorization 40:This article includes a 1986:Rings and factorization 194:greatest common divisor 122:greatest common divisor 69:more precise citations. 1933:; T.O. Hawkes (1970). 1834: 1744: 1713:and divides a product 1522: 1463: 1388: 1300: 1200: 1063: 935: 834: 727: 546: 446: 346: 249: 1982:David Sharpe (1987). 1918:Rational root theorem 1835: 1745: 1523: 1464: 1389: 1301: 1212:of a polynomial over 1201: 1064: 949:) of their contents: 936: 835: 728: 624:with coefficients in 547: 447: 347: 250: 1937:. Chapman and Hall. 1754: 1717: 1479: 1420: 1342: 1274: 1081: 953: 846: 754: 684: 462: 362: 262: 211: 1657:Euclidean algorithm 1649:irreducible element 1565:Euclidean algorithm 1537:Euclidean algorithm 1323:is the quotient by 1246:Given a polynomial 202:leading coefficient 1830: 1740: 1598:field of fractions 1518: 1459: 1384: 1329:of the content of 1296: 1261:, one may rewrite 1254:common denominator 1239:Over the rationals 1196: 1059: 931: 830: 723: 542: 442: 342: 245: 178:field of fractions 42:list of references 1967:978-0-201-55540-0 1653:Bézout's identity 1379: 1291: 337: 188:Over the integers 95: 94: 87: 16:(Redirected from 2035: 2009: 1989: 1978: 1948: 1884: 1878: 1872: 1866: 1860: 1854: 1845: 1839: 1837: 1836: 1831: 1823: 1822: 1804: 1803: 1782: 1781: 1772: 1771: 1749: 1747: 1746: 1741: 1739: 1738: 1729: 1728: 1712: 1706: 1697: 1691: 1685: 1679: 1673: 1667: 1604: 1595: 1555: 1527: 1525: 1524: 1519: 1468: 1466: 1465: 1460: 1412: 1406: 1393: 1391: 1390: 1385: 1380: 1375: 1361: 1334: 1328: 1322: 1312: 1305: 1303: 1302: 1297: 1292: 1284: 1266: 1260: 1251: 1234: 1223: 1217: 1205: 1203: 1202: 1197: 1186: 1185: 1161: 1160: 1124: 1123: 1111: 1110: 1076: 1068: 1066: 1065: 1060: 1049: 1048: 1027: 1026: 993: 992: 980: 979: 948: 940: 938: 937: 932: 924: 923: 902: 901: 877: 876: 867: 866: 839: 837: 836: 831: 823: 822: 804: 803: 782: 781: 772: 771: 738: 732: 730: 729: 724: 679: 673: 667: 661: 647:is the quotient 646: 640: 629: 623: 618:of a polynomial 617: 600: 586: 568: 551: 549: 548: 543: 520: 519: 480: 479: 451: 449: 448: 443: 420: 419: 380: 379: 351: 349: 348: 343: 338: 333: 317: 316: 300: 280: 279: 254: 252: 251: 246: 229: 228: 198:additive inverse 174:rational numbers 147:A polynomial is 90: 83: 79: 76: 70: 65:this article by 56:inline citations 35: 34: 27: 21: 2043: 2042: 2038: 2037: 2036: 2034: 2033: 2032: 2013: 2012: 2006: 1981: 1968: 1952: 1945: 1929: 1926: 1914: 1897: 1891: 1880: 1874: 1868: 1862: 1856: 1850: 1841: 1814: 1795: 1773: 1763: 1752: 1751: 1730: 1720: 1715: 1714: 1708: 1702: 1693: 1687: 1681: 1675: 1669: 1663: 1626:polynomial ring 1622: 1600: 1591: 1581: 1551: 1477: 1476: 1418: 1417: 1408: 1402: 1362: 1340: 1339: 1330: 1324: 1318: 1310: 1272: 1271: 1262: 1256: 1247: 1241: 1230: 1219: 1213: 1177: 1152: 1115: 1102: 1079: 1078: 1072: 1040: 1018: 984: 971: 951: 950: 944: 915: 893: 868: 858: 844: 843: 814: 795: 773: 763: 752: 751: 734: 682: 681: 675: 669: 663: 648: 642: 634: 625: 619: 608: 596: 582: 575:polynomial ring 564: 558: 511: 471: 460: 459: 411: 371: 360: 359: 308: 301: 271: 260: 259: 220: 209: 208: 190: 91: 80: 74: 71: 60: 46:related reading 36: 32: 23: 22: 15: 12: 11: 5: 2041: 2039: 2031: 2030: 2025: 2015: 2014: 2011: 2010: 2004: 1979: 1966: 1949: 1943: 1925: 1922: 1921: 1920: 1913: 1910: 1890: 1887: 1829: 1826: 1821: 1817: 1813: 1810: 1807: 1802: 1798: 1794: 1791: 1788: 1785: 1780: 1776: 1770: 1766: 1762: 1759: 1737: 1733: 1727: 1723: 1645:Euclid's lemma 1621: 1618: 1580: 1577: 1529: 1528: 1517: 1514: 1511: 1508: 1505: 1502: 1499: 1496: 1493: 1490: 1487: 1484: 1470: 1469: 1458: 1455: 1452: 1449: 1446: 1443: 1440: 1437: 1434: 1431: 1428: 1425: 1399:primitive part 1395: 1394: 1383: 1378: 1374: 1371: 1368: 1365: 1359: 1356: 1353: 1350: 1347: 1307: 1306: 1295: 1290: 1287: 1282: 1279: 1240: 1237: 1226: 1225: 1206: 1195: 1192: 1189: 1184: 1180: 1176: 1173: 1170: 1167: 1164: 1159: 1155: 1151: 1148: 1145: 1142: 1139: 1136: 1133: 1130: 1127: 1122: 1118: 1114: 1109: 1105: 1101: 1098: 1095: 1092: 1089: 1086: 1069: 1058: 1055: 1052: 1047: 1043: 1039: 1036: 1033: 1030: 1025: 1021: 1017: 1014: 1011: 1008: 1005: 1002: 999: 996: 991: 987: 983: 978: 974: 970: 967: 964: 961: 958: 941: 930: 927: 922: 918: 914: 911: 908: 905: 900: 896: 892: 889: 886: 883: 880: 875: 871: 865: 861: 857: 854: 851: 840: 829: 826: 821: 817: 813: 810: 807: 802: 798: 794: 791: 788: 785: 780: 776: 770: 766: 762: 759: 722: 719: 716: 713: 710: 707: 704: 701: 698: 695: 692: 689: 632:primitive part 557: 554: 553: 552: 541: 538: 535: 532: 529: 526: 523: 518: 514: 510: 507: 504: 501: 498: 495: 492: 489: 486: 483: 478: 474: 470: 467: 453: 452: 441: 438: 435: 432: 429: 426: 423: 418: 414: 410: 407: 404: 401: 398: 395: 392: 389: 386: 383: 378: 374: 370: 367: 353: 352: 341: 336: 332: 329: 326: 323: 320: 315: 311: 307: 304: 298: 295: 292: 289: 286: 283: 278: 274: 270: 267: 244: 241: 238: 235: 232: 227: 223: 219: 216: 189: 186: 144:of the unit). 126:primitive part 93: 92: 50:external links 39: 37: 30: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2040: 2029: 2026: 2024: 2021: 2020: 2018: 2007: 2005:0-521-33718-6 2001: 1997: 1993: 1988: 1987: 1980: 1977: 1973: 1969: 1963: 1959: 1955: 1950: 1946: 1944:0-412-09810-5 1940: 1936: 1932: 1928: 1927: 1923: 1919: 1916: 1915: 1911: 1909: 1907: 1903: 1896: 1888: 1886: 1883: 1877: 1871: 1865: 1859: 1853: 1847: 1844: 1827: 1819: 1815: 1808: 1800: 1796: 1789: 1786: 1778: 1774: 1768: 1764: 1757: 1735: 1731: 1725: 1721: 1711: 1705: 1699: 1696: 1690: 1684: 1678: 1672: 1666: 1660: 1658: 1654: 1650: 1646: 1641: 1639: 1635: 1631: 1627: 1619: 1617: 1615: 1611: 1606: 1603: 1599: 1594: 1590: 1586: 1578: 1576: 1574: 1570: 1566: 1561: 1559: 1554: 1550: 1546: 1540: 1538: 1534: 1515: 1509: 1503: 1500: 1494: 1488: 1485: 1482: 1475: 1474: 1473: 1456: 1450: 1444: 1441: 1438: 1432: 1426: 1423: 1416: 1415: 1414: 1411: 1405: 1400: 1381: 1376: 1369: 1363: 1357: 1351: 1345: 1338: 1337: 1336: 1333: 1327: 1321: 1316: 1293: 1288: 1285: 1280: 1277: 1270: 1269: 1268: 1265: 1259: 1255: 1250: 1244: 1238: 1236: 1233: 1222: 1216: 1211: 1210:factorization 1208:The complete 1207: 1193: 1182: 1178: 1171: 1168: 1165: 1157: 1153: 1146: 1143: 1137: 1134: 1131: 1120: 1116: 1112: 1107: 1103: 1096: 1093: 1087: 1084: 1075: 1070: 1056: 1045: 1041: 1034: 1031: 1023: 1019: 1012: 1006: 1003: 1000: 989: 985: 981: 976: 972: 965: 962: 956: 947: 942: 928: 920: 916: 909: 906: 898: 894: 887: 884: 881: 873: 869: 863: 859: 852: 849: 841: 827: 819: 815: 808: 800: 796: 789: 786: 778: 774: 768: 764: 757: 749: 748: 747: 745: 744:Gauss's lemma 740: 737: 720: 714: 708: 705: 699: 693: 690: 687: 678: 672: 666: 659: 655: 651: 645: 638: 633: 628: 622: 615: 611: 607: 602: 599: 594: 590: 585: 580: 576: 572: 567: 563: 555: 539: 533: 530: 527: 524: 521: 516: 512: 508: 502: 499: 496: 493: 490: 487: 484: 481: 476: 472: 468: 465: 458: 457: 456: 439: 433: 430: 427: 424: 421: 416: 412: 408: 405: 399: 396: 393: 390: 387: 384: 381: 376: 372: 368: 365: 358: 357: 356: 339: 334: 330: 327: 324: 321: 318: 313: 309: 305: 302: 296: 293: 290: 287: 284: 281: 276: 272: 268: 265: 258: 257: 256: 242: 239: 236: 233: 230: 225: 221: 217: 214: 205: 203: 199: 195: 187: 185: 183: 179: 175: 170: 168: 164: 159: 156: 152: 150: 145: 143: 139: 135: 131: 127: 123: 119: 115: 112: 108: 105:of a nonzero 104: 100: 89: 86: 78: 75:December 2018 68: 64: 58: 57: 51: 47: 43: 38: 29: 28: 19: 1985: 1957: 1951:Page 181 of 1934: 1898: 1881: 1875: 1869: 1863: 1857: 1851: 1848: 1842: 1709: 1703: 1700: 1694: 1688: 1682: 1676: 1670: 1664: 1661: 1642: 1623: 1607: 1601: 1592: 1582: 1569:reduced form 1562: 1552: 1549:prime number 1541: 1530: 1471: 1409: 1403: 1398: 1396: 1331: 1325: 1319: 1314: 1308: 1263: 1257: 1248: 1245: 1242: 1231: 1227: 1220: 1214: 1073: 945: 741: 735: 676: 670: 664: 657: 653: 649: 643: 636: 631: 626: 620: 613: 609: 605: 603: 597: 583: 565: 559: 454: 354: 206: 191: 171: 160: 153: 148: 146: 125: 114:coefficients 102: 96: 81: 72: 61:Please help 53: 2028:Polynomials 1994:. pp.  1954:Lang, Serge 1902:recursively 1335:, that is 67:introducing 2017:Categories 1976:0848.13001 1931:B. Hartley 1924:References 1893:See also: 1634:univariate 1612:, and for 1533:associated 556:Properties 107:polynomial 1638:induction 1504:⁡ 1445:⁡ 1427:⁡ 1172:⁡ 1147:⁡ 1138:⁡ 1097:⁡ 1088:⁡ 1007:⁡ 966:⁡ 910:⁡ 888:⁡ 853:⁡ 709:⁡ 522:− 500:− 491:− 466:− 431:− 406:− 391:− 366:− 328:− 303:− 291:− 266:− 240:− 215:− 149:primitive 120:) is the 1956:(1993), 1912:See also 1873:, where 1662:So, let 1647:: If an 1596:and its 1585:integers 1397:and the 571:integers 2023:Algebra 1958:Algebra 1855:is not 1628:over a 1614:proving 1315:content 606:content 577:over a 573:, or a 142:inverse 136:of the 111:integer 103:content 99:algebra 63:improve 2002:  1974:  1964:  1941:  1906:degree 1707:is in 1545:modulo 1309:where 101:, the 1996:68–69 1630:field 1556:(see 1547:some 581:. In 579:field 130:up to 109:with 48:, or 2000:ISBN 1962:ISBN 1939:ISBN 604:The 593:unit 138:ring 134:unit 1972:Zbl 1849:If 1701:If 1686:in 1575:). 1560:). 1401:of 1317:of 1267:as 1135:gcd 1094:gcd 1004:gcd 963:gcd 662:of 641:of 635:pp( 595:of 97:In 2019:: 1998:. 1990:. 1970:, 1885:. 1659:. 1624:A 1605:. 1501:pp 1442:pp 1424:pp 1413:: 1169:pp 1144:pp 1085:pp 907:pp 885:pp 850:pp 739:. 706:pp 601:. 587:, 534:10 525:15 494:20 485:30 469:12 434:10 425:15 394:20 385:30 369:12 331:20 322:30 306:12 294:10 285:15 243:20 234:30 218:12 52:, 44:, 2008:. 1947:. 1882:R 1876:K 1870:K 1864:R 1858:R 1852:r 1843:R 1828:. 1825:) 1820:2 1816:P 1812:( 1809:c 1806:) 1801:1 1797:P 1793:( 1790:c 1787:= 1784:) 1779:2 1775:P 1769:1 1765:P 1761:( 1758:c 1736:2 1732:P 1726:1 1722:P 1710:R 1704:r 1695:R 1689:R 1683:r 1677:R 1671:R 1665:R 1602:K 1593:R 1553:p 1516:. 1513:) 1510:P 1507:( 1498:) 1495:P 1492:( 1489:c 1486:= 1483:P 1457:. 1454:) 1451:Q 1448:( 1439:= 1436:) 1433:P 1430:( 1410:Q 1404:P 1382:, 1377:d 1373:) 1370:Q 1367:( 1364:c 1358:= 1355:) 1352:P 1349:( 1346:c 1332:Q 1326:d 1320:P 1311:Q 1294:, 1289:d 1286:Q 1281:= 1278:P 1264:P 1258:d 1249:P 1232:R 1221:R 1215:R 1194:. 1191:) 1188:) 1183:2 1179:P 1175:( 1166:, 1163:) 1158:1 1154:P 1150:( 1141:( 1132:= 1129:) 1126:) 1121:2 1117:P 1113:, 1108:1 1104:P 1100:( 1091:( 1074:R 1057:. 1054:) 1051:) 1046:2 1042:P 1038:( 1035:c 1032:, 1029:) 1024:1 1020:P 1016:( 1013:c 1010:( 1001:= 998:) 995:) 990:2 986:P 982:, 977:1 973:P 969:( 960:( 957:c 946:R 929:. 926:) 921:2 917:P 913:( 904:) 899:1 895:P 891:( 882:= 879:) 874:2 870:P 864:1 860:P 856:( 828:. 825:) 820:2 816:P 812:( 809:c 806:) 801:1 797:P 793:( 790:c 787:= 784:) 779:2 775:P 769:1 765:P 761:( 758:c 736:P 721:, 718:) 715:P 712:( 703:) 700:P 697:( 694:c 691:= 688:P 677:u 671:R 665:P 660:) 658:P 656:( 654:c 652:/ 650:P 644:P 639:) 637:P 627:R 621:P 616:) 614:P 612:( 610:c 598:R 584:R 566:R 540:. 537:) 531:+ 528:x 517:3 513:x 509:6 506:( 503:2 497:= 488:x 482:+ 477:3 473:x 440:. 437:) 428:x 422:+ 417:3 413:x 409:6 403:( 400:2 397:= 388:x 382:+ 377:3 373:x 340:, 335:2 325:x 319:+ 314:3 310:x 297:= 288:x 282:+ 277:3 273:x 269:6 237:x 231:+ 226:3 222:x 88:) 82:( 77:) 73:( 59:. 20:)

Index

Primitive polynomial (ring theory)
list of references
related reading
external links
inline citations
improve
introducing
Learn how and when to remove this message
algebra
polynomial
integer
coefficients
unique factorization domain
greatest common divisor
up to
unit
ring
inverse
Gauss's lemma for polynomials
polynomial factorization
Factorization of polynomials § Primitive part–content factorization
rational numbers
field of fractions
greatest common divisors
greatest common divisor
additive inverse
leading coefficient
unique factorization domain
integers
polynomial ring

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.