Knowledge

Ménage problem

Source 📝

995:
graph is formed by removing the perfect matching formed by the male-female couples from a complete bipartite graph that connects every man to every woman. Any valid seating arrangement can be described by the sequence of people in order around the table, which forms a Hamiltonian cycle in the graph. However, two Hamiltonian cycles are considered to be equivalent if they connect the same vertices in the same cyclic order regardless of the starting vertex, while in the ménage problem the starting position is considered significant: if, as in
660:, solutions to the ménage problem took the form of first finding all seating arrangements for the women and then counting, for each of these partial seating arrangements, the number of ways of completing it by seating the men away from their partners. Bogart and Doyle argued that Touchard's formula may be derived directly by considering all seating arrangements at once rather than by factoring out the participation of the women. However, 31: 954: 1029:
A second graph-theoretic description of the problem is also possible. Once the women have been seated, the possible seating arrangements for the remaining men can be described as perfect matchings in a graph formed by removing a single Hamiltonian cycle from a complete bipartite graph; the graph has
1113:
However, the knot listing problem has some additional symmetries not present in the ménage problem: one obtains different Dowker notations for the same knot diagram if one begins the labeling at a different crossing point, and these different notations should all be counted as representing the same
994:
vertices of two colors, and each vertex of one color is connected to all but one of the vertices of the other color. In the case of the ménage problem, the vertices of the graph represent men and women, and the edges represent pairs of men and women who are allowed to sit next to each other. This
1090:. In a reduced diagram, the two labels at a crossing cannot be consecutive, so the set of pairs of labels at each crossing, used in Dowker notation to represent the knot, can be interpreted as a perfect matching in a graph that has a vertex for every number in the range from 1 to 2 999:'s tea party, all the guests shift their positions by one seat, it is considered a different seating arrangement even though it is described by the same cycle. Therefore, the number of oriented Hamiltonian cycles in a crown graph is smaller by a factor of 2 1110:, this matching is enough to describe the knot diagram itself; for other knots, an additional positive or negative sign needs to be specified for each crossing pair to determine which of the two strands of the crossing lies above the other strand. 1106:. This graph is formed by removing a Hamiltonian cycle (connecting consecutive numbers) from a complete bipartite graph (connecting all pairs of numbers with different parity), and so it has a number of matchings equal to a ménage number. For 300: 497: 805: 940: 664:
found the even more straightforward ladies-first solution described above by making use of a few of Bogart and Doyle's ideas (although they took care to recast the argument in non-gendered language).
50:
asks for the number of different ways in which it is possible to seat a set of male-female couples at a round dining table so that men and women alternate and nobody sits next to his or her partner. (
1030:
edges connecting open seats to men, and the removal of the cycle corresponds to forbidding the men to sit in either of the open seats adjacent to their wives. The problem of counting matchings in a
606: 34:
A table with ten place settings. There are 3120 different ways in which five male-female couples can sit at this table such that men and women alternate and nobody sits next to their partner.
957:
Crown graphs with six, eight, and ten vertices. The outer cycle of each graph forms a Hamiltonian cycle; the eight and ten vertex graphs also have other Hamiltonian cycles.
143: 1878: 1578: 355: 676: 1688: 1133: 1022: 521: 81: 816: 1386: 996: 650: 1497: 1898: 1840: 1513: 1398: 1346: 1994: 1278: 1067: 1803: 1613: 535: 109: 1767: 1735: 1007: − 1)! than the ménage numbers. The sequence of numbers of cycles in these graphs (as before, starting at 653:
to arrangements in which the people seated at the endpoints of each edge of a matching are required to be a couple.
1989: 1152: 981: 1039: 615: 101: 349:! ways of seating them at a particular set of seats. For each seating arrangement for the women, there are 345:! ways of seating the women: there are two sets of seats that can be arranged for the women, and there are 1789: 1984: 635: 326: 1273: 58:
word for "household", referring here to a male-female couple.) This problem was formulated in 1891 by
1999: 1701: 1095: 1047: 1344:
Canfield, E. Rodney; Wormald, Nicholas C. (1987), "Ménage numbers, bijections and P-recursiveness",
1794: 1618: 1472: 1146: 668: 89: 96:
of numbers. Along with their applications to etiquette and knot theory, these numbers also have a
1684:"Über die Permanente gewisser zirkulanter Matrizen und damit zusammenhängender Toeplitz-Matrizen" 1670: 1652: 1423: 1295: 1115: 1099: 1063: 1062:
Tait's motivation for studying the ménage problem came from trying to find a complete listing of
306: 63: 1960: 1082:
points where a knot crosses itself, in consecutive order along the knot, are labeled with the 2
295:{\displaystyle M_{n}=2\cdot n!\sum _{k=0}^{n}(-1)^{k}{\frac {2n}{2n-k}}{2n-k \choose k}(n-k)!.} 1957: 1938: 1382: 969: 105: 1907: 1869: 1849: 1815: 1751: 1722: 1662: 1609: 1587: 1573: 1553: 1522: 1443: 1407: 1355: 1324: 1287: 1122:
solved this modified enumeration problem, showing that the number of different matchings is
1107: 1051: 977: 59: 1941: 1921: 1861: 1827: 1631: 1601: 1565: 1536: 1511:
Henderson, J. R. (1975), "Permanents of (0,1)-matrices having at most two zeros per line",
1485: 1459: 1419: 1369: 1336: 1307: 1917: 1857: 1823: 1683: 1627: 1597: 1561: 1532: 1481: 1455: 1415: 1365: 1332: 1303: 1075: 1031: 313: 55: 30: 1873: 1835: 1502: 1439: 966: 1853: 506:! factor from Touchard's formula. The resulting smaller numbers (again, starting from 70:. For a number of couples equal to 3, 4, 5, ... the number of seating arrangements is 1978: 1760: 1674: 1557: 1467: 1427: 1360: 492:{\displaystyle A_{n}=\sum _{k=0}^{n}(-1)^{k}{\frac {2n}{2n-k}}{2n-k \choose k}(n-k)!} 39: 1705: 1592: 1544:
Holst, Lars (1991), "On the 'problème des ménages' from a probabilistic viewpoint",
17: 1493: 962: 97: 1819: 800:{\displaystyle A_{n}=nA_{n-1}+{\frac {n}{n-2}}A_{n-2}+{\frac {4(-1)^{n-1}}{n-2}}} 1435: 1149:, a different mathematical problem involving the arrangement of diners at tables 973: 625: 67: 1755: 1043: 1328: 1965: 1946: 1893: 1912: 1527: 1202:. More complicated recurrences had been described previously by Cayley and 935:{\displaystyle \displaystyle A_{n}=nA_{n-1}+2A_{n-2}-(n-4)A_{n-3}-A_{n-4},} 953: 1317:
International Journal of Mathematical Education in Science and Technology
1114:
diagram. For this reason, two matchings that differ from each other by a
93: 1666: 614:
non-overlapping pairs of adjacent seats or, equivalently, the number of
309:
for this formula and into various generalized versions of the problem.
1411: 1299: 1446:(1983), "Some remarks on the permanents of circulant (0,1) matrices", 1054:
in which all but two adjacent elements of the generating row equal 1.
74:
12, 96, 3120, 115200, 5836320, 382072320, 31488549120, ... (sequence
1739: 1291: 1003:
than the number of seating arrangements, but larger by a factor of (
1657: 945:
from which the ménage numbers themselves can easily be calculated.
1377:
Dörrie, Heinrich (1965), "Lucas' Problem of the Married Couples",
1315:
Bong, Nguyen-Huu (1998), "Lucas numbers and the menage problem",
1078:
for knot diagrams, an early form of which was used by Tait, the 2
1038:
the problem of computing ménage numbers, can be solved using the
1015:
2, 12, 312, 9600, 416880, 23879520, 1749363840, ... (sequence
1094:
and an edge between every pair of numbers that has different
1128: 1017: 516: 76: 1126:
1, 2, 5, 20, 87, 616, 4843, 44128, 444621, ... (sequence
502:
ways of seating the men; this formula simply omits the 2×
1770:(1882), "Additional note on a problem of arrangement", 1118:
should be treated as equivalent and counted only once.
1396:
Dutka, Jacques (1986), "On the problème des ménages",
961:
Solutions to the ménage problem may be interpreted in
514:
1, 2, 13, 80, 579, 4738, 43387, 439792, ... (sequence
820: 819: 679: 661: 538: 358: 146: 1639:
Kirousis, L.; Kontogeorgiou, G. (2018), "102.18 The
1470:(1956), "Knots and classes of ménage permutations", 1247: 1155:, a similar problem involving partial derangements 934: 799: 601:{\displaystyle {\frac {2n}{2n-k}}{2n-k \choose k}} 600: 491: 294: 592: 568: 465: 441: 265: 241: 1576:(1943), "Solution of the problème des ménages", 1219: 305:Much subsequent work has gone into alternative 27:Assignment problem in combinatorial mathematics 129:denote the number of seating arrangements for 1772:Proceedings of the Royal Society of Edinburgh 1759:. Includes (pp. 388–391) an addition by 1744:Proceedings of the Royal Society of Edinburgh 1710:Bulletin de la Société Mathématique de France 1579:Bulletin of the American Mathematical Society 1050:arising from this view of the problem is the 8: 1806:(1952), "The arithmetic of ménage numbers", 1786:An elementary solution to the ménage problem 1740:"On Professor Tait's problem of arrangement" 1379:100 Great Problems of Elementary Mathematics 1272:Bogart, Kenneth P.; Doyle, Peter G. (1986), 1729:, Paris: Gauthier-Villars, pp. 491–495 1274:"Non-sexist solution of the ménage problem" 657: 88:Mathematicians have developed formulas and 62:and independently, a few years earlier, by 330: 100:interpretation: they count the numbers of 1911: 1838:(1981), "On the "problème des ménages"", 1793: 1656: 1591: 1526: 1359: 1255: 1046:. In the case of the ménage problem, the 916: 897: 863: 841: 825: 818: 771: 752: 737: 715: 700: 684: 678: 591: 567: 565: 539: 537: 464: 440: 438: 412: 406: 387: 376: 363: 357: 337:Ménage numbers and ladies-first solutions 264: 240: 238: 212: 206: 187: 176: 151: 145: 1231: 976:. A crown graph is formed by removing a 952: 649:is the immediate result of applying the 134: 92:for computing these numbers and related 29: 1896:(1958), "On the problème des ménages", 1251: 1199: 1164: 1119: 1689:Séminaire Lotharingien de Combinatoire 1183: 1171: 810:and the simpler four-term recurrence 7: 1706:"Sur deux problèmes de permutations" 1616:(1946), "The problème des ménages", 1243: 1215: 1203: 1195: 1248:Eades, Praeger & Seberry (1983) 662:Kirousis & Kontogeorgiou (2018) 327:Chebyshev polynomials of first kind 1546:Statistics and Probability Letters 572: 445: 245: 25: 1874:"Sur un problème de permutations" 949:Graph-theoretical interpretations 608:is the number of ways of forming 1682:Kräuter, Arnold Richard (1984), 651:principle of inclusion–exclusion 1899:Canadian Journal of Mathematics 1593:10.1090/S0002-9904-1943-08035-4 667:The ménage numbers satisfy the 1961:"Laisant's Recurrence Formula" 1514:Canadian Mathematical Bulletin 1399:The Mathematical Intelligencer 890: 878: 768: 758: 483: 471: 403: 393: 283: 271: 203: 193: 1: 1854:10.1016/S0012-365X(81)80024-6 1820:10.1215/S0012-7094-52-01904-2 1279:American Mathematical Monthly 1220:Canfield & Wormald (1987) 1784:Passmore, Amanda F. (2005), 1558:10.1016/0167-7152(91)90147-J 1392:. Translated by David Antin. 1361:10.1016/0012-365X(87)90002-1 2016: 1498:"Math + Sexism: A Problem" 1942:"Married Couples Problem" 1808:Duke Mathematical Journal 1756:10.1017/S0370164600032557 1381:, Dover, pp. 27–33, 658:Bogart & Doyle (1986) 40:combinatorial mathematics 1645:The Mathematical Gazette 1329:10.1080/0020739980290502 1098:and are non-consecutive 982:complete bipartite graph 331:Wyman & Moser (1958) 1153:Problème des rencontres 115: 108:in certain families of 1913:10.4153/cjm-1958-045-6 1879:C. R. Acad. Sci. Paris 1528:10.4153/CMB-1975-064-6 958: 936: 801: 602: 493: 392: 296: 192: 35: 1708:, Vie de la société, 1702:Laisant, Charles-Ange 956: 937: 802: 638:. The expression for 603: 494: 372: 297: 172: 33: 1995:Recurrence relations 1841:Discrete Mathematics 1641:problème des ménages 1496:(October 28, 1986), 1448:Utilitas Mathematica 1444:Seberry, Jennifer R. 1347:Discrete Mathematics 817: 677: 536: 356: 144: 137:derived the formula 90:recurrence equations 48:problème des ménages 18:Problème des ménages 1727:Théorie des Nombres 1667:10.1017/mag.2018.27 1619:Scripta Mathematica 1473:Scripta Mathematica 1147:Oberwolfach problem 1086:numbers from 1 to 2 1068:number of crossings 1011: = 3) is 669:recurrence relation 66:in connection with 1958:Weisstein, Eric W. 1939:Weisstein, Eric W. 1440:Praeger, Cheryl E. 1412:10.1007/BF03025785 1116:cyclic permutation 1064:mathematical knots 970:Hamiltonian cycles 959: 932: 931: 797: 656:Until the work of 598: 489: 292: 116:Touchard's formula 106:Hamiltonian cycles 64:Peter Guthrie Tait 36: 1990:Integer sequences 1610:Kaplansky, Irving 1574:Kaplansky, Irving 1388:978-0-486-61348-2 1108:alternating knots 795: 731: 590: 563: 510: = 3), 463: 436: 263: 236: 16:(Redirected from 2007: 1971: 1970: 1952: 1951: 1924: 1915: 1887: 1864: 1830: 1798: 1797: 1779: 1758: 1730: 1717: 1696: 1677: 1660: 1651:(553): 147–149, 1634: 1604: 1595: 1568: 1539: 1530: 1506: 1488: 1462: 1430: 1391: 1372: 1363: 1354:(2–3): 117–129, 1339: 1310: 1259: 1256:Henderson (1975) 1241: 1235: 1229: 1223: 1213: 1207: 1193: 1187: 1181: 1175: 1169: 1131: 1052:circulant matrix 1034:, and therefore 1020: 978:perfect matching 941: 939: 938: 933: 927: 926: 908: 907: 874: 873: 852: 851: 830: 829: 806: 804: 803: 798: 796: 794: 783: 782: 781: 753: 748: 747: 732: 730: 716: 711: 710: 689: 688: 648: 634: 623: 613: 607: 605: 604: 599: 597: 596: 595: 586: 571: 564: 562: 548: 540: 519: 498: 496: 495: 490: 470: 469: 468: 459: 444: 437: 435: 421: 413: 411: 410: 391: 386: 368: 367: 301: 299: 298: 293: 270: 269: 268: 259: 244: 237: 235: 221: 213: 211: 210: 191: 186: 156: 155: 79: 21: 2015: 2014: 2010: 2009: 2008: 2006: 2005: 2004: 1975: 1974: 1956: 1955: 1937: 1936: 1933: 1928: 1891: 1868: 1834: 1802: 1783: 1766: 1734: 1721: 1700: 1681: 1638: 1608: 1586:(10): 784–785, 1572: 1543: 1510: 1492: 1466: 1434: 1395: 1389: 1376: 1343: 1314: 1292:10.2307/2323022 1271: 1267: 1262: 1242: 1238: 1232:Passmore (2005) 1230: 1226: 1214: 1210: 1194: 1190: 1182: 1178: 1170: 1166: 1162: 1143: 1127: 1076:Dowker notation 1060: 1032:bipartite graph 1016: 988: 963:graph-theoretic 951: 912: 893: 859: 837: 821: 815: 814: 784: 767: 754: 733: 720: 696: 680: 675: 674: 647: 639: 629: 619: 609: 573: 566: 549: 541: 534: 533: 528:are called the 515: 446: 439: 422: 414: 402: 359: 354: 353: 339: 324: 246: 239: 222: 214: 202: 147: 142: 141: 135:Touchard (1934) 128: 118: 98:graph theoretic 75: 28: 23: 22: 15: 12: 11: 5: 2013: 2011: 2003: 2002: 1997: 1992: 1987: 1977: 1976: 1973: 1972: 1953: 1932: 1931:External links 1929: 1927: 1926: 1906:(3): 468–480, 1889: 1866: 1848:(3): 289–297, 1832: 1800: 1795:10.1.1.96.8324 1781: 1764: 1732: 1723:Lucas, Édouard 1719: 1698: 1679: 1636: 1606: 1570: 1552:(3): 225–231, 1541: 1521:(3): 353–358, 1508: 1503:New York Times 1490: 1468:Gilbert, E. N. 1464: 1432: 1393: 1387: 1374: 1341: 1323:(5): 647–661, 1312: 1286:(7): 514–519, 1268: 1266: 1263: 1261: 1260: 1252:Kräuter (1984) 1236: 1224: 1208: 1200:Laisant (1891) 1188: 1176: 1163: 1161: 1158: 1157: 1156: 1150: 1142: 1139: 1138: 1137: 1120:Gilbert (1956) 1059: 1056: 1027: 1026: 986: 950: 947: 943: 942: 930: 925: 922: 919: 915: 911: 906: 903: 900: 896: 892: 889: 886: 883: 880: 877: 872: 869: 866: 862: 858: 855: 850: 847: 844: 840: 836: 833: 828: 824: 808: 807: 793: 790: 787: 780: 777: 774: 770: 766: 763: 760: 757: 751: 746: 743: 740: 736: 729: 726: 723: 719: 714: 709: 706: 703: 699: 695: 692: 687: 683: 643: 594: 589: 585: 582: 579: 576: 570: 561: 558: 555: 552: 547: 544: 530:ménage numbers 526: 525: 500: 499: 488: 485: 482: 479: 476: 473: 467: 462: 458: 455: 452: 449: 443: 434: 431: 428: 425: 420: 417: 409: 405: 401: 398: 395: 390: 385: 382: 379: 375: 371: 366: 362: 338: 335: 320: 303: 302: 291: 288: 285: 282: 279: 276: 273: 267: 262: 258: 255: 252: 249: 243: 234: 231: 228: 225: 220: 217: 209: 205: 201: 198: 195: 190: 185: 182: 179: 175: 171: 168: 165: 162: 159: 154: 150: 124: 117: 114: 86: 85: 44:ménage problem 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2012: 2001: 1998: 1996: 1993: 1991: 1988: 1986: 1983: 1982: 1980: 1968: 1967: 1962: 1959: 1954: 1949: 1948: 1943: 1940: 1935: 1934: 1930: 1923: 1919: 1914: 1909: 1905: 1901: 1900: 1895: 1890: 1885: 1881: 1880: 1875: 1871: 1867: 1863: 1859: 1855: 1851: 1847: 1843: 1842: 1837: 1836:Takács, Lajos 1833: 1829: 1825: 1821: 1817: 1813: 1809: 1805: 1804:Riordan, John 1801: 1796: 1791: 1787: 1782: 1777: 1773: 1769: 1765: 1762: 1761:Arthur Cayley 1757: 1753: 1749: 1745: 1741: 1737: 1733: 1728: 1724: 1720: 1715: 1712:(in French), 1711: 1707: 1703: 1699: 1695: 1692:(in German), 1691: 1690: 1685: 1680: 1676: 1672: 1668: 1664: 1659: 1654: 1650: 1646: 1642: 1637: 1633: 1629: 1625: 1621: 1620: 1615: 1611: 1607: 1603: 1599: 1594: 1589: 1585: 1581: 1580: 1575: 1571: 1567: 1563: 1559: 1555: 1551: 1547: 1542: 1538: 1534: 1529: 1524: 1520: 1516: 1515: 1509: 1505: 1504: 1499: 1495: 1494:Gleick, James 1491: 1487: 1483: 1479: 1475: 1474: 1469: 1465: 1461: 1457: 1453: 1449: 1445: 1441: 1437: 1433: 1429: 1425: 1421: 1417: 1413: 1409: 1405: 1401: 1400: 1394: 1390: 1384: 1380: 1375: 1371: 1367: 1362: 1357: 1353: 1349: 1348: 1342: 1338: 1334: 1330: 1326: 1322: 1318: 1313: 1309: 1305: 1301: 1297: 1293: 1289: 1285: 1281: 1280: 1275: 1270: 1269: 1264: 1257: 1253: 1249: 1245: 1240: 1237: 1233: 1228: 1225: 1221: 1217: 1212: 1209: 1205: 1201: 1197: 1192: 1189: 1185: 1184:Gleick (1986) 1180: 1177: 1173: 1168: 1165: 1159: 1154: 1151: 1148: 1145: 1144: 1140: 1135: 1130: 1125: 1124: 1123: 1121: 1117: 1111: 1109: 1105: 1101: 1097: 1093: 1089: 1085: 1081: 1077: 1073: 1069: 1066:with a given 1065: 1057: 1055: 1053: 1049: 1045: 1041: 1037: 1033: 1024: 1019: 1014: 1013: 1012: 1010: 1006: 1002: 998: 993: 989: 983: 979: 975: 971: 968: 964: 955: 948: 946: 928: 923: 920: 917: 913: 909: 904: 901: 898: 894: 887: 884: 881: 875: 870: 867: 864: 860: 856: 853: 848: 845: 842: 838: 834: 831: 826: 822: 813: 812: 811: 791: 788: 785: 778: 775: 772: 764: 761: 755: 749: 744: 741: 738: 734: 727: 724: 721: 717: 712: 707: 704: 701: 697: 693: 690: 685: 681: 673: 672: 671: 670: 665: 663: 659: 654: 652: 646: 642: 637: 633: 627: 622: 617: 612: 587: 583: 580: 577: 574: 559: 556: 553: 550: 545: 542: 532:. The factor 531: 523: 518: 513: 512: 511: 509: 505: 486: 480: 477: 474: 460: 456: 453: 450: 447: 432: 429: 426: 423: 418: 415: 407: 399: 396: 388: 383: 380: 377: 373: 369: 364: 360: 352: 351: 350: 348: 344: 336: 334: 332: 329:was given by 328: 323: 319: 315: 310: 308: 289: 286: 280: 277: 274: 260: 256: 253: 250: 247: 232: 229: 226: 223: 218: 215: 207: 199: 196: 188: 183: 180: 177: 173: 169: 166: 163: 160: 157: 152: 148: 140: 139: 138: 136: 132: 127: 123: 113: 111: 107: 103: 99: 95: 91: 83: 78: 73: 72: 71: 69: 65: 61: 60:Édouard Lucas 57: 53: 49: 45: 41: 32: 19: 1985:Permutations 1964: 1945: 1903: 1897: 1892:Wyman, Max; 1883: 1877: 1870:Touchard, J. 1845: 1839: 1814:(1): 27–30, 1811: 1807: 1785: 1775: 1771: 1768:Muir, Thomas 1747: 1743: 1736:Muir, Thomas 1726: 1713: 1709: 1693: 1687: 1648: 1644: 1643:revisited", 1640: 1623: 1617: 1583: 1577: 1549: 1545: 1518: 1512: 1501: 1477: 1471: 1451: 1447: 1436:Eades, Peter 1406:(3): 18–33, 1403: 1397: 1378: 1351: 1345: 1320: 1316: 1283: 1277: 1239: 1227: 1211: 1191: 1179: 1172:Dutka (1986) 1167: 1112: 1103: 1091: 1087: 1083: 1079: 1071: 1061: 1044:0-1 matrices 1035: 1028: 1008: 1004: 1000: 991: 984: 974:crown graphs 960: 944: 809: 666: 655: 644: 640: 631: 620: 610: 529: 527: 507: 503: 501: 346: 342: 341:There are 2× 340: 321: 317: 316:formula for 312:A different 311: 304: 130: 125: 121: 119: 87: 51: 47: 43: 37: 2000:Knot theory 1750:: 382–391, 1626:: 113–124, 1614:Riordan, J. 1480:: 228–233, 1454:: 145–159, 1244:Muir (1878) 1216:Muir (1882) 1204:Muir (1878) 1196:Muir (1882) 1058:Knot theory 1042:of certain 626:cycle graph 624:edges in a 68:knot theory 1979:Categories 1894:Moser, Leo 1658:1607.04115 1265:References 1040:permanents 1036:a fortiori 990:; it has 2 965:terms, as 325:involving 1966:MathWorld 1947:MathWorld 1886:(631–633) 1790:CiteSeerX 1778:: 187–190 1716:: 105–108 1675:126036427 1428:116433056 921:− 910:− 902:− 885:− 876:− 868:− 846:− 789:− 776:− 762:− 742:− 725:− 705:− 616:matchings 581:− 557:− 478:− 454:− 430:− 397:− 374:∑ 278:− 254:− 230:− 197:− 174:∑ 164:⋅ 133:couples. 102:matchings 94:sequences 1872:(1934), 1738:(1878), 1725:(1891), 1704:(1891), 1141:See also 967:directed 636:vertices 1922:0095127 1862:0675360 1828:0045680 1632:0019074 1602:0009006 1566:1097978 1537:0399127 1486:0090568 1460:0703136 1420:0846991 1370:0885491 1337:1649926 1308:0856291 1300:2323022 1132:in the 1129:A002484 1021:in the 1018:A094047 980:from a 520:in the 517:A000179 80:in the 77:A059375 54:is the 1920:  1860:  1826:  1792:  1673:  1630:  1600:  1564:  1535:  1484:  1458:  1426:  1418:  1385:  1368:  1335:  1306:  1298:  1100:modulo 1096:parity 1070:, say 1048:matrix 314:umbral 307:proofs 110:graphs 56:French 52:Ménage 42:, the 1671:S2CID 1653:arXiv 1424:S2CID 1296:JSTOR 1160:Notes 1074:. In 997:Alice 1694:B11b 1383:ISBN 1134:OEIS 1023:OEIS 522:OEIS 120:Let 104:and 82:OEIS 1908:doi 1884:198 1850:doi 1816:doi 1752:doi 1663:doi 1649:102 1588:doi 1554:doi 1523:doi 1408:doi 1356:doi 1325:doi 1288:doi 987:n,n 972:in 628:of 618:of 46:or 38:In 1981:: 1963:. 1944:. 1918:MR 1916:, 1904:10 1902:, 1882:, 1876:, 1858:MR 1856:, 1846:36 1844:, 1824:MR 1822:, 1812:19 1810:, 1788:, 1776:11 1774:, 1746:, 1742:, 1714:19 1686:, 1669:, 1661:, 1647:, 1628:MR 1624:12 1622:, 1612:; 1598:MR 1596:, 1584:49 1582:, 1562:MR 1560:, 1550:11 1548:, 1533:MR 1531:, 1519:18 1517:, 1500:, 1482:MR 1478:22 1476:, 1456:MR 1452:23 1450:, 1442:; 1438:; 1422:, 1416:MR 1414:, 1402:, 1366:MR 1364:, 1352:63 1350:, 1333:MR 1331:, 1321:29 1319:, 1304:MR 1302:, 1294:, 1284:93 1282:, 1276:, 1254:; 1250:; 1246:; 1218:; 1198:; 1136:). 1025:). 333:. 112:. 84:). 1969:. 1950:. 1925:. 1910:: 1888:. 1865:. 1852:: 1831:. 1818:: 1799:. 1780:. 1763:. 1754:: 1748:9 1731:. 1718:. 1697:. 1678:. 1665:: 1655:: 1635:. 1605:. 1590:: 1569:. 1556:: 1540:. 1525:: 1507:. 1489:. 1463:. 1431:. 1410:: 1404:8 1373:. 1358:: 1340:. 1327:: 1311:. 1290:: 1258:. 1234:. 1222:. 1206:. 1186:. 1174:. 1104:n 1102:2 1092:n 1088:n 1084:n 1080:n 1072:n 1009:n 1005:n 1001:n 992:n 985:K 929:, 924:4 918:n 914:A 905:3 899:n 895:A 891:) 888:4 882:n 879:( 871:2 865:n 861:A 857:2 854:+ 849:1 843:n 839:A 835:n 832:= 827:n 823:A 792:2 786:n 779:1 773:n 769:) 765:1 759:( 756:4 750:+ 745:2 739:n 735:A 728:2 722:n 718:n 713:+ 708:1 702:n 698:A 694:n 691:= 686:n 682:A 645:n 641:A 632:n 630:2 621:k 611:k 593:) 588:k 584:k 578:n 575:2 569:( 560:k 554:n 551:2 546:n 543:2 524:) 508:n 504:n 487:! 484:) 481:k 475:n 472:( 466:) 461:k 457:k 451:n 448:2 442:( 433:k 427:n 424:2 419:n 416:2 408:k 404:) 400:1 394:( 389:n 384:0 381:= 378:k 370:= 365:n 361:A 347:n 343:n 322:n 318:M 290:. 287:! 284:) 281:k 275:n 272:( 266:) 261:k 257:k 251:n 248:2 242:( 233:k 227:n 224:2 219:n 216:2 208:k 204:) 200:1 194:( 189:n 184:0 181:= 178:k 170:! 167:n 161:2 158:= 153:n 149:M 131:n 126:n 122:M 20:)

Index

Problème des ménages

combinatorial mathematics
French
Édouard Lucas
Peter Guthrie Tait
knot theory
A059375
OEIS
recurrence equations
sequences
graph theoretic
matchings
Hamiltonian cycles
graphs
Touchard (1934)
proofs
umbral
Chebyshev polynomials of first kind
Wyman & Moser (1958)
A000179
OEIS
matchings
cycle graph
vertices
principle of inclusion–exclusion
Bogart & Doyle (1986)
Kirousis & Kontogeorgiou (2018)
recurrence relation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.